
Chapter 5

Modeling

“Memory is the treasury and guardian of all things.”
Cicero: De orature, I, c. 80 B.C.

5.1 Overview

Direct3D produces pixel images from scenes by processing geometry and appear-
ance data into pixels through a process called rasterization. In this chapter, we
introduce the mechanism of describing scenes to Direct3D. Scenes contain one or
more objects that are positioned relative to each other and to the virtual camera
that views the scene. Such objects are called “models”, and contain data that
define their shape and appearance. The shape of a model is described by a col-
lection of simple geometric shapes, called graphic primitives. The appearance
of a model is described by providing data associated with each vertex.

When we draw a three dimensional scene, we need to solve the problem of
visibility: objects in the foreground should occlude objects in the background.
Two dimensional applications use a painter’s algorithm to determine visibility,
but this is a problematic approach for complex three dimensional scenes. Direct-
3D can use depth/stencil surfaces to resolve visibility.

Models in the scene are made from a collection of primitive shapes to form the
surface of the entire model. Direct3D only provides primitives for modeling the
surface of an object, leading to scenes composed of object shells. Direct3D pro-
vides primitive shapes for points, lines and triangles. Since triangles are planar,
all smooth surfaces are approximated with a collection of triangles. Additional
information about the true surface normal at each vertex of the approximation
can be included to improve the object’s appearance, see chapter 8.

Additional data besides position and surface normal can be given at each ver-
tex. Using either a flexible vertex format or a vertex shader declaration, Direct-
3D describes colors, texture coordinates, vertex blending weights and arbitrary
shader data at each vertex. The vertex data is supplied to the device through
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a collection of streams, each associated with a vertex buffer. The streams can
be driven through a level of indirection with an index buffer.

Direct3D also provides two ways to describe a shape parametrically, with the
parameters defining a refinement of a basic surface description into an arbitrary
collection of triangles approximating the true surface.

The scene is described to the device one primitive at a time. Each primitive
is rasterized into a collection of pixels written to the render target property of
the device. We describe how to manipulate the render target property and how
the render target interacts with the back buffers of a swap chain.

Not every object we want to model is described exactly by a geometric
primitive. An application can use its own software rendering and direct pixel
manipulation, as in chapter 4, but usually there is a way to model the desired
object with a suitable collection of graphic primitives. We describe a few exam-
ples of objects such as drawing text, non-rectangular planar objects, volumetric
objects and level of detail approximations.

5.2 Modeling Scenes

All Direct3D rendering is done within a scene. BeginScene marks the beginning
of a scene and precedes all graphic rendering. EndScene marks the end of a scene
and follows all graphic rendering. Marking the scene in this manner allows
devices to perform computations that should be executed once for each frame of
rendering. Calling EndScene when not in a scene, BeginScene while in a scene,
or performing any rendering outside of a scene all return D3DERR INVALIDCALL.

HRESULT BeginScene();
HRESULT EndScene();

Device properties and states can be set at any time after the device has
been created, they are not affected by scenes. StretchRect is not considered a
rendering method and can be used outside of a scene. StretchRect is often im-
plemented using a separate data path than that used for rendering. If possible,
avoid interleaving calls to StretchRect with rendering calls. See chapter 23 for
more on performance issues related to the use of the pipeline.

Typically an application will initialize the device to a known state once
the device has been created and then call BeginScene and EndScene around
an internal traversal of a hierarchical database representing the visible scene.
Direct3D provides no direct facilities for the scene database, which is usually
tightly coupled to the application’s internal data structures. At the scene level,
D3DX provides mesh objects for representing models as a whole, see chapter 19
for more on mesh objects. D3DX also provides a matrix stack object that is
useful in traversing a scene hierarchy. See chapter 17 for more on the matrix
stack object.

Animating a scene involves rendering a sequence of frames, each bracketed
by BeginScene and EndScene. Each successive frame draws the models at
successive moments in time, as in cel animation used for cartoons. If the frames
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can be drawn rapidly enough, the eye will perceive the sequence of images as a
continuously moving image. Projected motion pictures present frames at a rate
of 24 each second. Direct3D can present frames as fast as the refresh rate of the
monitor for a synchronized presentation, or faster with immediate presentation.
Frame rates of greater than 15 fps generally are perceived as “real-time” and
can provide the sense of immersion in a simulation. Techniques used in “real-
time” simulation build on the basic features of Direct3D and are too lengthy to
describe here, see section 5.18.

The objects in scenes can be created programmatically, that is by writing
a program to compute their shape and appearance. The more common case
is to create models in an application specifically designed for editing models,
such as Maya, 3D Studio Max and Softimage. Models are written into a file
from the editing application and read from a file by the rendering application
when creating resources. An application can use the modeler’s file format, its
own file format, or the X file format. Using the format of the modeling package
may be convenient, provided documentation or a parsing library for the file
format exists. Creating your own file format from scratch is tedious and time
consuming work. Writing the necessary file manipulation routines for reading
and writing scenes and models is error-prone. (You will also need to write your
own conversion tool to and from the modeling package’s file format.)

An application can use the X file format provided with the SDK instead
of inventing another file format for scene and model data. The X file format
is extensible and easily adaptable to the specific needs of an application and
provides basic model storage immediately. See chapter 21 for more information
about X file support in the SDK. The SDK also provides plugins for some
common modeling packages that allow them to use the X file format for models,
see appendix A.

5.3 Visibility

Visibility isn’t much of a problem in two dimensional applications such as those
that use GDI. They view the window’s client area as a place where they draw a
stack of objects from “bottom” to “top”, in that order. The topmost object is
drawn last and covers over anything that was drawn under its pixel locations.
This is called the “painter’s algorithm” solution to the visibility problem. It
works fine when the objects are all planar and don’t intersect as they would in
a GDI application.

However, the natural extension of the painter’s algorithm to three dimensions
fails in the general case. If we sort the models in the scene from back to front and
draw the models in that order, this is the equivalent of painter’s algorithm in
three dimensions. As long as the models don’t interpenetrate or form a cycle of
occlusion, the algorithm works fine. A cycle of occlusion can be visualized with
a scene containing four overlapping rectangles, such as in figure 5.1. Rectangle
A occludes B, B occludes C, C occludes D, and D occludes A, giving rise to a
cycle of occlusion. While any two of the rectangles have a well defined ordering
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Figure 5.1: Illustration of a cycle of occlusion with four rectangles. This scene
cannot be drawn properly by the standard painter’s algorithm for resolving
visibility.

that determines which rectangle is in front, taken as a whole no one rectangle
can be considered to be in front of all the others.

The “Z-buffer algorithm” solution to the visibility problem works at each
pixel on the render target instead of on models as a whole. As models are
rasterized, each pixel will have an associated Z value that is used to determine
which pixel is closest to the camera. The closer pixels are stored into the render
target, while pixels farther away are discarded.

While the Z-buffer algorithm is superior to painter’s algorithm it is not per-
fect. In particular, the Z-buffer assumes that pixels are completely opaque and
the pixel nearest the camera is always “on top.” However, if the model is par-
tially transparent, then its pixels will be partially transparent and whatever is
“behind” those partially transparent pixels should be seen. Fortunately, ac-
ceptable results can usually be obtained by drawing all solid models first and
then roughly sort the transparent objects from back to front and draw them
with painter’s algorithm. This approach is not perfect, but it does reduce the
artifacts while still exploiting the fast Z-buffer hardware.

The depth/stencil buffer holds each pixel’s depth from the camera. A
depth/stencil buffer can be created as a property of the device based on the
D3DPRESENT PARAMETERS for the device, or explicitly by calling CreateDepth-
StencilSurface. The depth/stencil buffer surface created with the device is
returned by GetDepthStencilSurface. To use the Z-buffer for resolving vis-
ibility, set RS Z Enable to D3DZB TRUE, RS Z Write Enable to TRUE, and RS Z
Func to D3DCMP LESS. The operation of the depth/stencil buffer is described in
detail in chapter 14.

If the D3DPRASTERCAPS ZBUFFERLESSHSR bit of D3DCAPS9::RasterCaps is
set, it indicates the device has an alternative visibility algorithm for hidden
surface removal (HSR) that doesn’t use a Z-buffer. How visibility is determined
is hardware dependent and application transparent. Typically this capability
is exposed by so-called “scene capture” cards. In this case, visibility can be
resolved by setting the depth/stencil buffer for the render target to NULL, and
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setting RS Z Enable to D3DZB TRUE.

#define D3DPRASTERCAPS_ZBUFFERLESSHSR 0x00008000L

5.4 Render Targets

As primitives are rasterized, a stream of pixels is produced. The destination for
this stream of pixels is the render target property on the device. All back buffers
on swap chains are valid render targets, but render targets are not restricted
to back buffer surfaces. When the device is created or reset, the render target
is back buffer zero of the device’s default swap chain. When Present is called
on the device, the render target advances to the next back buffer so that after
Present returns, render target is back buffer zero again. This means that an
application which only renders to the back buffer and presents frames never
needs to explicitly set the render target property.

Setting the render target to a surface other than a back buffer surface allows
the device to render directly into an image surface instead of rendering into a
swap chain’s back buffer and using StretchRect to obtain the results of the
rendering, which could stall the pipeline. It also allows a device to render
directly into a surface contained in a cube map or in a texture map as we will
see in chapter 11.

A render target surface not associated with a swap chain can be created
by calling CreateRenderTarget. The format of the render target must be vali-
dated with CheckDeviceFormat for D3DRTYPE SURFACE with D3DUSAGE RENDER-
TARGET. If the sampling argument is not D3DMULTISAMPLE NONE, then it must
be validated with CheckDeviceMultiSampleType for the render target surface
format.

HRESULT CreateRenderTarget(UINT width,
UINT height,
D3DFORMAT format,
D3DMULTISAMPLE_TYPE sampling,
BOOL lockable,
IDirect3DSurface9 **result);

HRESULT GetRenderTarget(IDirect3DSurface9 **value);
HRESULT SetRenderTarget(IDirect3DSurface9 *value,

IDirect3DSurface9 *depth_stencil);

GetRenderTarget returns a surface interface for the render target property
of the device. The render target can be changed with SetRenderTarget, which
takes two surface interfaces for the color buffer and depth/stencil buffer of the
new render target. The color buffer surface and depth/stencil buffer surface
must match in pixel dimensions and their respective formats must be validated
with CheckDepthStencilMatch. If the depth stencil argument NULL, then
no depth/stencil buffer is associated with the new render target. If the value
parameter is NULL, then the existing render target’s color buffer is retained.
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The Clear method initializes the render target to known values. The color,
z, and stencil arguments provide the values to be stored in the render target.
The flags argument controls which values are written and must be one or more
of the following flags.

HRESULT Clear(DWORD num_rects,
const D3DRECT *rects,
DWORD flags,
D3DCOLOR color,
float z,
DWORD stencil);

#define D3DCLEAR_TARGET 0x00000001L
#define D3DCLEAR_ZBUFFER 0x00000002L
#define D3DCLEAR_STENCIL 0x00000004L

The num rects and rects arguments restrict the clear operation to a sub-
region of the viewport into the render target surface. If rects is NULL, then
the entire viewport is cleared. Unless changed, the viewport always covers the
entire render target surface and is reset to the entire render target surface when
the render target is changed. The viewport property restricts rendering to a
portion of the render target surface and is described in section 6.11.

5.5 Primitive Types

Models in the scene are made from a collection of primitive shapes to form the
surface of the entire model. Direct3D only provides primitives for modeling
the surface of an object, leading to scenes composed of object shells. Direct3D
provides primitive shapes for points, lines, triangles and higher-order surface
patches. Since triangles are planar, they can only approximate true smooth
surfaces. Additional information about the true surface normal at each vertex
of the approximation can be included to provide a more realistic appearance to
the object. Direct3D supports the primitive types given by the D3DPRIMITIVE-
TYPE enumeration and illustrated in figure 5.2.

typedef enum _D3DPRIMITIVETYPE {
D3DPT_POINTLIST = 1,
D3DPT_LINELIST = 2,
D3DPT_LINESTRIP = 3,
D3DPT_TRIANGLELIST = 4,
D3DPT_TRIANGLESTRIP = 5,
D3DPT_TRIANGLEFAN = 6,

} D3DPRIMITIVETYPE;

D3DPT POINTLIST draws a collection of points, the vertex labels in the figure
are for reference only and are not drawn by Direct3D. D3DPT LINELIST draws
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Figure 5.2: Illustration of primitive types with the vertices {A, B, C, D, E,
F}, unless otherwise noted. (a) D3DPT POINTLIST, (b) D3DPT LINELIST, (c)
D3DPT LINESTRIP, (d) D3DPT TRIANGLEFAN {B, C, F , E, D, A}, (e) D3DPT -
TRIANGLESTRIP {D, A, B, E, C, F}, (f) D3DPT TRIANGLELIST {A, E, D, B, C,
F}.

a sequence of possibly disjoint line segments and D3DPT LINELIST draws a se-
quence of connected line segments.

Solid shapes are drawn with collections of triangles. D3DPT TRIANGLEFAN
draws a sequence of triangles where each triangle after the first shares an edge
with the previous triangle. In figure 5.2(d), the triangles generated are BCF ,
BFE, BED, and BDA. Triangles BCF and BFE share edge BF .

D3DPT TRIANGLESTRIP draws a strip of triangles, each sharing a common
edge as well, but in a different topology from D3DPT TRIANGLEFAN. In figure 5.2(e),
the triangles generated are DAB, DBE, EBC, and ECF . Here each triangle
after the first shares a common edge with the previous triangle. Triangles DAB
and DBE share edge DB.

D3DPT TRIANGLELIST draws a sequence of possibly disjoint triangles. In
figure 5.2(f), the triangles generated are AED and BCF . The triangles needn’t
share any vertices or edges, making this the most general primitive type for
triangles.

Figure 5.3 shows three ways to draw the shape of the numeral 1. The
points in figure 5.3(a) can be drawn with D3DPT POINTLIST, and the order of
the vertices is not significant. The point labels are not part of the primitive, they
are shown only for reference. The vertex indices will be discussed in section 5.10.

The outline in (b) can be drawn with D3DPT LINESTRIP and the vertices {A,
C, M , N , R, O, K, L, E, A}. The first vertex must be repeated at the end
to close the loop. The outline could also be drawn as a series of disconnected
segments using D3DPT LINELIST and the vertices {A, C, C, M , M , N , N , R,
R, O, O, K, K, L, L, E, E, A}.

The triangulation in (c) can be drawn with 3 D3DPT TRIANGLESTRIP prim-
itives with the vertices {A, D, B, E, C, F}, {E, L, F , M}, and {K, O, L,
P , M , Q, N , R}. It can be drawn with a single D3DPT TRIANGLELIST with the
vertices {A, B, D, B, E, D, B, C, E, C, F , E, E, F , L, F , M , L, K, L,
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Point Index Position Point Index Position Point Index Position
A 0 (0, 5) G 6 (1, 3) M 12 (2, 1)
B 1 (1, 5) H 7 (2, 3) N 13 (3, 1)
C 2 (2, 5) I 8 (1, 2) O 14 (0, 0)
D 3 (0, 4) J 9 (2, 2) P 15 (1, 0)
E 4 (1, 4) K 10 (0, 1) Q 16 (2, 0)
F 5 (3, 4) L 11 (1, 1) R 17 (3, 0)

(d)

Figure 5.3: Modeling with primitive types. (a) points defining the shape of the
numeral 1, (b) outlined, (c) triangulated, (d) vertex data

O, L, P , O, L, M , P , M , Q, P , M , N , Q, N , R, Q}. It can be drawn using
6 D3DPT TRIANGLEFAN primitives with the vertices {B, E, D, A}, {C, F , E,
B}, {F , M , L, E}, {L, P , O, K}, {M , Q, P , L}, and {N , R, Q, M}. These
triangulations are only illustrative and are not the only triangulations of this
shape.

When primitives share edges but not vertices, they may be mathematically
coincident, but the finite accuracy in computer arithmetic gives rise to roundoff
error in the coordinates as they are processed by Direct3D. If primitives share
edges but not vertices, this can result in “cracks” appearing in the surface being
modeled. The objects behind the surface show through the crack between prim-
itive triangles. If vertex coordinates are shared, then the same roundoff error
is applied to both primitives and cracks are avoided. Returning to figure 5.3,
if triangles KNO and FML were drawn, cracks may apear along the segment
LM in common between the two triangles, where they share no vertices. The
points L and M are referred to as “T-junctions” and can be avoided by inserting
additional vertices at points L and M , as in the triangulations of the preceding
paragraph.

The best way to avoid T-junctions and the resulting cracks is to ensure
that your modeling process and tools do not generate models with T-junctions.
This is usually not a problem with commercial modeling packages. If you are
programmatically triangulating shapes, you should ensure that your generated
triangulation doesn’t introduce T-junctions into the model.
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Triangles are primitives that model the surface of an object, but not its
interior. The triangle surface can be thought of as the dividing line between the
space “inside” the model and the space “outside” the model. For a triangle, the
outside direction is defined by its surface normal. The surface normal can be
computed as the cross-product of the vectors formed from any two sides of the
triangle. This means that if the triangle is in the plane of the page, listing its
vertices in clockwise order gives a surface normal that points out of the page
towards the reader in a left-handed coordinate system. If the vertices are listed
in counter-clockwise order, then the surface normal will point into the page away
from the reader.

A typical model’s shape is an enclosed surface, such as a sphere. If the object
contains a hole, such as a bottle, the interior surface of the object should also
be modeled. If the interior surface is not modeled, the exterior surface polygons
will be seen from the “inside” of their surface. Their surface normals point in
the wrong direction for the interior surface. This will cause errors in vertex
processing and lighting, resulting in an incorrect rendering.

5.6 Vertex Data

Scene data consists of data defining shape and data defining appearance. We’ve
seen how the shape can be specified by primitives and the coordinates of their
vertices. Additional data can be associated with each vertex to define appear-
ance information that is used when the primitive is rasterized to determine the
color of the rasterized pixels.

Data for use with the fixed-function vertex processing pipeline is de-
scribed by either a flexible vertex format (FVF) code, or a vertex shader decla-
ration. In chapter 9 we describe vertex shader programs can use arbitrary data
at each vertex. Each piece of data associated with the vertex is called a vertex
component. With an FVF, all the vertex data must be in a single stream, but
a vertex shader declaration can divide the components into multiple streams.

In addition to choosing fixed-function vertex processing or programmable
vertex processing, a program can supply fully processed vertices directly to
the device, skipping vertex processing altogether. This approach stems from a
time when transformation and lighting were expensive operations and hardware
accelerators for them were not common. Hardware transformation and lighting
are becoming commonplace, but fully transformed vertices are still useful for
screen-space primitives, such as those drawn by minimal.cpp in listing 2.1.

5.7 Flexible Vertex Formats

Direct3D can describe a vertex with a flexible vertex format code or a vertex
declaration. The FVF of a vertex is a DWORD containing one or more flags
that describe the vertex components present in memory. The FVF flags and
their corresponding vertex components are summarized in table 5.1. The vertex
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components are laid out in memory in the same order as the vertex components
listed in the table, starting with the position component.

#define D3DFVF_XYZ 0x002
#define D3DFVF_XYZRHW 0x004
#define D3DFVF_XYZB1 0x006
#define D3DFVF_XYZB2 0x008
#define D3DFVF_XYZB3 0x00a
#define D3DFVF_XYZB4 0x00c
#define D3DFVF_XYZB5 0x00e
#define D3DFVF_NORMAL 0x010
#define D3DFVF_PSIZE 0x020
#define D3DFVF_DIFFUSE 0x040
#define D3DFVF_SPECULAR 0x080
#define D3DFVF_TEX0 0x000
#define D3DFVF_TEX1 0x100
#define D3DFVF_TEX2 0x200
#define D3DFVF_TEX3 0x300
#define D3DFVF_TEX4 0x400
#define D3DFVF_TEX5 0x500
#define D3DFVF_TEX6 0x600
#define D3DFVF_TEX7 0x700
#define D3DFVF_TEX8 0x800
#define D3DFVF_LASTBETA_UBYTE4 0x1000

Every FVF must include a position with one of the D3DFVF XYZ, D3DFVF -
XYZRHW, D3DFVF XYZB1, D3DFVF XYZB2, D3DFVF XYZB3, D3DFVF XYZB4, or D3D-
FVF XYZB5. The remaining FVF flags are all optional. The β value blending
weights, D3DFVF XYZBn and D3DFVF LASTBETA UBYTE4 flags are discussed in sec-
tion 6.7. The D3DFVF XYZ flag specifies untransformed vertex positions in model
space, while the D3DFVF XYZRHW specifies transformed vertices with positions
transformed into screen space. A vertex transformation maps vertices in one
coordinate frame to another coordinate frame with a matrix and is described in
detail in chapter 7. Transformed vertices essentially pass through the pipeline
unchanged until the vertices are rasterized. Lines 47–59 of listing 2.1 uses trans-
formed vertices to draw a triangle, which is why the vertices of the triangle have
their coordinates scaled by the dimensions of the window’s client area.

D3DFVF NORMAL indicates the presence of a true surface normal. D3DFVF -
PSIZE is used only with point sprite primitives and specifies the size of the
point sprite, as discussed in section 5.15.1. The D3DFVF DIFFUSE and D3DFVF -
SPECULAR flags indicate the presence of the diffuse and specular colors of the
model’s surface at the vertex. Diffuse and specular colors are discussed in more
detail in chapter 8. Each vertex can have up to eight sets of texture coordinates,
and each texture coordinate set can have one, two, three, or four dimensions.
The D3DFVF TEXn flags set the number of texture coordinate sets and the D3D-
FVF TEXCOORDSIZEn macros set the dimensionality of the texture coordinate set
argument as shown in table 5.1.
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D3DCAPS9::FVFCaps describes the FVF capabilities of the device. The bits
given by D3DFVFCAPS TEXCOORDCOUNTMASK describe the maximum number of
texture coordinates that the device can simultaneously use from each vertex
for fixed-function pixel processing. The D3DFVFCAPS DONOTSTRIPELEMENTS bit
indicates that the device can handle vertices with unused vertex components.
If this flag is not set, then it indicates that including vertex components in the
FVF that are not used in rendering will render more slowly than if the unused
vertex components were stripped from the vertex. For instance, if texturing is
disabled, the device will render faster if texture coordinates are removed from
the vertices.

If the D3DFVFCAPS PSIZE bit is set, then the device supports a point size
vertex component in the FVF for fixed-function processing of vertices in model
space. Transformed vertices always support the point size vertex component
and programmable vertex processing with a vertex shader always supports the
output of a point size.

The D3DFVFCAPS TEXCOORDCOUNTMASK bits of FVFCaps indicate the number
of simultaneous texture coordinates that can be used by the device. A ver-
tex may contain more texture coordinates, but only the number of coordinates
specified by D3DFVFCAPS TEXCOORDCOUNTMASK can be used for rendering.

#define D3DFVFCAPS_TEXCOORDCOUNTMASK 0x0000ffffL
#define D3DFVFCAPS_DONOTSTRIPELEMENTS 0x00080000L
#define D3DFVFCAPS_PSIZE 0x00100000L

Flexible Vertex Format
FVF
Bits Vertex Component or FVF Structure Field

FVF Flag Data Type Values
0 Reserved

1-3 Position
D3DFVF XYZ float[3] (x, y, z)
D3DFVF XYZRHW float[4] (x, y, z, 1/w)
D3DFVF XYZB1 float[4] (x, y, z), β0

D3DFVF XYZB2 float[5] (x, y, z), β0, β1

D3DFVF XYZB3 float[6] (x, y, z), β0, β1, β2

D3DFVF XYZB4 float[7] (x, y, z), β0, . . . , β3

D3DFVF XYZB5 float[8] (x, y, z), β0, . . . , β4

4 Normal
D3DFVF NORMAL float[3] 〈nx, ny, nz〉

5 Point Size
D3DFVF PSIZE float s

6 Diffuse Color
D3DFVF DIFFUSE D3DCOLOR Cd

7 Specular Color
D3DFVF SPECULAR D3DCOLOR Cs

. . . continued
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Flexible Vertex Format (continued)
8-11 Texture Coordinate Set Count

D3DFVF TEX0
D3DFVF TEX1
D3DFVF TEX2
D3DFVF TEX3
D3DFVF TEX4
D3DFVF TEX5
D3DFVF TEX6
D3DFVF TEX7
D3DFVF TEX8

12 Last β UBYTE4

D3DFVF LASTBETA UBYTE4
13-15 Reserved
16-17 Texture Coordinate Set 0

D3DFVF TEXCOORDSIZE1(0) float (s)
D3DFVF TEXCOORDSIZE2(0) float[2] (s, t)
D3DFVF TEXCOORDSIZE3(0) float[3] (s, t, u)
D3DFVF TEXCOORDSIZE4(0) float[4] (s, t, u, v)

18-19 Texture Coordinate Set 1
D3DFVF TEXCOORDSIZE1(1) float (s)
D3DFVF TEXCOORDSIZE2(1) float[2] (s, t)
D3DFVF TEXCOORDSIZE3(1) float[3] (s, t, u)
D3DFVF TEXCOORDSIZE4(1) float[4] (s, t, u, v)

...
...

30-31 Texture Coordinate Set 7
D3DFVF TEXCOORDSIZE1(7) float (s)
D3DFVF TEXCOORDSIZE2(7) float[2] (s, t)
D3DFVF TEXCOORDSIZE3(7) float[3] (s, t, u)
D3DFVF TEXCOORDSIZE4(7) float[4] (s, t, u, v)

Table 5.1: The flexible vertex format fields and corresponding vertex compo-
nents. Some fields in the FVF do not correspond directly to a vertex component
and are shown in italic.

The FVF only defines the layout of the vertex components in memory, it
doesn’t matter what data structure you use for the vertex components as long
as the ordering and memory layout is consistent with the FVF used. A com-
monly used vertex structure contains a position, a surface normal vector and a
diffuse surface color. Here are several ways of representing this vertex as a data
structure with its associated FVF.

DWORD fvf = D3DFVF_XYZ | D3DFVF_NORMAL | D3DFVF_DIFFUSE;
struct s_vertex1
{
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float m_pos[3];
float m_normal[3];
D3DCOLOR m_diffuse;

};

struct s_vertex2
{

float m_x, m_y, m_z;
float m_nx, m_ny, m_nz;
DWORD m_color;

};

struct s_vertex3
{

D3DVECTOR m_pos;
D3DVECTOR m_normal;
D3DCOLOR m_color;

static const DWORD s_FVF;
};
const DWORD s_vertex3::s_FVF =

D3DFVF_XYZ | D3DFVF_NORMAL | D3DFVF_DIFFUSE;

If you use a data structure that doesn’t match the FVF properly, this can
be a difficult bug to find. To avoid this consider using a template class with
an FVF template argument, or declaring the FVF as a static member of a
vertex structure—static members in a struct or class aren’t stored in each
instance and therefore don’t violate the layout constraints of the FVF. Repeating
the FVF flags throughout your source code is going to be a source of bugs as
your vertex data evolves with your application and it is recommended that you
localize the FVF flags to one place and reference symbolically elsewhere. The
following examples all exhibit incorrect FVF usage.

DWORD fvf1 = D3DFVF_XYZ | D3DFVF_DIFFUSE;
struct s_vertex1
{

float m_pos[3];
// Error! no D3DFVF_NORMAL in fvf, or
// superfluous component
float m_normal[3];
D3DCOLOR m_diffuse;

};

DWORD fvf2 = D3DFVF_XYZ | D3DFVF_DIFFUSE;
struct s_vertex2
{
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// Error! components out of order
D3DCOLOR m_diffuse;
float m_pos[3];

};

DWORD fvf3 = D3DFVF_XYZ | D3DFVF_DIFFUSE;
struct s_vertex3
{

float m_pos[3];
// Error! missing component, or
// superfluous FVF flag

};

The FVF property of the device is used to declare vertices by an FVF code.
The GetFVF and SetFVF methods are used to manipulate the property.

HRESULT GetFVF(DWORD *value);
HRESULT SetFVF(DWORD value);

5.8 Vertex Declarations

A vertex declaration generalizes the FVF concept of describing vertices. The
vertex is split into one or more streams, with each stream containing one or
more vertex components. The declaration describes the number of streams
and vertex components within each stream. A vertex declaration can be used
with fixed-function vertex processing or with programmable vertex processing.
Programmable vertex processing with vertex shaders is discussed in chapter 9.
Using a vertex declaration is the only way to exploit multiple streams and vertex
tweening with fixed-function processing.

A vertex declaration is created from an array of D3DVERTEXELEMENT9 struc-
tures. Each element in the array compltely describes one vertex component
within the vertex. The order of the elements in the array has no bearing on the
layout of the data in the streams. With a vertex declaration, vertex component
data can appear in any order in memory with respect to other components.

typedef struct _D3DVERTEXELEMENT9
{

WORD Stream;
WORD Offset;
BYTE Type;
BYTE Method;
BYTE Usage;
BYTE UsageIndex;

} D3DVERTEXELEMENT9;

The last element in the array of vertex elements is always a special “marker”
element provided by the D3DDECL END macro. A vertex declaration can have at
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most MAXD3DDECLLENGTH elements in its array, not including the marker element.
The Offset member gives the offset in bytes from the beginning of the Stream
for this vertex element.

#define D3DDECL_END { 0xFF, 0, D3DDECLTYPE_UNUSED, 0, 0, 0 }
#define MAXD3DDECLLENGTH 64

The Type member gives the datatype of the element, such as 3 floats or
a D3DCOLOR and is given by the D3DDECLTYPE enumeration. The types D3D-
DECLTYPE UBYTE4N through D3DDECLTYPE FLOAT16 4 are only available in vertex
shader model 2.0 or later.

typedef enum _D3DDECLTYPE
{

D3DDECLTYPE_FLOAT1 = 0,
D3DDECLTYPE_FLOAT2 = 1,
D3DDECLTYPE_FLOAT3 = 2,
D3DDECLTYPE_FLOAT4 = 3,
D3DDECLTYPE_D3DCOLOR = 4,
D3DDECLTYPE_UBYTE4 = 5,
D3DDECLTYPE_SHORT2 = 6,
D3DDECLTYPE_SHORT4 = 7,
D3DDECLTYPE_UBYTE4N = 8,
D3DDECLTYPE_SHORT2N = 9,
D3DDECLTYPE_SHORT4N = 10,
D3DDECLTYPE_USHORT2N = 11,
D3DDECLTYPE_USHORT4N = 12,
D3DDECLTYPE_UDEC3 = 13,
D3DDECLTYPE_DEC3N = 14,
D3DDECLTYPE_FLOAT16_2 = 15,
D3DDECLTYPE_FLOAT16_4 = 16,
D3DDECLTYPE_UNUSED = 17

} D3DDECLTYPE;

Conceptually all data types are expanded to four valued vectors before being
passed on to vertex processing. If the data type doesn’t already contain four
values, then a value of zero will be provided for the y and z components and
a value of one will be provided for the w component. Data type names follow
this convention: prefix base count suffix. The prefix is either empty or U to
indicate an unsigned quantity in the vertex data. The base type name is one of
byte, short, float, D3DCOLOR or “dec”. The count indicates the number of base
types present in the data and the suffix indicates whether or not the data is
normalized at the time of expansion. The D3DCOLOR vertex declaration type is
expanded into the vector 〈r, g, b, a〉.

For example, D3DDECLTYPE FLOAT1 is a single 32-bit floating-point value that
will be expanded to the vector 〈value, 0, 0, 1〉. D3DDECLTYPE UBYTE4N normal-
izes the values from the [0, 255] range to the [0, 1] range. TODO: Figure out lay-

out of “DEC” type.
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The Method member is used during vertex tessellation and is given by the
D3DDECLMETHOD enumeration. Use D3DDECLMETHOD DEFAULT when tessellation
is not used; the remaining values are discussed in section 5.16.

typedef enum _D3DDECLMETHOD
{

D3DDECLMETHOD_DEFAULT = 0,
D3DDECLMETHOD_PARTIALU,
D3DDECLMETHOD_PARTIALV,
D3DDECLMETHOD_CROSSUV,
D3DDECLMETHOD_UV,
D3DDECLMETHOD_LOOKUP,
D3DDECLMETHOD_LOOKUPPRESAMPLED

} D3DDECLMETHOD;

The Usage and UsageIndex members describe the semantics of how the el-
ement is used during rendering. The semantic for a vertex element is used to
map vertex elements to vertex shader registers and inputs to the fixed-function
pipeline. The Usage member is a value from the D3DDECLUSAGE enumeration.
The UsageIndex is used to distinguish multiple elements of the same use seman-
tic, such as a texture coordinate set for texture stage 0 and a second texture
coordinate set for teture stage 1.

typedef enum _D3DDECLUSAGE
{

D3DDECLUSAGE_POSITION = 0,
D3DDECLUSAGE_BLENDWEIGHT,
D3DDECLUSAGE_BLENDINDICES,
D3DDECLUSAGE_NORMAL,
D3DDECLUSAGE_PSIZE,
D3DDECLUSAGE_TEXCOORD,
D3DDECLUSAGE_TANGENT,
D3DDECLUSAGE_BINORMAL,
D3DDECLUSAGE_TESSFACTOR,
D3DDECLUSAGE_POSITIONT,
D3DDECLUSAGE_COLOR,
D3DDECLUSAGE_FOG,
D3DDECLUSAGE_DEPTH,
D3DDECLUSAGE_SAMPLE,

} D3DDECLUSAGE;

Most of these usage semantics correspond to elements of the fixed-function
pipeline, but some are new to the shader models supported in DirectX 9.0c.
D3DDECLUSAGE POSITION is for a position in model coordinates requiring vertex
processing, while D3DDECLUSAGE POSITIONT is for a position that is already
been transformed into screen space. The D3DDECLUSAGE BLENDWEIGHT, D3D-
DECLUSAGE BLENDINDICES, D3DDECLUSAGE NORMAL, D3DDECLUSAGE PSIZE, D3D-
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DECLUSAGE TEXCOORD, and D3DDECLUSAGE COLOR semantics have familiar names
from the corresponding fields in an FVF code.

The remaining usage semantics indicate additional usages that are conve-
nient for vertex and pixel shaders. If you have custom per-vertex data that is
not represented by the existing usage semantics, you can always treat it as an
additional texture coordinate on each vertex. However, it is best to instruct the
runtime on the exact nature of your data if there is an existing semantic that
matches your data.

D3DDECLUSAGE TANGENT indicates that the data contains a vector that is tan-
gent to the underlying surface, instead of vector that is normal to the underlying
surface. D3DDECLUSAGE BINORMAL indicates that the data contains a vector that
is the binormal to the underlying surface.

A per-vertex tessellation factor consisting of a single float is designated with
D3DDECLUSAGE TESSFACTOR. D3DDECLUSAGE SAMPLE describes per-vertex tessel-
lator sampler data and is always used with D3DDECLMETHOD LOOKUP and D3D-
DECLMETHOD LOOKUPPRESAMPLED.

The D3DDECLUSAGE FOG and D3DDECLUSAGE DEPTH semantics have been cre-
ated to supply fog-factor and fog depth values as outputs from vertex shaders
so that pixel shaders can compute the appropriate fog effects if necessary.

Here are some sample vertex structures and their corresponding vertex ele-
ment arrays.

// position, diffuse color, normal
struct s_vertex1
{
D3DVECTOR position;
D3DVECTOR normal;
D3DCOLOR diffuse;
};

D3DVERTEXELEMENT9 declaration1[] =
{
{ 0, 0, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT,
D3DDECLUSAGE_POSITION, 0 },
{ 0, 12, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT,
D3DDECLUSAGE_NORMAL, 0 },
{ 0, 24, D3DDECLTYPE_D3DCOLOR, D3DDECLMETHOD_DEFAULT,
D3DDECLUSAGE_COLOR, 0 },
D3DDECL_END()
};

// tweened vertices:
// stream 0: position1, normal1, diffuse
// stream 1: postiion2, normal2
struct s_stream0
{
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D3DVECTOR position;
D3DVECTOR normal;
D3DCOLOR diffuse;
};
struct s_stream1
{
D3DVECTOR position;
D3DVECTOR normal;
};

D3DVERTEXELEMENT9 declaration2[] =
{
{ 0, 0, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT,
D3DDECLUSAGE_POSITION, 0 },
{ 0, 12, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT,
D3DDECLUSAGE_NORMAL, 0 },
{ 0, 24, D3DDECLTYPE_D3DCOLOR, D3DDECLMETHOD_DEFAULT,
D3DDECLUSAGE_COLOR, 0 },
{ 1, 0, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT,
D3DDECLUSAGE_POSITION, 1 },
{ 1, 12, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT,
D3DDECLUSAGE_NORMAL, 1 },
D3DDECL_END()
};

Vertex declarations are represented in the runtime by the IDirect3DVertex-
Declaration9 interface, summarized in interface 5.1. The interface only has two
read-only properties: the associated device and the associated vertex element
array. When retrieving the vertex element array with GetDeclaration, you
can determine the size of the array needed by passing in NULL for the result
parameter and the address of the variable to be filled with the count parameter.
The immutability of a vertex declaration makes it easy for the runtime to man-
age the use of the declarations. When you need to change a vertex declaration,
simply release the existing declaration and create a new one. Creating vertex
declarations is a fast operation in order to support this model.

Interface 5.1: Summary of the IDirect3DVertexDeclaration9 interface.

IDirect3DVertexDeclaration9

Read-Only Properties
GetDeclaration The shader declaration token array.
GetDevice The associated device.

interface IDirect3DVertexDeclaration9 : IUnknown
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{
//------------------------------------------------------------
// read-only properties
HRESULT GetDevice(IDirect3DDevice9 **result);
HRESULT GetDeclaration(D3DVERTEXELEMENT9 *result,

UINT *count);
};

You obtain an instance of this interface by passing an array of vertex element
structures to the CreateVertexDeclaration method. Vertex declarations al-
ways reside in system memory and don’t need to be restored when a device is
lost.

HRESULT CreateVertexDeclaration(CONST D3DVERTEXELEMENT9 *elements,
IDirect3DVertexDeclaration9 **result);

The vertex declaration property on the device is used to declare vertices
with a declaration instead of an FVF code. The GetVertexDeclaration and
SetVertexDeclaration methods are used to manipulate the property.

HRESULT GetVertexDeclaration(IDirect3DVertexDeclaration9 **value);
HRESULT SetVertexDeclaration(IDirect3DVertexDeclaration9 *value);

5.8.1 Fixed-Function Declarations

When using the fixed-function pipeline with a vertex declaration, the appropri-
ate vertex components must each be mapped to a particular usage. You can
use multiple streams, but the vertices must conform to the order and type con-
straints of the FVF codes described in section 5.7. For instance, the following
declares a vertex with two streams.

struct stream0
{

D3DCOLOR m_diffuse;
D3DVECTOR m_pos;
D3DVECTOR m_normal;

};

struct stream1
{

float m_u;
float m_v;

};

const D3DVERTEXELEMENT9 decl[] =
{
{ 1, 0, D3DDECLTYPE_FLOAT2, D3DDECLMETHOD_DEFAULT,
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Vertex Component Usage Usage Index
Position D3DDECLUSAGE POSITION 0
Transformed Position D3DDECLUSAGE POSITIONT 0
Blend Weights D3DDECLUSAGE BLENDWEIGHT 0
Blend Weight Indices D3DDECLUSAGE BLENDINDICES 0
Normal D3DDECLUSAGE NORMAL 0
Point Size D3DDECLUSAGE PSIZE 0
Diffuse Color D3DDECLUSAGE COLOR 0
Specular Color D3DDECLUSAGE COLOR 1
Texture Coordinate 0 D3DDECLUSAGE TEXCOORD 0
Texture Coordinate 1 D3DDECLUSAGE TEXCOORD 1
Texture Coordinate 2 D3DDECLUSAGE TEXCOORD 2
Texture Coordinate 3 D3DDECLUSAGE TEXCOORD 3
Texture Coordinate 4 D3DDECLUSAGE TEXCOORD 4
Texture Coordinate 5 D3DDECLUSAGE TEXCOORD 5
Texture Coordinate 6 D3DDECLUSAGE TEXCOORD 6
Texture Coordinate 7 D3DDECLUSAGE TEXCOORD 7
Texture Coordinate 8 D3DDECLUSAGE TEXCOORD 8
Tween Position 2 D3DDECLUSAGE POSITION 1
Tween Normal 2 D3DDECLUSAGE NORMAL 1

Table 5.2: Vertex usage for the fixed-function pipeline.

D3DDECLUSAGE_TEXCOORD, 0 },
{ 0, 0, D3DDECLTYPE_D3DCOLOR, D3DDECLMETHOD_DEFAULT,
D3DDECLUSAGE_COLOR, 0 },
{ 0, 4, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT,
D3DDECLUSAGE_NORMAL, 0 },
{ 0, 16, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT,
D3DDECLUSAGE_POSITION, 0 },
D3DDECL_END()
};

The fixed-function pipeline requires a declaration that maps vertex compo-
nents to a specific usage and index. The required usages are given in table 5.2.
The values map to the appropriate usage and index as you would expect, with
most of the values mapping to usage index zero. Texture coordinate sets are
mapped to the usage index that corresponds to their texture stage. The diffuse
and specular colors map to the usage indices zero and one, respectively. Vertex
tweening uses a position and normal component at index zero and one.

5.9 Vertex Buffers

Vertex buffer resources are used to store the application’s vertex data for defining
primitives in a scene. Direct3D exposes vertex buffer resources through the
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IDirect3DVertexBuffer9 interface, summarized in interface 5.2.

Interface 5.2: Summary of the IDirect3DVertexBuffer9 interface.

IDirect3DVertexBuffer9

Read-Only Properties
GetDesc A description of the contained vertex data.

Methods
Lock Obtains direct access to the contained vertex data.
Unlock Releases direct access to the contained vertex data.

interface IDirect3DVertexBuffer9 : IUnknown
{
//------------------------------------------------------------
// read-only properties
HRESULT GetDesc(D3DVERTEXBUFFER_DESC *value);

//------------------------------------------------------------
// methods
HRESULT Lock(UINT offset,

UINT size,
BYTE **data,
DWORD flags);

HRESULT Unlock();
};

A vertex buffer containing size bytes of data can be created with Create-
VertexBuffer.

HRESULT CreateVertexBuffer(UINT size,
DWORD usage,
DWORD fvf,
D3DPOOL pool,
IDirect3DVertexBuffer9 **result,
HANDLE *unused);

If the fvf parameter is not zero, then the vertex buffer must have a valid
FVF as described in the previous section and the size argument must be large
enough to hold at least one vertex. If the fvf parameter is zero, then a non-
FVF vertex buffer is created and the contents of the buffer must be described
to Direct3D with a vertex shader declaration, as described in chapter 9. The
pool argument gives the memory pool for the vertices. The unused argument
must be NULL. The usage argument can be zero or more of the following flags.



180 CHAPTER 5. MODELING

#define D3DUSAGE_DONOTCLIP 0x00000020L
#define D3DUSAGE_DYNAMIC 0x00000200L
#define D3DUSAGE_NPATCHES 0x00000100L
#define D3DUSAGE_POINTS 0x00000040L
#define D3DUSAGE_RTPATCHES 0x00000080L
#define D3DUSAGE_SOFTWAREPROCESSING 0x00000010L
#define D3DUSAGE_WRITEONLY 0x00000008L

D3DUSAGE DONOTCLIP indicates that the vertices will not need clipping.
Clipping is described in more detail in chapter 7. D3DUSAGE NPATCHES, D3D-
USAGE POINTS, and D3DUSAGE RTPATCHES indicate that the vertex buffer will be
used to draw N -patches, point sprites, or higher order surface patches, respec-
tively. D3DUSAGE SOFTWAREPROCESSING indicates that the vertex buffer will be
used with software vertex processing.

D3DUSAGE WRITEONLY tells Direct3D that the application will never read from
the vertex buffer, only write to the buffer. This allows the runtime and the
driver to be more efficient in providing vertex buffer space for the application.
Attempts to read from a write-only vertex buffer will fail.

D3DUSAGE DYNAMIC indicates that the application will dynamically change
the contents of the vertex buffer. This is in contrast to a “static” vertex buffer
where the application loads the contents of the buffer just once when the resource
is created. If D3DUSAGE DYNAMIC is not specified, then the vertex buffer is static.
An application typically uses static vertex buffers for models that don’t change
shape and don’t need their vertices redefined once they are loaded. If you are
generating procedural geometry, performing software deformation on geometry,
or any other sort of vertex “editing”, then you will need a dynamic vertex buffer
for that data.

If the D3DDEVCAPS TLVERTEXVIDEOMEMORY bit or the D3DDEVCAPS TLVERTEX-
SYSTEMMEMORY bit of D3DCAPS9::DevCaps are set, then the device can use vertex
buffers containing transformed vertices from video or system memory, respec-
tively.1

#define D3DDEVCAPS_TLVERTEXSYSTEMMEMORY 0x00000040L
#define D3DDEVCAPS_TLVERTEXVIDEOMEMORY 0x00000080L
#define D3DDEVCAPS_EXECUTESYSTEMMEMORY 0x00000010L
#define D3DDEVCAPS_EXECUTEVIDEOMEMORY 0x00000020L

In general, static vertex buffers end up in device memory, while dynamic
vertex buffers will be placed in memory readily accessed by the CPU, such as
system memory or AGP memory. Dynamic vertex buffers must be allocated in
either the system memory pool or in the default memory pool. Attempts to
create a dynamic vertex buffer in the managed memory pool will fail.

GetDesc returns a description of the vertex buffer in a D3DVERTEXBUFFER -
DESC structure with Format, Type, Usage, and Pool members as described in

1The D3DDEVCAPS EXECUTEVIDEOMEMORY and D3DDEVCAPS EXECUTESYSTEMMEMORY flags are
similar and indicate the device supports execute buffers from video or system memory, re-
spectively. Execute buffers are not exposed by the API, these bits are only informational.
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section 2.7. Format will always be D3DFMT VERTEXDATA for vertex buffer re-
sources. The FVF member gives the fvf argument passed to CreateVertex-
Buffer.

typedef struct _D3DVERTEXBUFFER_DESC
{

D3DFORMAT Format;
D3DRESOURCETYPE Type;
DWORD Usage;
D3DPOOL Pool;
UINT Size;
DWORD FVF;

} D3DVERTEXBUFFER_DESC;

The Lock method provides direct access to the contained vertex data, and
Unlock relinquishes access to that data, similar to the LockRect and Unlock-
Rect methods on IDirect3DSurface9. The access to the vertex buffer’s data
must be consistent with the value of the flags argument to Lock, which can be
zero or a combination of the following flags.

#define D3DLOCK_DISCARD 0x00002000L
#define D3DLOCK_NOOVERWRITE 0x00001000L
#define D3DLOCK_NOSYSLOCK 0x00000800L
#define D3DLOCK_READONLY 0x00000010L

D3DLOCK DISCARD indicates that the application does not depend on the
previous contents of the vertex buffer and that the entire previous contents
can be discarded. D3DLOCK NOOVERWRITE indicates that the application will not
overwrite any vertices that have been used in drawing primitives since the start
of the scene or the last lock on this vertex buffer. D3DLOCK DISCARD and D3D-
LOCK NOOVERWRITE can only be used with dynamic vertex buffers. D3DLOCK NO-
SYSLOCK and D3DLOCK READONLY are as described in section 4.3. For scenes with
dynamic geometry, improper locking of dynamic vertex buffers can significantly
impact rendering performance, see chapter 23.

The following excerpt from the rt GingerBread.cpp file in the sample code
locks a vertex buffer and fills it with dynamically generated point data.

{
vertex_lock<s_vertex> lock(m_vb, D3DLOCK_DISCARD);
s_vertex *points = lock.data();
for (UINT i = 0; i < m_num_points; i++)
{

// store current
points[i].set(x, y, m_fg);

// compute next
const float next_x = 1.0f - y + (x < 0.0f ? -x : x);
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y = x;
x = next_x;

// adjust bounding box
accum_minmax(x, min_x, max_x);
accum_minmax(y, min_y, max_y);

}

// forces lock to be released, holding it as little as possible
}

Every succesful call to Lock must be followed by a call to Unlock. A vertex
buffer can be locked multiple times, provided that the same number of calls to
both Lock and Unlock are made. A vertex buffer cannot be used by the device
while it is locked.

The vertex data pointer returned by Lock is of type BYTE **, requiring the
use of reinterpret cast<> to obtain a pointer to your vertex data structure.
We can create a vertex buffer locking helper class as we did for surfaces, but
writing out explicit data accessors for all possible vertex data structures would
be tedious and error-prone. We can use a template class where the vertex
data type is passed as a parameter to avoid this problem. The header file
<rt/vertexbuf.h> in the sample code contains the helper class in listing 5.1.

Listing 5.1: <rt/vertexbuf.h>: A vertex buffer lock helper class.

1 #if !defined(RT_VERTEXBUF_H)
2 #define RT_VERTEXBUF_H
3 //----------------------------------------------------------
4 // vertexbuf.h
5 //
6 // Helper classes for use with vertex buffers.
7 //
8 #include <atlbase.h>
9

10 namespace rt {
11

12 //----------------------------------------------------------
13 // vertex_lock
14 //
15 // Locks a vertex buffer in its constructor and unlocks it
16 // in its destructor, providing for exception safe access
17 // to vertex data. Takes a template argument Vertex that
18 // is the type of the underlying vertices to be locked.
19 //
20 template <typename Vertex>
21 class vertex_lock
22 {
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23 public:
24 // lock in constructor, unlock in destructor
25 vertex_lock(IDirect3DVertexBuffer9 *vb,
26 DWORD flags = 0,
27 UINT offset = 0,
28 UINT size = 0)
29 : m_vb(vb)
30 {
31 void *data = 0;
32 THR(m_vb->Lock(offset, size, &data, flags));
33 m_data = static_cast<Vertex *>(data);
34 }
35 ~vertex_lock()
36 {
37 const HRESULT hr = m_vb->Unlock(); hr;
38 ATLASSERT(SUCCEEDED(hr));
39 }
40

41 // type safe accessors to vertex data
42 const Vertex *data() const { return m_data; }
43 Vertex *data() { return m_data; }
44

45 private:
46 CComPtr<IDirect3DVertexBuffer9> m_vb;
47 Vertex *m_data;
48 };
49

50 }; // rt
51

52 #endif

5.10 Indexed Primitives

In section 5.5 we saw that even a simple shape may require vertices to be
duplicated in order to satisfy the desired winding order and primitive topology
constraints. If we assign each vertex an index and send a list of unique vertices
and a list of indices to be used for composing the primitive, we can reduce the
amount of data that is sent to the device.

Referring back to figure 5.3, we have repeated vertices for D3DPT LINE-
LIST and D3DPT TRIANGLELIST. Using an indexed primitive, we could draw
figure 5.3(b) using D3DPT LINELIST with the vertices as given in figure 5.3(d)
and the indices {0, 2, 2, 12, 12, 13, 13, 17, 17, 14, 14, 10, 10, 11, 11, 4, 4, 0}.
Notice that we didn’t refer to every index in the table, just as when we listed
the vertices explicitly. We could draw figure 5.3(c) using D3DPT TRIANGLELIST
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and the indices {0, 1, 3, 1, 4, 3, 1, 2, 4, 2, 5, 4, 4, 5, 11, 5, 12, 11, 10, 11, 14,
11, 15, 14, 11, 12, 15, 12, 16, 15, 12, 13, 16, 13, 17, 16}.

Indexed primitives gain over non-indexed primitives when the size of the
vertex is large relative to the size of the indices and sharing of vertices is com-
mon. This is usually the case for typical models. All primitive types except
D3DPT POINTLIST can be drawn as indexed primitives.

5.10.1 Index Buffers

Index buffer resources are used to store indices into the application’s vertex
data for defining primitives in a scene. Direct3D exposes index buffer resources
through the IDirect3DIndexBuffer9 interface, summarized in interface 5.3.

Interface 5.3: Summary of the IDirect3DIndexBuffer9 interface.

IDirect3DIndexBuffer9

Read-Only Properties
GetDesc A description of the contained index data.

Methods
Lock Obtains direct access to the contained index data.
Unlock Releases direct access to the contained index data.

interface IDirect3DIndexBuffer9 : IUnknown
{
//------------------------------------------------------------
// read-only properties
HRESULT GetDesc(D3DINDEXBUFFER_DESC *value);

//------------------------------------------------------------
// methods
HRESULT Lock(UINT offset,

UINT size,
BYTE **data,
DWORD flags);

HRESULT Unlock();
};

An index buffer containing size bytes of data is created by calling the
CreateIndexBuffer method on the device.

HRESULT CreateIndexBuffer(UINT size,
DWORD usage,
D3DFORMAT format,
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D3DPOOL pool,
IDirect3DIndexBuffer9 **result,
HANDLE *unused);

The usage and pool arguments are as described for vertex buffers in sec-
tion 5.9. The format argument must be either D3DFMT INDEX16 or D3DFMT -
INDEX32 indicating WORD indices or DWORD indices, respectively. The unused
argument must be NULL.

GetDesc returns a description of the index buffer in a D3DINDEXBUFFER DESC
structure. The members of this structure are as described in section 2.7.

typedef struct _D3DINDEXBUFFER_DESC
{

D3DFORMAT Format;
D3DRESOURCETYPE Type;
DWORD Usage;
D3DPOOL Pool;
UINT Size;

} D3DINDEXBUFFER_DESC;

The Lock method provides direct access to the contained index data, and
Unlock relinquishes access to that data in a manner identical to the Lock and
Unlock methods on IDirect3DVertexBuffer9, described in section 5.9. The
sample code contains a locking helper class, similar to that presented for vertex
buffers, in the file <rt/indexbuf.h>.

5.11 The Vertex Shader

The vertex shader property of the device selects between fixed-function ver-
tex processing and programmable vertex processing. The property is a ver-
tex shader interface pointer manipulated with the SetVertexShader and Get-
VertexShader methods. Like all device properties exposed as interfaces, the
device will add a reference on any vertex shader set on the device. Setting the
property to NULL selects fixed-function processing and a valid interface pointer
selects programmable vertex processing as described in chapter 9.

HRESULT GetVertexShader(IDirect3DVertexShader9 **value);
HRESULT SetVertexShader(IDirect3DVertexShader9 *value);

Programmable vertex shaders are created with CreateVertexShader. When
the vertex shader is no longer needed, release the vertex shader COM object
and ensure that it is not currently set on the device.

HRESULT CreateVertexShader(const DWORD *function,
IDirect3DVertexShader9 **result);
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The IDirect3DVertexShader9 interface is summarized in interface 5.4. The
GetDevice method returns the device associated with the shader and the Get-
Function method returns the shader definition. To obtain the definition, first
call GetFunction with NULL for the output buffer to obtain the size, allocate
enough memory to hold the data, then call the function again to obtain the
data. GetFunction will fail if the size argument is NULL or the size is not large
enough to hold the vertex shader function.

Interface 5.4: Summary of the IDirect3DVertexShader9 interface.

IDirect3DVertexShader9

Read-Only Properties
GetDevice The associated device.
GetFunction The shader function tokens.

interface IDirect3DVertexShader9 : IUnknown
{
//------------------------------------------------------------
// read-only properties
HRESULT GetDevice(IDirect3DDevice9 **value);
HRESULT GetFunction(void *value, DWORD *size);

};

Generally an application would not create the DWORD function array directly,
but would use D3DX to compile an assembly language shader or a high level
shader and pass the resulting array to the runtime. Assembly language vertex
shaders are discussed in chapter 9; high level vertex shaders are discussed in
chapter 18.

5.12 Drawing Primitives

Once all the scene data has been defined and vertex processing configured, the
application can cause rendering to occur by calling one of the draw methods
on the device: DrawPrimitiveUP, DrawIndexedPrimitiveUP, DrawPrimitive,
DrawIndexedPrimitive, DrawTriPatch or DrawRectPatch.

HRESULT DrawPrimitiveUP(D3DPRIMITIVETYPE kind,
UINT primitive_count,
const void *vertex_data,
UINT vertex_stride);

DrawPrimitiveUP draws non-indexed primitives of type kind from the sup-
plied vertex data. The vertex data is arranged in memory such that successive
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Primitive Type Vertices Primitives
D3DPT POINTLIST n n
D3DPT LINELIST 2n n
D3DPT LINESTRIP n + 1 n
D3DPT TRIANGLEFAN n + 2 n
D3DPT TRIANGLESTRIP n + 2 n
D3DPT TRIANGLELIST 3n n

Table 5.3: Relationship of primitive count to vertex count for the Direct3D
primitive types.

vertices are spaced vertex stride bytes apart. The primitive count argu-
ment gives the number of primitives drawn by the call. The number of vertices
corresponding to the number of primitives for different primitive types is given
in table 5.3.

Internally, DrawPrimitiveUP copies the supplied data from the caller’s mem-
ory into a new vertex buffer, issues the primitives using that vertex buffer, and
then releases the buffer. The construction and destruction of a vertex buffer
and extra copy of the primitive data on each call to DrawPrimitiveUP can be a
costly operation, but this method can be convenient for experimenting or ren-
dering low polygon count scenes. The minimal.cpp application presented in
chapter 2, uses SetVertexShader and DrawPrimitiveUP on lines 56–58.

HRESULT DrawIndexedPrimitiveUP(D3DPRIMITIVETYPE kind,
UINT min_index,
UINT num_vertices,
UINT primitive_count,
const void *index_data,
D3DFORMAT index_format,
const void *vertex_data,
UINT vertex_stride);

DrawIndexedPrimitiveUP operates similarly to DrawPrimitiveUP, but draws
indexed primitives using the supplied vertex and index data. The primitive -
count, kind, vertex data, and vertex stride arguments are the same as in
DrawPrimitiveUP. The min index argument gives the minimum vertex index
used for the primitives drawn by the call, where index zero is at the location of
vertex data. The num vertices argument gives the number of vertices used
for the primitives drawn by the call, relative to min index. For instance, if an
application uses vertices at indices 3-9, then min index is 3 and num vertices
is 6. The index data argument must point to an array of indices used in the
primitives and index format arguments give the the format of the indices (WORD
or DWORD).
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5.13 Vertex Data Streams

Vertex components are gathered from one or more streams and concatenated
together to assemble a complete vertex. The assembled vertex is the starting
point for all Direct3D pipeline processing. Each stream is numbered with an
unsigned integer and associated with a vertex buffer source and a stride. The
streams are numbered consecutively, starting with zero, and are concatenated
in order, beginning with stream zero, to form an entire vertex. Streams must
contain an integral number of vertex components; a vertex component can’t be
split across a stream boundary.

Assigning different streams to different vertex components allows an applica-
tion to dynamically change the values of vertex components in a model without
locking the entire vertex buffer containing all the components only to change
a portion of the vertex buffer. With multiple streams, the static components
of the vertices can be retrieved from one set of streams and the dynamic com-
ponents retrieved from another set of streams. This allows the application to
use the D3DLOCK DISCARD flag on the vertex buffers containing the dynamic
components.

A stream is associated with a vertex buffer by setting the stream source
property with SetStreamSource. The stride argument is the size of the vertex
components stored in the vertex buffer associated with the stream. For an FVF
vertex buffer, this must be the same as the size of the vertex. For a non-
FVF vertex buffer, the size must be at least as big as the size of the vertex
computed from its vertex declaration, see chapter 9 for more about vertex shader
declarations. The value of the stream source property can be retrieved with
GetStreamSource.

HRESULT GetStreamSource(UINT index,
IDirect3DVertexBuffer9 **value,
UINT *offset,
UINT *stride);

HRESULT SetStreamSource(UINT index,
IDirect3DVertexBuffer9 *value,
UINT offset,
UINT stride);

The offset argument provides an byte offset from the beginning of the
vertex buffer for the first vertex in the stream. This allows a single vertex buffer
to be split between multiple vertex types simultaneously by treating them as
two chunks of memory within the same buffer, one offset from the other. If a
device supports stream offsets, then the D3DDEVCAPS2 STREAMOFFSET bit will be
set in D3DCAPS9::Caps2.

#define D3DDEVCAPS2_STREAMOFFSET 0x00000001L

The maximum number of simultaneous streams that can be used with the
device is given by D3DCAPS9::MaxStreams. For a DirectX 8.1 or later driver,
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this will be a value between 1 and 16. For a pre-DirectX 8.1 driver, the value will
be zero indicating that the device can only use a single stream. The MaxStream-
Stride member gives the maximum stride that can be set for any stream.

Stream sources provide vertex data, but we must also supply index data
from an index buffer for indexed primitives. SetIndices sets the given index
buffer for use with indexed primitives. While there can be up to 16 vertex data
streams, there is only a single index buffer used by all the data streams. The
GetIndices method returns the value of the indices property.

HRESULT GetIndices(IDirect3DIndexBuffer9 **value);
HRESULT SetIndices(IDirect3DIndexBuffer9 *value);

With all the vertex components and indices loaded into resources, fixed-
function vertex processing selected, and the stream source set appropriately, all
the necessary state has been set for a call to DrawPrimitive or DrawIndexed-
Primitive to draw non-indexed or indexed primitives, respectively.

HRESULT DrawPrimitive(D3DPRIMITIVETYPE kind,
UINT start_vertex,
UINT primitive_count);

DrawPrimitive draws non-indexed primitives of the given kind. The start -
vertex argument gives the index of the first vertex, taken from the currently
set streams, defining the primitives. The streams must hold enough vertex data
to define the requested number of primitives.

HRESULT DrawIndexedPrimitive(D3DPRIMITIVETYPE kind,
UINT base_vertex_index,
UINT min_index,
UINT num_vertices,
UINT start_index,
UINT primitive_count);

DrawIndexedPrimitive draws indexed primitives of the given kind. The
min index argument gives the minimum vertex index used by any of the drawn
primitives and is relative to the base vertex index of the indices. The start -
index argument gives an offset into the indices, relative to the base vertex
index of the indices, from which to read indices for the primitives. The base -
vertex index argument is added to all indices retrieved from the index buffer
before indexing the vertices. This allows multiple primitives to be packed into
a set of vertex data streams without requiring that the indices be changed
based on the location of the vertex data in the vertex buffer. See figure 5.4 for a
graphical illustration of the relationship between the start index, primitive -
count, base vertex index, min index, and num vertices arguments to Draw-
IndexedPrimitive. The remaining arguments are as in DrawPrimitive.



190 CHAPTER 5. MODELING

Index Buffer

start index
?

primitive count

? -

Rendered
Indices

Vertex Buffers

?base vertex index

?
min index

?

Rendered
Vertices num vertices

Figure 5.4: Relationship between arguments to DrawIndexedPrimitive. The
appropriate number of indices for primitive count primitives are used to index
num vertices vertices in the vertex buffer relative to base vertex index and
min index.

As an example, suppose we have 21 distinct vertices consisting of the origin
and 20 points arranged at equal angles around a circle.

Pi=
(
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(
πi
10

)
, sin

(
πi
10

)
, 0

)
, i = 0, . . . , 19

P20=(0, 0, 0)

The index buffer is filled with 60 indices to define 20 triangles in the topology
of a triangle list.

I3k = 20, I3k+1 = k + 1, I3k+2 = k, k = 0, . . . , 19

Now we can draw a pie shape from the 20-gon defined by the vertices. If we want
to draw the last triangle wedge using an indexed triangle list, we would draw
the triangle P20P19P18. The base vertex index locates the beginning of the
block of 21 vertices in the vertex buffer, and the call to DrawIndexedPrimitive
would be:

device->DrawIndexedPrimitive(D3DPT_TRIANGLELIST, 0, 18, 3, 57, 1);

5.14 Capabilities for Vertex Assembly

The draw primitive methods of the device allow for the batching of primitives
into a single method call. This is the most efficient way to send primitives
to the device. Batching primitives to the device allows for more concurrency
between the device and the CPU: while the device is rasterizing one batch of
primitives, the CPU is preparing and issuing the next batch. Batching strategies
are discussed in chapter 23.
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The MaxPrimitiveCount member of D3DCAPS9 gives the maximum number
of primitives that can be issued in any single draw primitive method. The Max-
VertexIndex member gives the largest vertex index that may be used with the
device. If this number is larger than 216 − 1, then 32 bit indices are supported
on the device. Referring to figure 5.4, because base vertex index is added to
indices used for primitives, you should ensure that the sum is less than Max-
VertexIndex for proper operation.

If the D3DDEVCAPS DRAWPRIMTLVERTEX bit of the DevCaps member is set,
then the device has hardware support for DrawPrimitive. The DrawPrimitive
method itself is always supported, this bit only indicates that the method is
directly supported by the device’s hardware abstraction layer interface. This
flag is informational only, an application is not expected to change its behavior
based on the value of this flag.

#define D3DDEVCAPS_DRAWPRIMTLVERTEX 0x00000400L

5.15 Enhanced Primitives
TODO: update this de-
scriptionDirect3D also provides two enhancements to the basic primitive types described

earlier in this chapter. Point sprites extend point primitives to have a screen
space size that is rasterized with a texture. N -Patches provide a way to enhance
the visual appearance of existing triangle models without significant rework to
either the models or the program.

5.15.1 Point Sprites

Point sprites extend D3DPT POINTLIST primitives to cover more than a single
pixel when they are rasterized. If the D3DCAPS9::MaxPointSize member is
greater than 1, then the device supports point sprites.2 Point sprites are ren-
dered as a textured square in screen space. The point size can be specified in
the vertex buffer for each vertex with D3DFVF POINT SIZE. The structure of a
point sprite is shown in figure 5.5.

If the point sprites are specified with D3DFVF XYZRHW, then the size of the
point sprite is given in screen space coordinates, otherwise the point sprite size
is subject to the interpretation given in chapter 10.

Point sprites can be used to render many instances of a symbol by storing
an image of the symbol in the texture and issuing point sprite primitives at the
location of the symbols. By expanding the point sprite into a textured square
in the device, we can achieve the desired rendering at one fourth the vertex
transfer cost into the device. Point sprites can also be used for rendering a
particle system, where each rendered particle is a point sprite.

2A point size of 1 pixel is always supported via D3DPT POINTLIST.
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Figure 5.5: Screen space structure for a point sprite with vertex position P and
size s. The texture coordinates at each computed sprite vertex are shown inside
the square and the computed coordinates are shown outside the square.

5.15.2 N -Patches

N -Patches provide tessellation of triangles based on their position and surface
normal information. If the D3DDEVCAPS NPATCHES bit of D3DCAPS9::DevCaps
is set, then the device supports N -patch tessellation of triangle primitives. In
the absence of device support, an application can still use N -patch tessellation
through D3DXTessellateNPatches, see chapter 19.

#define D3DDEVCAPS_NPATCHES 0x01000000L

For triangles approximating smooth surfaces, N -patches provide additional
detail to the surface model without significant programming effort or changing
model data. N -Patch tessellation is applied to triangles when the N -Patch mode
property of the device is greater than 1.0. Additional triangles are generated
by reconstructing a smooth surface patch from the source triangle position and
normal information and then subdividing that patch according to the N -Patch
mode property.

float GetNPatchMode();
HRESULT SetNPatchMode(float value);

Separate patches are generated for the vertex position and for the vertex
normal. The algebraic degree of the patch for the positions of new vertices is
defined by RS Position Degree. The degree of the patch for the normals of the
new triangle is defined by RS Normal Degree. Both render states are values of
the D3DDEGREETYPE enumeration. RS Position Degree can be set to linear or
cubic, with the latter being the default. RS Normal Degree can be set to linear
or quadratic, with the former being the default.

typedef enum _D3DDEGREETYPE
{

D3DDEGREE_LINEAR = 1,



5.16. HIGHER ORDER SURFACES 193

D3DDEGREE_QUADRATIC = 2,
D3DDEGREE_CUBIC = 3,
D3DDEGREE_QUINTIC = 5

} D3DDEGREETYPE;

5.16 Higher Order Surfaces

Triangular and rectangular patches provide the highest quality parametrically
defined primitive and allow an application to specify truly smooth surfaces to
Direct3D, as opposed to triangulated approximations to the true surface. The
surfaces are called “higher order” because the algebraic order of the equations
describing the surface is higher than the algebraic order of the corresponding
equations for a triangle.

Higher order surfaces, also called spline surfaces, have a rich body of research
and algorithms covering their uses in computer graphics. The full mathematics
of higher order surface patches is too complex to go into here; the interested
reader is encouraged to examine the literature on splines for more detailed in-
formation. Section 5.18 provides a starting point.

With a triangle, we provide the vertices that define the triangle and that’s
all there is to it. With a patch, we provide a collection of vertices, called control
points, and a patch definition that says how the smooth surface is generated
from the control points. The surface is generated by taking a weighted sum
of algebraic functions that are influenced by the control points. The collection
of algebraic functions used to define each surface patch are called the basis
functions for the patch.

Every patch is characterized by the basis functions used to construct the
patch surface and the algebraic order of the basis functions. The D3DBASIS-
TYPE and D3DORDERTYPE enumerations specify the basis and order of patches,
respectively. The Bézier basis provides for a smooth surface that comes near
the control points but only passes through the control points at the corners
of the patch definition. The B-spline basis provides for a smooth surface that
does not necessarily pass through any of the control points. The interpolating
basis provides for a surface that is guaranteed to pass through all of the control
points.

typedef enum _D3DBASISTYPE
{

D3DBASIS_BEZIER = 0,
D3DBASIS_BSPLINE = 1,
D3DBASIS_INTERPOLATE = 2

} D3DBASISTYPE;

Direct3D handles higher order surfaces by tessellating the surface into a
collection of triangles that can be further processed by the remainder of the
pipeline. The tessellated triangulation can be cached by associating the tessel-



194 CHAPTER 5. MODELING

lation with a patch handle and reusing the handle on subsequent renderings of
the patch with the same tessellation.

If the D3DDEVCAPS RTPATCHES bit of D3DCAPS9::DevCaps is set, the device
supports RT patches with the DrawTriPatch and DrawRectPatch methods. If
D3DDEVCAPS QUINTICRTPATCHES bit is set, the device supports quintic Bézier
and B-spline RT patches. If the D3DDEVCAPS PATCHHANDLEZERO bit is set, it
indicates that uncached patch handles will be drawn as efficiently as cached
patch handles.

#define D3DDEVCAPS_QUINTICRTPATCHES 0x00200000L
#define D3DDEVCAPS_RTPATCHES 0x00400000L
#define D3DDEVCAPS_RTPATCHHANDLEZERO 0x00800000L

Triangular and rectangular patches are both tessellated and rendered with
the DrawTriPatch and DrawRectPatch methods, respectively. Tessellation of
a patch description involves a fair amount of computation and it is useful to
perform this only when the patch definition changes, and reuse the results on
subsequent renderings. If the handle argument is not NULL, then the patch is
tessellated according to the patch info argument and the tessellation is associ-
ated with the supplied handle identifier, assigned by the caller. The tessellation
can be drawn again by passing the same handle and number of segments and
a patch info argument of NULL. To change only the number of segments but
reuse the same definition use NULL for the patch information and pass a pointer
to the new data for the number of segments. If the patch definition changes, the
patch can be re-tessellated into the same handle. When the cached tessellation
is no longer needed, call DeletePatch on the handle to release the associated
memory.

HRESULT DeletePatch(UINT handle);
HRESULT DrawRectPatch(UINT handle,

const float *num_segments,
const D3DRECTPATCH_INFO *patch_info);

HRESULT DrawTriPatch(UINT handle,
const float *num_segments,
const D3DTRIPATCH_INFO *patch_info);

The num segments argument points to an array of 3 floats for a triangular
patch and an array of 4 floats for a rectangular patch. This allows an appli-
cation to tessellate some edges of a patch more finely than other edges. For
instance, the foreground edges of a patch may be tessellated more to provide
more foreground detail on the model.

The resulting tessellation may be rendered directly by the hardware, or may
be triangulated and rendered as traditional triangles. The currently set vertex
streams are ignored when drawing patches. When dynamically changing the
number of segments for a patch, abrupt changes in surface appearance can be
caused when only the integer part of the patch segment count is considered
in creating the tessellation. This creates a so-called “popping” artifact that
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Figure 5.6: Bézier triangular patch vertex order.

appears when the integer part of the segment count changes. RS Patch Edge Style
determines whether or not the segment count is treated as a discrete integral
value or a continuous value, which avoids the popping artifact.

typedef enum _D3DPATCHEDGESTYLE
{

D3DPATCHEDGE_DISCRETE = 0,
D3DPATCHEDGE_CONTINUOUS = 1

} D3DPATCHEDGESTYLE;

5.16.1 Triangular Patches

For DrawTriPatch, the patch info argument is a pointer to a D3DTRIPATCH -
INFO structure that defines the collection of triangular patches drawn. Direct-
3D supports triangular patches with a Bézier basis of linear, cubic or quintic
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Basis Degree Count
Bézier Linear 3

Cubic 10
Quintic 21

Table 5.4: Vertex count for triangular Bézier patches.

degree. The vertices giving the control points for the patch are arranged within
the vertex buffer as shown in figure 5.6.

StartVertexOffset gives the index of the first control point vertex in the
current set of streams. You can pack multiple patches into a single set of streams
by calling DrawTriPatch with a different StartVertexOffset for each patch.
The NumVertices member gives the number of control point vertices for the
patch and is one of the values in table 5.4. The only supported value for
Basis is D3DBASIS BEZIER. The Degree member can be D3DDEGREE LINEAR,
D3DDEGREE CUBIC or D3DDEGREE QUINTIC.

typedef struct _D3DTRIPATCH_INFO
{

UINT StartVertexOffset;
UINT NumVertices;
D3DBASISTYPE Basis;
D3DDEGREETYPE Degree;

} D3DTRIPATCH_INFO;

5.16.2 Rectangular Patches

For DrawRectPatch, the patch info argument is a pointer to a D3DRECTPATCH -
INFO structure that defines the rectangular patch to be drawn. Direct3D sup-
ports rectangular patches with the basis and degree combinations shown in
table 5.5. The Basis member must be one of the values D3DBASIS BEZIER, D3D-
BASIS BSPLINE or D3DBASIS CATMULL ROM for a rectangular patch. The Degree
member must be D3DDEGREE LINEAR, D3DDEGREE CUBIC or D3DDEGREE QUINTIC,
depending on the basis. The Width and Height members are measured in ver-
tices and give the size of a patch. The allowed values of the width and height
for different basis and degree combinations are shown in table 5.5.

The StartVertexOffsetWidth, StartVertexOffsetHeight and Stride mem-
bers describe the layout of the control point vertices for the patch in the cur-
rently bound streams. The control vertices are read in rows from top to bottom
across the patch and from left to right across each row. The control points for
the patch are described as a rectangle embedded within a larger rectangle of
vertices. The width of this rectangle is given by the Stride member and is at
least as large as the width of the patch. When the stride is larger than the
width of the patch, the StartVertexOffsetWidth member gives the offset in
vertices of the first control point within the row of the rectangle. The Start-
VertexOffsetHeight is the offset in vertices for the first row of the rectangle.
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Basis Degree Width Height
Bézier Linear 2 2

Cubic 4 4
Quintic 6 6

B-Spline Linear 1 1
Cubic 3 3
Quintic 5 5

Catmull-Rom Cubic 3 3

Table 5.5: Rectangular patch vertex grid sizes.

typedef struct _D3DRECTPATCH_INFO
{

UINT StartVertexOffsetWidth;
UINT StartVertexOffsetHeight;
UINT Width;
UINT Height;
UINT Stride;
D3DBASISTYPE Basis;
D3DDEGREETYPE Order;

} D3DRECTPATCH_INFO;

As with triangular patches, the StartVertexOffsetWidth, StartVertex-
OffsetHeight and Stride members of the rectangular patch description allow
multiple patches to be packed into a single set of streams. If the patches start
at index 0 and consist of 16 control points each, then the StartVertexOffset-
Height member will be 0, 16, 32, 48, . . . for successive patches.

5.17 Object Approximations

The geometric primitives supported by Direct3D can model many things di-
rectly, but not everything is best modeled with vertices. As we will see when
we examine texturing and the frame buffer, there are ways to shape an object
using appearance information such as alpha channels so that we are not forced
to model every small detail in an object using vertices.

One type of object used by almost every application, but conspicuously
missing from Direct3D’s primitive types, is text. Applications can draw vector
text with line strips or line lists and a suitable vector font definition, such as
the Hershey fonts. Other forms of text may be desired, such as screen-space
text using a GDI font, or even extruding the text in one dimension to obtain
text as a triangulated surface. The rt Text sample demonstrates three ways of
drawing text with Direct3D.
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5.18 Further Reading

Curved PN Triangles, Alex Vlachos, Jörg Peters, Chas Boyd, and Jason L.
Mitchell.
Gives the exact mathematics of N -patch tessellation and how new trian-
gles are computed.

An Introduction to Splines for Use in Computer Graphics & Geometric Mod-
eling, Richard H. Bartels, John C. Beatty, Brian A. Barsky.
Covers spline modeling in computer graphics in detail.

Physically-Based Modeling for Computer Graphics, Ronen Barzel
Physically-based modeling uses a simulation of physics to govern the move-
ment and deformation of modeled objects. This is an advanced level book
that describes the mathematics and implementation of such a simulation
system.

Texturing and Modeling: A Procedural Approach, David S. Ebert (Editor)
Procedural methods generate models from an algorithm, instead of being
created by an artist in a modeling package. This book describes a variety
of techniques for using algorithms to generate realistic and complex models
and textures.

Real-Time Rendering, Tomas Möller and Eric Haines.
Describes many real-time simulation techniques that can be used with
Direct3D.




