SALT LAKE COUNTY SHERIFF'S OFFICE

 Rescue Physics

- Force Units and Strength of Components
- Strength of Anchors
- Basic Statics
- The T-Method and Haul System Forces
- Vectors

Highlines, Anchors, Direction Changes, Rope Loads and Slopes

- Friction

Strength of Components

Webbing: 4,000 lb per strand - knot
Tree: Bombproof?
(arabiners: $23 \mathrm{kN}=5,200 \mathrm{lb}$ Chatar Back: $44 \mathrm{kN}=10,000 \mathrm{lb}$

- Pulleys: $36 \mathrm{kN}=8,100 \mathrm{lb}$

Litter end-to-end: $18 \mathrm{kN}=4,100 \mathrm{lb}$

Rope: $29 \mathrm{kN}=6,500 \mathrm{lb}$ new ($\sim 4,500 \mathrm{lb}$ with knot)

Safety Factors and Forces

- Anchors should be able to hold rescue loads with "sufficient" safety factor
- Rescue load = 1000 lb

What is the safety factor used in the design of this airplane?

- "Sufficient" safety factor
- NFPA says 15:1
- Some people say 10:1
- Some people say 4:1
- Know the forces, know the equipment

Force Units

1 Carabiner equals

1.5 Subarus: 15 kN each $=3,400 \mathrm{lb}$

90% of a Hummer: 26 kN each $=5,800 \mathrm{lb}$

Rescue Loads

1000 lb load Which Situation has higher load?

Strength of Anchors

No Knot:
Rope strength (6,500 lb)

Tied:
$2 \times 4000 \mathrm{lb} \times 2 / 3 \approx \mathbf{5 , 3 0 0} \mathbf{~ l b}$

Girth Hitch:
$2 \times 4,000 \mathrm{lb} \approx \mathbf{8 , 0 0 0} \mathbf{~ l b}$

Wrap 3 Pull 2:
$4 \times 4000 \mathrm{lb} \approx \mathbf{1 6 , 0 0 0} \mathbf{l b}$

Statics

Rule \#1: Every action has an equal and opposite reaction.

Statics

Rule \#2:
Draw a box around any piece of the system. Replace anything you cut with force vectors.

Statics

Statics

The T-Method

Any box you draw has to be balanced.
2 pounds in $=2$ pounds out.

Vectors

Vectors have a magnitude and a direction. Vectors are added graphically. Arrow lengths represent the magnitude of the forces. Force arrows can be moved around as needed.

Vectors

Pythagorean theorem:

$$
\begin{aligned}
& \mathrm{c}^{2}=\mathrm{a}^{2}+\mathrm{b}^{2} \\
& \mathrm{c}^{2}=1+1 \\
& \mathrm{c} \approx 1.4
\end{aligned}
$$

Useful Trigonometry:
$\operatorname{Sin} \theta=b / c$
$\operatorname{Cos} \theta=\mathrm{a} / \mathrm{c}$
$\operatorname{Tan} \theta=\mathrm{b} / \mathrm{a}$

Direction Change Forces

Which tree is supporting the largest force?

Internal Anchor Forces

Carabiner Forces:

$\cos \left(30^{\circ}\right)=500 \mathrm{lb} / \mathrm{T}$
$\mathrm{T}^{*} \cos \left(30^{\circ}\right)=500 \mathrm{lb}$
$\mathrm{T}=577 \mathrm{lb}$

Litter Team Forces

Litter Team Forces:

$$
\begin{aligned}
& \sin \left(35^{\circ}\right)=\mathrm{T} / 7 \mathrm{kN} \\
& \mathrm{~T}=7 \mathrm{kN} * \sin \left(35^{\circ}\right) \\
& \mathrm{T}=4.0 \mathrm{kN}=900 \mathrm{lb}
\end{aligned}
$$

Highline Forces

More Highline Forces

More Highline Forces

Active Highline Forces

Highline Tension $\approx 50 \mathrm{lbs} \times$ (number of haulers) \times MA As shown here, $T \approx 50 \times 3 \times 3=450 \mathrm{lbs}$

Some teams talk about a "rule of 12 "
Haulers x MA must be less than 12 .
This is equivalent to a 600 lb working load limit.

Which rope has more friction?

Friction from a Belt

Exponential Function of Friction and Contact Angle

Useful Friction Approximations

Tension increases if hauling. Tension decreases if lowering.
What is $\mathrm{T}_{2} / \mathrm{T}_{1}$ for a 180° change on rock? For 360° ?

Friction Example

Which rope has more friction?

Rope 3 has the greatest change in angle

Rope 1 has the smallest change in angle

Rope 3 has the most friction

Rope $2 \quad$ Rope 3

