
Chapter 2

Direct3D

“We may live without architecture, and worship without
her, but we cannot remember without her.”

John Ruskin: The Seven Lamps of Architecture, VI

2.1 Overview

This chapter begins with a description of the general architecture of Direct3D.
We discuss how Direct3D relates to GDI under Windows, and then introduce
the abstractions used by Direct3D: devices, swap chains, surfaces, and resources.
Before getting into the details of Direct3D, we show a complete Direct3D ap-
plication that draws a single triangle and explain its various parts.

We next describe the IDirect3D9 interface. This interface exposes the
graphics devices present in the system. We summarize the interface methods
before elaborating on them in the following sections.

When a graphics application initializes itself, it first probes the system de-
vices and selects an appropriate device for the display needs of the application.
This process is referred to as “device enumeration.” IDirect3D9 makes enu-
meration easy by allowing us to examine all the adapters present in the system
for appropriate device and display mode support.

Each monitor is driven by an adapter, which supports a number of video
display modes varying in screen dimensions and refresh rate. Each adapter can
expose hardware and software device objects that can operate in windowed or
exclusive mode.

An application enumerates the devices available on each adapter, examining
their capabilities and supported display modes to find an acceptable device.
After a device has been found to have suitable capabilities, the application
checks to see if the device supports the required render target formats, resource
formats and multisampling support needed by the application.

43

44 CHAPTER 2. DIRECT3D

A Direct3D application can enumerate devices on the default adapter or on
all adapters. As multiple monitor systems become more common, an applica-
tion can take advantage of the additional display space afforded by additional
monitors. We present a guideline for multiple monitor applications.

2.2 A Minimal Direct3D Application

Before we get into the details of a Direct3D application, lets start with a minimal
but complete example of a Direct3D application. Such a program is given in
listing 2.1.

The program draws a scene consisting of a single triangle aligned with the
screen (i.e. parallel to the plane of the screen). This program produces output
that could also be achieved with GDI, but as we will see in the following chapters
Direct3D can achieve much more than GDI at much faster speeds.

Drawing a single triangle that directly faces the viewer could be considered
a “two-dimensional” application. Direct3D exposes powerful graphics hardware
that can accelerate 2D applications just as well as 3D applications. Many times
2D applications are 3D applications in disguise – they draw 3D primitives that
are aligned with the screen.

This application, while minimal, goes through all the operations a typical
Direct3D application will perform during its lifetime. For this minimal example,
the operations are simplified, but the basic structure remains the same.

this program registers a window class procedure and creates a window like
most Win32 applications. It then acquires the necessary interfaces for using
Direct3D and constructs a device to render into its window. This program
renders its scene to the device for presentation in response to WM PAINT or WM -
SIZING messages.

An application needn’t restrict itself to rendering in response to window
damage. The SDK sample framework renders continuously by adjusting its
message loop to render the scene whenever there are no messages to process, in
addition to WM PAINT.

The Direct3D specific parts of the program are those method calls on the
IDirect3D9 and IDirect3DDevice9 interfaces, which are obtained in lines 133–
164. The frame draw procedure handles rendering of the scene in lines 51–61.
The scene data, consisting of the definition for a single screen-space triangle, is
given in lines 36–49.

Once the scene has been rendered, its ready for presentation on the mon-
itor. Direct3D devices can become lost.The minimal application handles lost
devices in lines 63–78 by waiting until the device can be regained. Device loss
is discussed in the chapter 3.

For simplicity, the only error checking performed by frame draw is the re-
sponse to Present to check for a lost device. Most methods return a HRESULT
which should always be checked as an aid to debugging during development.
This and other debugging techniques are discussed in chapter 22.

2.2. A MINIMAL DIRECT3D APPLICATION 45

Listing 2.1: minimal.cpp: A minimal well-behaved Direct3D application.

1 // minimal.cpp - minimal D3D application
2 //
3 // Originally by Sameer Nene of Microsoft, used with permission.
4 // Modified by Richard Thomson
5 //
6 #include <windows.h>
7 #include <tchar.h>
8 #include <atlbase.h>
9 #include <d3d9.h>

10 #include "rt/hr.h"
11

12 //
13 // Simple HWND handling
14 class c_window
15 {
16 public:
17 typedef LRESULT CALLBACK
18 t_window_proc(HWND window, UINT msg, WPARAM wp, LPARAM lp);
19

20 c_window() : m_window(NULL)
21 {}
22 ~c_window();
23

24 void create(LPCTSTR name, LPCTSTR window_class,
25 UINT width, UINT height,
26 HINSTANCE instance, t_window_proc *proc);
27

28 operator HWND() const { return m_window; }
29

30 private:
31 HWND m_window;
32 };
33

34 void
35 c_window::create(LPCTSTR name, LPCTSTR window_class,
36 UINT width, UINT height,
37 HINSTANCE instance,
38 c_window::t_window_proc *proc)
39 {
40 // Register the window class for the main window.
41 const WNDCLASS wc =
42 {
43 0, proc, 0, 0, instance, NULL, TWS(::LoadCursor(NULL, IDC_CROSS)),
44 static_cast<HBRUSH>(TWS(::GetStockObject(BLACK_BRUSH))),

46 CHAPTER 2. DIRECT3D

45 NULL, window_class
46 };
47 TWS(::RegisterClass(&wc));
48

49 // Create the main window.
50 m_window = TWS(::CreateWindow(window_class, name,
51 WS_OVERLAPPEDWINDOW, CW_USEDEFAULT, CW_USEDEFAULT,
52 width, height, TWS(::GetDesktopWindow()), NULL,
53 instance, NULL));
54 }
55

56 c_window::~c_window()
57 {
58 // ::DefWindowProc calls ::DestroyWindow on WM_CLOSE
59 }
60

61 //
62 // Simple application class
63 class c_d3d_application
64 {
65 public:
66 c_d3d_application();
67 ~c_d3d_application();
68

69 void create(HINSTANCE instance);
70

71 HWND window() const { return m_window; }
72

73 private:
74 void frame_draw();
75 LRESULT on_message(HWND window, UINT msg, WPARAM wp, LPARAM lp);
76

77 // device window and interface
78 c_window m_window;
79 CComPtr<IDirect3DDevice9> m_device;
80 // device presentation parameters
81 D3DPRESENT_PARAMETERS m_presentation;
82

83 // width and height of frame buffer
84 static const UINT FRAME_WIDTH = 320;
85 static const UINT FRAME_HEIGHT = 240;
86

87 static LRESULT CALLBACK
88 s_on_message(HWND window, UINT msg, WPARAM wp, LPARAM lp);
89 static c_d3d_application *s_app;
90 };

2.2. A MINIMAL DIRECT3D APPLICATION 47

91

92 c_d3d_application *c_d3d_application::s_app = NULL;
93

94 c_d3d_application::c_d3d_application() :
95 m_window(),
96 m_device()
97 {
98 // must set this before doing anything that could process messages
99 s_app = this;

100 }
101

102 void
103 c_d3d_application::create(HINSTANCE instance)
104 {
105 m_window.create(_T("Minimal Direct3D9 Application"), _T("rt_Minimal"),
106 FRAME_WIDTH, FRAME_HEIGHT, instance, &s_on_message);
107

108 // Get IDirect3D9 interface
109 CComPtr<IDirect3D9> d3d;
110 d3d.Attach(::Direct3DCreate9(D3D_SDK_VERSION));
111 if (!d3d)
112 {
113 THR(E_NOINTERFACE);
114 }
115

116 // find out display mode format to use for back buffer
117 D3DDISPLAYMODE dm;
118 THR(d3d->GetAdapterDisplayMode(D3DADAPTER_DEFAULT, &dm));
119

120 D3DPRESENT_PARAMETERS presentation =
121 {
122 // width, height, format, number of back buffers
123 FRAME_WIDTH, FRAME_HEIGHT, dm.Format, 1,
124 // multisample type, swap effect, device window, windowed
125 D3DMULTISAMPLE_NONE, 0, D3DSWAPEFFECT_FLIP, m_window, TRUE,
126 // auto depth/stencil surface flag, format
127 FALSE, D3DFMT_UNKNOWN
128 };
129 m_presentation = presentation;
130

131 // now create the device
132 THR(d3d->CreateDevice(D3DADAPTER_DEFAULT, D3DDEVTYPE_HAL,
133 m_window, D3DCREATE_SOFTWARE_VERTEXPROCESSING,
134 &m_presentation, &m_device));
135

136 // display the window

48 CHAPTER 2. DIRECT3D

137 ::ShowWindow(m_window, SW_SHOWDEFAULT);
138 TWS(::UpdateWindow(m_window));
139 }
140

141 c_d3d_application::~c_d3d_application()
142 {
143 }
144

145 // draw a frame consisting of a single
146 // white triangle on a black background
147 void
148 c_d3d_application::frame_draw()
149 {
150 if (!m_device)
151 {
152 return;
153 }
154

155 // structure for triangle vertex positions
156 #define VTX(x_, y_) \
157 { x_*FRAME_WIDTH, y_*FRAME_HEIGHT, 0.5f, 2.0f }
158 const struct MYVERTEX
159 {
160 float m_pos[4]; // x, y, z, 1/w
161 }
162 triangle[] =
163 {
164 VTX(0.50f, 0.25f),
165 VTX(0.75f, 0.75f),
166 VTX(0.25f, 0.75f)
167 };
168 #undef VTX
169

170 // start the scene and clear the frame buffer
171 THR(m_device->BeginScene());
172 THR(m_device->Clear(0, NULL, D3DCLEAR_TARGET, 0, 1.0f, 0));
173

174 // describe triange vertex data to the device
175 THR(m_device->SetFVF(D3DFVF_XYZRHW));
176 THR(m_device->DrawPrimitiveUP(D3DPT_TRIANGLELIST, 1,
177 triangle, sizeof(MYVERTEX)));
178

179 // end 3D scene
180 THR(m_device->EndScene());
181

182 // present the scene & handle lost devices

2.2. A MINIMAL DIRECT3D APPLICATION 49

183 HRESULT hr = m_device->Present(NULL, NULL, NULL, NULL);
184 while (D3DERR_DEVICELOST == hr)
185 {
186 do
187 {
188 ::Sleep(1000);
189 hr = m_device->TestCooperativeLevel();
190 }
191 while (hr != D3DERR_DEVICENOTRESET);
192

193 if (FAILED(m_device->Reset(&m_presentation)))
194 {
195 hr = D3DERR_DEVICELOST;
196 }
197 }
198

199 // clear Win32 dirty region
200 TWS(::ValidateRect(m_window, NULL));
201 }
202

203 // basic windows message procedure
204 LRESULT CALLBACK
205 c_d3d_application::s_on_message(HWND window, UINT msg, WPARAM wp, LPARAM lp)
206 {
207 ATLASSERT(s_app != NULL);
208 return s_app->on_message(window, msg, wp, lp);
209 }
210

211 LRESULT
212 c_d3d_application::on_message(HWND window, UINT msg, WPARAM wp, LPARAM lp)
213 {
214 LRESULT result = 0;
215

216 if (WM_SIZING == msg || WM_PAINT == msg)
217 {
218 frame_draw();
219 }
220 else
221 {
222 result = ::DefWindowProc(window, msg, wp, lp);
223 }
224 return result;
225 }
226

227 //
228 int __stdcall

50 CHAPTER 2. DIRECT3D

229 _tWinMain(HINSTANCE instance, HINSTANCE, LPTSTR, int)
230 {
231 try
232 {
233 c_d3d_application app;
234 app.create(instance);
235

236 // pump messages
237 MSG msg;
238 while (0 < ::GetMessage(&msg, app.window(), 0, 0))
239 {
240 ::TranslateMessage(&msg);
241 ::DispatchMessage(&msg);
242 }
243 }
244 catch (rt::hr_message &bang)
245 {
246 return rt::display_error(bang);
247 }
248 catch (...)
249 {
250 return -1;
251 }
252

253 return 0;
254 }

2.3 Direct3D Architecture

Direct3D is a Windows subsystem component at a level comparable to GDI,
see figure 2.1. Direct3D differs from GDI in that it does not attempt anything
more than presenting a thin abstraction of the graphics hardware. The Direct3D
device driver deals directly with the graphics hardware. Direct3D communicates
directly with the display driver and does not require GDI, achieving higher
performance than possible with GDI rendering.

The main abstractions of Direct3D are devices, swap chains and resources.
The device is the object that exposes the rendering operations of the hardware.
The device’s properties control the rendering behavior or provide information
about rendering, while the device’s methods are used to perform the rendering
itself. Devices always contain at least one swap chain and a collection of re-
sources used for rendering as shown in figure 2.2. Resources are application
specific data stored in or near the device hardware for use during rendering.
Direct3D provides resources for scene geometry (vertices and indices) and ap-
pearance (images, textures, and volumes).

2.4. DIRECT3D HRESULTS 51

Graphics Hardware

Device Driver

Win32 GDI Direct3D

Application

Figure 2.1: Relationship of Direct3D to other Windows subsystems.

Direct3D Device

Swap Chains Resources

Figure 2.2: Direct3D device architecture

A surface is a resource containing a rectangular collection of pixel data such
as color, alpha, depth/stencil or texture information. A swap chain contains one
or more back buffer surfaces where scenes are rendered and presented for display
on the monitor. A device’s render target is the back buffer surface, with an
optional depth/stencil surface, in which rendering will occur.

While all back buffers are valid render targets, not all render targets are
back buffers. It is also possible to have a texture as a render target allowing
dynamic rendering effects.

To obtain a device object, Direct3D provides an object for device enumer-
ation and creation. All other objects are created through the device. An ap-
plication first obtains the runtime interface, then selects and creates a device
from those available, and using the device creates the necessary resources for
rendering.

2.4 Direct3D HRESULTs

As mentioned in chapter 1, most COM methods return HRESULT to indicate
success or failure. The SDK documentation lists common error codes returned
by Direct3D interface methods, but the list is not meant to be exhaustive. The
error codes listed are the ones that arise in typical use of the interface in question
and in some senses can be considered “expected” errors, such as D3DERR OUT-

52 CHAPTER 2. DIRECT3D

OFVIDEOMEMORY which indicates resource exhaustion, not a programming error.
During development errors in method parameters to Direct3D objects will

cause D3DERR INVALIDCALL to be returned, indicating invalid parameters were
passed to the method. Distinct error codes for all the possible argument failures
are not provided, only a single code indicating this type of failure. Always check
the return values from Direct3D interface methods when they return HRESULT.
Many times, a bug in your application can be found sooner by isolating the first
routine that returns D3DERR INVALIDCALL. This error code is not considered an
“expected” error, because it arises from improper use of the interface. These
errors should be eliminated from your application if they occur. The debug
runtime is an invaluable aid in determining the cause of D3DERR INVALIDCALL
and is discussed in chapter 22.

2.5 Windowed and Exclusive Mode

Direct3D devices have two distinct modes of operation: windowed mode and ex-
clusive mode. In windowed mode, the results of graphic rendering are presented
for display inside the client area of a window on the desktop. Direct3D cooper-
ates with GDI to make the results of rendering visible, using a ::StretchBlt
operation to present a back buffer in the window’s client region.

In exclusive mode, Direct3D communicates directly with the display driver
avoiding GDI. When an exclusive mode application is running, no other appli-
cations have access to the display hardware and no GDI output is visible on the
screen. A request for exclusive mode may fail if the adapter is already under
exclusive mode control by another application.

Supporting both windowed and exclusive mode is easy and should always
be supported in an application. Windowed operation may be slower, but it is
much easier to debug a Direct3D program in windowed mode than in exclusive
mode. The selection between windowed and exclusive operation is done at the
time a Direct3D device is created or reset.

2.6 Device Types

Each adapter can support devices of several types, operating in either exclusive
or windowed mode. The three types of devices supported by Direct3D are the
HAL device, the reference device and the pluggable software device. The device
type is defined by the D3DDEVTYPE enumeration.

typedef enum _D3DDEVTYPE
{

D3DDEVTYPE_HAL = 1,
D3DDEVTYPE_NULLREF = 4,
D3DDEVTYPE_REF = 2,
D3DDEVTYPE_SW = 3

} D3DDEVTYPE;

2.7. RESOURCES 53

The HAL (hardware abstraction layer) device has hardware acceleration of
graphics rendering, making it the fastest device type.

The reference device1 is supplied only with the installation of the SDK. It
includes a software implementation of the entire pipeline feature set. The im-
plementation is tuned for accuracy and not for speed. This device will always be
the slowest device available, but it is very useful for debugging. When develop-
ing software applications that target new features not yet common in hardware,
the reference device may be your only choice for generating an image with those
Direct3D features.

The “null reference device” does nothing and all rendering will result in a
black screen. The null reference device will also be returned when the SDK is not
installed on a machine and the application requests the reference device. You
can detect the presence of the null reference device by examining the D3DPMISC-
CAPS NULLREFERENCE bit of the PrimitiveMiscCaps member of D3DCAPS9 on
the device. The null reference device can be useful for manipulating resources on
a machine that provides no hardware or software implementation of the runtime.

The pluggable software device is provided through the RegisterSoftware-
Device method. The interface for a software pluggable device is currently un-
documented and no software pluggable rendering devices are available in Direct-
X 9.0c.2 If software rendering is a requirement for your application, you should
consider writing your own software renderer or using a previous version of the
Direct3D interfaces that support software rendering. Writing a software ren-
derer is beyond the scope of this book and the pluggable device is mentioned
only here for completeness.

2.7 Resources

Collectively, the term “resources” refers to all the additional information beyond
device properties needed to render a scene. Before we discuss how to create a
device, we will briefly summarize the characteristics common to all resources.

Every resource has Type, Pool, Format, and Usage attributes. Each of these
attributes of a resource are specified at the time the resource is created and
remain constant for the lifetime of the resource object. The Type attribute
describes the kind of resource and is defined by the D3DRESOURCETYPE enumer-
ation.

typedef enum _D3DRESOURCETYPE {
D3DRTYPE_SURFACE = 1,
D3DRTYPE_VOLUME = 2,
D3DRTYPE_TEXTURE = 3,
D3DRTYPE_VOLUMETEXTURE = 4,

1Also referred to as the reference rasterizer, or REFRAST
2A software rasterizer for DirectX 9.0c was later created; see “Software Rasterizer for the

Microsoft DirectX 9.0 Software Development Kit” http://www.microsoft.com/downloads/

details.aspx?FamilyID=57d03491-6c49-4429-bff7-130408b5f410&DisplayLang=en

54 CHAPTER 2. DIRECT3D

D3DRTYPE_CUBETEXTURE = 5,
D3DRTYPE_VERTEXBUFFER = 6,
D3DRTYPE_INDEXBUFFER = 7

} D3DRESOURCETYPE;

The Pool attribute of a resource describes how it is managed by the Direct3D
runtime and is defined by the D3DPOOL enumeration. Resources in the default
pool exist only in device memory. Resources in the managed pool exist in system
memory and will be copied into the device’s memory by the runtime when
needed. Resources in the system memory pool exist only in system memory.
Resources in the scratch pool reside only in system memory and are not bound
by format constraints of the device. When a device is lost, all resources in the
default pool are lost and should be released and recreated by the application
when the device is regained. Lost devices are discussed in detail in chapter 3.

typedef enum _D3DPOOL {
D3DPOOL_DEFAULT = 0,
D3DPOOL_MANAGED = 1,
D3DPOOL_SYSTEMMEM = 2,
D3DPOOL_SCRATCH = 3

} D3DPOOL;

The Format attribute of a resource describes the layout of the resource’s
data in memory and is defined by the D3DFORMAT enumeration. All resources
have a format, but most of the format enumerants define the memory layout
for pixel data. The layout is indicated by the name of the enumerant, with
the components of the pixel data listed from left to right in most significant bit
first order. D3DFMT R8G8B8 indicates a 24-bit sized quantity with R in the most
significant 8 bits, G in the middle 8 bits, and B in the least significant 8 bits. An
X component indicates bits that are present in the pixel data but are unused.
D3DFMT X8R8G8B8 indicates a 32-bit sized quantity with the most significant 8
bits unused and the remaining 24 bits allocated as in D3DFMT R8G8B8.

typedef enum _D3DFORMAT
{

D3DFMT_UNKNOWN = 0,

D3DFMT_INDEX16 =101,
D3DFMT_INDEX32 =102,
D3DFMT_VERTEXDATA =100,

D3DFMT_A4L4 = 52,
D3DFMT_A8 = 28,
D3DFMT_L8 = 50,
D3DFMT_P8 = 41,
D3DFMT_R3G3B2 = 27,

2.7. RESOURCES 55

D3DFMT_A1R5G5B5 = 25,
D3DFMT_A4R4G4B4 = 26,
D3DFMT_A8L8 = 51,
D3DFMT_A8P8 = 40,
D3DFMT_A8R3G3B2 = 29,
D3DFMT_L16 = 81,
D3DFMT_L6V5U5 = 61,
D3DFMT_R16F = 111,
D3DFMT_R5G6B5 = 23,
D3DFMT_V8U8 = 60,
D3DFMT_X1R5G5B5 = 24,
D3DFMT_X4R4G4B4 = 30,

D3DFMT_R8G8B8 = 20,

D3DFMT_A2R10G10B10 = 35,
D3DFMT_A2B10G10R10 = 31,
D3DFMT_A2W10V10U10 = 67,
D3DFMT_A8B8G8R8 = 32,
D3DFMT_A8R8G8B8 = 21,
D3DFMT_CxV8U8 = 117,
D3DFMT_G16R16 = 34,
D3DFMT_G16R16F = 112,
D3DFMT_Q8W8V8U8 = 63,
D3DFMT_R32F = 114,
D3DFMT_V16U16 = 64,
D3DFMT_W11V11U10 = 65,
D3DFMT_X8L8V8U8 = 62,
D3DFMT_X8B8G8R8 = 33,
D3DFMT_X8R8G8B8 = 22,

D3DFMT_A16B16G16R16 = 36,
D3DFMT_A16B16G16R16F = 113,
D3DFMT_G32R32F = 115,
D3DFMT_Q16W16V16U16 =110,

D3DFMT_A32B32G32R32F = 116,

D3DFMT_DXT1 = MAKEFOURCC(’D’, ’X’, ’T’, ’1’),
D3DFMT_DXT2 = MAKEFOURCC(’D’, ’X’, ’T’, ’2’),
D3DFMT_DXT3 = MAKEFOURCC(’D’, ’X’, ’T’, ’3’),
D3DFMT_DXT4 = MAKEFOURCC(’D’, ’X’, ’T’, ’4’),
D3DFMT_DXT5 = MAKEFOURCC(’D’, ’X’, ’T’, ’5’),
D3DFMT_G8R8_G8B8 = MAKEFOURCC(’G’, ’R’, ’G’, ’B’),
D3DFMT_R8G8_B8G8 = MAKEFOURCC(’R’, ’G’, ’B’, ’G’),
D3DFMT_UYVY = MAKEFOURCC(’U’, ’Y’, ’V’, ’Y’),

56 CHAPTER 2. DIRECT3D

D3DFMT_YUY2 = MAKEFOURCC(’Y’, ’U’, ’Y’, ’2’),

D3DFMT_MULTI2_ARGB8 = MAKEFOURCC(’M’,’E’,’T’,’1’),

D3DFMT_D15S1 = 73,
D3DFMT_D16 = 80,
D3DFMT_D16_LOCKABLE = 70,
D3DFMT_D32F_LOCKABLE = 82,

D3DFMT_D24S8 = 75,
D3DFMT_D24FS8 = 83,
D3DFMT_D24X4S4 = 79,
D3DFMT_D24X8 = 77,
D3DFMT_D32 = 71

} D3DFORMAT;

The An , Ln , Pn , Rn , Gn , and Bn channels are encoded as unsigned quantities
in the range [0, 2n−1]. The Un , Vn , Wn , Qn channels are encoded as signed
quantities in the range [−2n−1, 2n−1− 1]. The Dn and Sn channels encode
depth/stencil surface data in a device-specific manner.

Some of the enumerants have values defined by the MAKEFOURCC macro, or so-
called “four character codes.” Additional vendor-specific resource formats can
be introduced by using new four character codes. The YUVY and YUY2 formats
are pixel formats originating in digital video3 and are only mentioned here for
completeness. The DXTn formats are compressed texture formats defined by
DirectX and discussed in chapter 11.

D3DCOLOR’s pixel format is D3DFMT A8R8G8B8, whereas the pixel format of
a PALETTEENTRY or COLORREF has the red and blue components reversed as if
they were the fictitious D3DFMT X8B8G8R8. If you mix GDI colors with D3D-
COLORs, you will have to convert them for use with Direct3D. Direct3D does
not use COLORREF in any of its arguments, although PALETTEENTRY is used with
palette texture formats. When Direct3D uses a PALETTEENTRY, it interprets the
peFlags member of the structure as an 8-bit alpha channel as if it were the
fictitious D3DFMT A8B8G8R8.

The Usage attribute describes how the application will be use the resource
and is defined by a collection of flag bits. These flags allow the runtime – and
consequently the driver – to know which application resources are used in a static
or dynamic access pattern. Static resources are typically loaded with data once
and used repeatedly without change, while dynamic resources are repeatedly
modified by the application. While every resource has non-zero Type, Pool and
Format attributes, the Usage attribute may often be zero. Not all of the usage
flags are appropriate for all resource types. The relevant flags are noted where
those resources are discussed.

#define D3DUSAGE_AUTOGENMIPMAP 0x00000400L

3See 〈http://www.webartz.com/fourcc/indexyuv.htm〉

2.8. IDIRECT3D9 57

#define D3DUSAGE_DEPTHSTENCIL 0x00000002L
#define D3DUSAGE_DMAP 0x00004000L
#define D3DUSAGE_DONOTCLIP 0x00000020L
#define D3DUSAGE_DYNAMIC 0x00000200L
#define D3DUSAGE_NPATCHES 0x00000100L
#define D3DUSAGE_POINTS 0x00000040L
#define D3DUSAGE_RENDERTARGET 0x00000001L
#define D3DUSAGE_RTPATCHES 0x00000080L
#define D3DUSAGE_SOFTWAREPROCESSING 0x00000010L
#define D3DUSAGE_WRITEONLY 0x00000008L

2.8 IDirect3D9

A Direct3D application starts by obtaining the IDirect3D9 COM interface
pointer by calling ::Direct3DCreate9, the only global function in the Direct3D
core interfaces.

#define D3D_SDK_VERSION 31

IDirect3D9 *WINAPI ::Direct3DCreate9(UINT sdk_version);

The version argument must be D3D SDK VERSION. When the Direct3D header
files are changed, this number is incremented. If the wrong version number is
passed to ::Direct3DCreate9, then the function will fail and return NULL. This
ensures that the application used the final release header files and not header
files from interim releases of the SDK.

IDirect3D9 exposes a model of graphics hardware where each monitor is
connected to an adapter, identified by an unsigned positive number. An adapter
is not necessarily equivalent to a display card; in recent years hardware densities
have increased to support two adapters on a single display card, so-called “dual
head” displays. IDirect3D9 exposes each of these displays as distinct adapters,
even though there is only one graphics card.

This interface provides a consistent way for applications to examine all the
adapters connected to a system and select one that is most appropriate for its
rendering task. An application can also render to multiple devices which is
useful for splitting different visual elements of the application across multiple
monitors. The IDirect3D9 interface is summarized in interface 2.1.

Interface 2.1: Summary of the IDirect3D9 interface.

IDirect3D9 : IUnknown

Read-Only Properties
GetAdapterCount The number of adapters in the system.
GetAdapterDisplayMode Current video display mode for an

adapter.

58 CHAPTER 2. DIRECT3D

GetAdapterIdentifier Identifying information about a device.
GetAdapterModeCount The number of supported video display

modes on an adapter.
GetAdapterMonitor The HMONITOR for an adapter.
GetDeviceCaps The generic capabilities of a device.

Methods
CheckDepthStencilMatch Check a device for a supported depth

stencil surface for use with a render tar-
get and adapter display mode format.

CheckDeviceFormat Check a device for supported resource
types and formats.

CheckDeviceFormatConversion TODO
CheckDeviceMultiSampleType Check multisampling support for a de-

vice.
CheckDeviceType Check an adapter for device type and

windowed or exclusive mode support.
CreateDevice Create a device on an adapter.
EnumAdapterModes Obtain the supported display mode in-

formation for an adapter.
RegisterSoftwareDevice Registers a software device with Di-

rect3D.

interface IDirect3D9 : IUnknown
{
//--
// read-only properties

UINT GetAdapterCount();
HRESULT GetAdapterDisplayMode(UINT adapter,

D3DDISPLAYMODE *value);
HRESULT GetAdapterIdentifier(UINT adapter,

DWORD flags,
D3DADAPTER_IDENTIFIER9 *value);

UINT GetAdapterModeCount(UINT adapter,
D3DFORMAT format);

HMONITOR GetAdapterMonitor(UINT adapter);
HRESULT GetDeviceCaps(UINT adapter,

D3DDEVTYPE device_kind,
D3DCAPS9 *value);

//--
// methods
HRESULT CheckDepthStencilMatch(UINT Adapter,

D3DDEVTYPE device_kind,

2.9. SELECTING A DEVICE 59

D3DFORMAT adapter_fmt,
D3DFORMAT render_target_fmt,
D3DFORMAT depth_stencil_fmt);

HRESULT CheckDeviceFormat(UINT adapter,
D3DDEVTYPE device_kind,
D3DFORMAT adapter_fmt,
DWORD usage,
D3DRESOURCETYPE resource_kind,
D3DFORMAT surface_fmt);

HRESULT CheckDeviceFormatConversion(UINT adapter,
D3DDEVTYPE device_kind,
D3DFORMAT source_fmt,
D3DFORMAT target_fmt);

HRESULT CheckDeviceMultiSampleType(UINT adapter,
D3DDEVTYPE device_kind,
D3DFORMAT target,
BOOL windowed,
D3DMULTISAMPLE_TYPE sampling,
DWORD *quality_levels);

HRESULT CheckDeviceType(UINT adapter,
D3DDEVTYPE device_kind,
D3DFORMAT display_fmt,
D3DFORMAT back_fmt,
BOOL windowed);

HRESULT CreateDevice(UINT adapter,
D3DDEVTYPE device_kind,
HWND focus_window,
DWORD behavior_flags,
D3DPRESENT_PARAMETERS *presentation,
IDirect3DDevice9 **result);

HRESULT EnumAdapaterModes(UINT adapter,
D3DFORMAT format,
UINT mode,
D3DDISPLAYMODE *value);

HRESULT RegisterSoftwareDevice(void *init_func);
};

2.9 Selecting a Device

Typically an application will enumerate all devices in the system and pick the
device most suitable for the application’s needs. First, call GetAdapterCount
to determine the number of adapters in the system. Each adapter provides a
number of video display modes. Each display mode contains a screen dimension,
refresh rate and pixel format and is described by a D3DDISPLAYMODE structure:

typedef struct _D3DDISPLAYMODE

60 CHAPTER 2. DIRECT3D

{
UINT Width;
UINT Height;
UINT RefreshRate;
D3DFORMAT Format;

} D3DDISPLAYMODE;

The Format member will be either an RGB or XRGB format. The back
buffer surface format of a device must be compatible wih the display mode’s
format. The CheckDeviceFormat method can be used to discover compatible
formats. Typically, the back buffer surface format is the same pixel depth and
color layout as the display format. An XRGB display format can be used with an
ARGB back buffer of the same depth, provided that the corresponding ARGB
format is validated by IDirect3D9.

The number of display modes supported by the adapter is returned by Get-
AdapterModeCount and the display mode information is returned by Enum-
AdapterModes. The display mode currently in use by the adapter is returned
by GetAdapterDisplayMode.

Two display modes can have the same Width, Height and Format values
but different values for the RefreshRate. When examining supported display
modes, you may wish to ignore display modes that differ only in their refresh
rates. In this situation, the application should prefer the display mode with a
refresh rate corresponding to the current display mode to avoid a change in the
monitor’s refresh rate.

With a list of supported display formats, we are now ready to query for
supported device types. The CheckDeviceType method tells us if a particular
combination of display format and back buffer format are valid for a device of
a given type operating in windowed or exclusive mode.

With a valid device type, we can check the device’s capabilities for rendering
features required by our application with GetDeviceCaps. Device capabilities
are defined by the D3DCAPS9 structure, described in chapter 3.

Next, we can validate all the resources required by our application with the
CheckDeviceFormat. CheckDeviceFormat should be used to validate all the for-
mat of all resources used by the application: back buffer surfaces, depth/stencil
surfaces, texture surfaces, and volume texture formats. Vertex buffer resources
only have one format and are always valid. D3DFMT INDEX16 is always sup-
ported for index buffer and D3DFMT INDEX32 is valid for index buffers if the
MaxVertexIndex member of D3DCAPS9 is greater than 216 − 1.

Next, if the application requires a depth buffer for visibility determination,
it should use CheckDepthStencilMatch to find a depth buffer that can be used
with its render target formats in a given display mode. This check accom-
modates hardware that has additional requirements for a depth/stencil buffer
that vary with the format of the render target and display mode. For example,
some nVidia hardware requires that the depth buffer match the render target
in depth.

2.10. DETERMINING AVAILABLE RESOURCE MEMORY 61

Finally, an application with multisampling needs can validate its require-
ments with the CheckDeviceMultiSampleType method. Applications not con-
cerned with multisampling can skip that check. For more about multisampling
see chapter 14.

All of the check methods return S OK if the requested combination is sup-
ported and D3DERR NOTAVAILABLE otherwise.

2.10 Determining Available Resource Memory

Having found a device capable of supporting the application’s needs, it may
be desirable to determine if the device has sufficient memory resources for the
application. If an application has specific memory requirements, the only way
to determine if a device passes those requirements is to instantiate the device
and attempt to create the necessary resources.

The amount of resource memory available to an application depends on the
display mode in use. Creating an exclusive mode device can cause jarring display
mode changes if the device’s requested video mode differs from the video mode
used by the desktop. To avoid this unnerving effect every time the application
starts, an application can perform the memory test once at setup time and
cache the results. This is safe to do because the amount of memory available
on a device in a particular display mode will not change unless the hardware
is changed. When the hardware is changed, the user can run the application
setup again to cache the new hardware information.

2.11 Device Capabilities

Graphics devices have a wide variety of architectures, hardware capabilities and
performance ranges. A demanding application will want to probe the hardware’s
capabilities to determine an appropriate rendering strategy most consistent with
the application’s goals. The application can also use hardware capabilities to
reject devices inappropriate for its rendering strategy.

An application calls GetDeviceCaps to obtain the generic capabilities of a
particular type of device on an adapter. The device capabilities are described by
the D3DCAPS99 structure. An overview of this structure is given in section 3.3.
The capabilities structure covers many aspects of the device. Specific device
capabilities are discussed with the relevant portion of the graphics pipeline and
miscellaneous device capabilities are discussed in chapter 3.

2.12 Identifying a Particular Device

In a perfect world, we could weed out incapable devices with the above checks for
its support and capabilities. Unfortunately, we do not live in a perfect world,
we live in a world of imperfect beings that write software – including device
drivers! This ugly reality brings us to GetAdapterIdentifier which allows

62 CHAPTER 2. DIRECT3D

an application to identify a specific brand of adapter from a specific vendor.
Sometimes the only way to deal with the “conditions in the field” is to identify
cards using this method, although it should only be used as a last resort to
identify particular problem situations for your application.

GetAdapterIdentifier returns a D3DADAPTER IDENTIFIER9 structure iden-
tifying this adapter in the system:

typedef struct _D3DADAPTER_IDENTIFIER9
{

char Driver[MAX_DEVICE_IDENTIFIER_STRING];
char Description[MAX_DEVICE_IDENTIFIER_STRING];
char DeviceName[32];

#ifdef _WIN32
LARGE_INTEGER DriverVersion;

#else
DWORD DriverVersionLowPart;
DWORD DriverVersionHighPart;

#endif

DWORD VendorId;
DWORD DeviceId;
DWORD SubSysId;
DWORD Revision;
GUID DeviceIdentifier;
DWORD WHQLLevel;
HMONITOR hMonitor;

} D3DADAPTER_IDENTIFIER9;

The Driver and Description fields provide human readable text intended
to be used to guide a user in selecting this device from a user interface. The
DriverVersion field indicates the version of the Direct3D driver. Comparison
operations are valid on the entire 64 bit quantity. The driver version can be
further subdivided into Product, Version, SubVersion and Build fields with
the HIWORD and LOWORD Win32 macros. HIWORD and LOWORD take a 32-bit quan-
tity and return the most significant 16 bits and the least significant 16 bits,
respectively.

Member HIWORD LOWORD
DriverVersion.LowPart Product Version
DriverVersion.HighPart SubVersion Build

The VendorId, DeviceId, SubSysId and Revision fields are used to differ-
entiate among different hardware chipsets. The values may be zero if the chipset
information is unknown. The DeviceIdentifier field contains a GUID that
uniquely identifies this driver/chipset pair. The GUID should be used to identify
changes in graphics hardware configurations and to track problematic drivers,

2.13. CREATING THE DEVICE 63

if necessary. The hMonitor field gives the handle of the monitor connected to
this adapter.

The WHQLLevel field gives the WHQL certification information for this WHQL: Windows Hard-
ware Quality Laboratorydriver. The value is either zero indicating that the driver is not certified, one

indicating that the driver is certified but no date information is known, or
a packed date structure. The packed date indicates the latest release of the
WHQL certification test passed by this driver. The date is packed as follows:

Bits Description
0-7 Day, [1, 31]

8-15 Month, [1, 12]
16-31 Year, [1999, 65535]

Determining the WHQL level can be a costly operation. This operation can
be avoided by specifying 0 for the flag argument to GetAdapterIdentifier.
If the WHQL information is desired, pass D3DENUM WHQL LEVEL for flags. Ob-
taining WHQL information may cause the runtime to download new WHQL
certificates from the internet.

#define D3DENUM_WHQL_LEVEL 0x00000002L

2.13 Creating the Device

After a device has been selected from those provided by the system, the appli-
cation creates an instance of the IDirect3DDevice9 interface with the Create-
Device method. This method returns a device interface that is ready for ren-
dering.

The focus window argument designates the window that will be the focus
for this device. For a device operating in exclusive mode, this window must be
a top-level window. Applications should not create a device in response to WM -
CREATE. Direct3D applications will receive messages on the focus window when
the device is created and in exclusive mode, Direct3D will subclass the focus
window.4 An MFC application should obtain the focus window handle from the
::AfxGetSafeWindow function.

The behavior flags argument specifies global behaviors of the created de-
vice and is defined by a collection of the following flags.

#define D3DCREATE_ADAPTERGROUP_DEVICE 0x00000200L
#define D3DCREATE_DISABLE_DRIVER_MANAGEMENT 0x00000100L
#define D3DCREATE_DISABLE_DRIVER_MANAGEMENT_EX 0x00000400L
#define D3DCREATE_FPU_PRESERVE 0x00000002L
#define D3DCREATE_HARDWARE_VERTEXPROCESSING 0x00000040L
#define D3DCREATE_MIXED_VERTEXPROCESSING 0x00000080L
#define D3DCREATE_MULTITHREADED 0x00000004L
#define D3DCREATE_NOWINDOWCHANGES 0x00000800L

4“Subclassing” here refers to Win32 window subclassing, not C++ subclassing.

64 CHAPTER 2. DIRECT3D

#define D3DCREATE_PUREDEVICE 0x00000010L
#define D3DCREATE_SOFTWARE_VERTEXPROCESSING 0x00000020L

Some display cards provide multiple video outputs on a single card. D3D-
CREATE ADAPTERGROUP DEVICE allows an application to drive both video out-
puts through a single device interface, allowing resources to be shared for both
outputs. See section 2.15 for more about using CreateDevice with this flag.

The D3DCREATE DISABLE DRIVER MANAGEMENT and D3DCREATE DISABLE DRIVER -
MANAGEMENT EX flags disable management of device resources by the driver and
force all resource management to occur in the runtime. The ex form of the flag
returns errors from resource creation methods to the application upon insuffi-
cient device memory, while the non-ex form manages device memory through
the runtime and does not expose insufficient video memory to the application.

Direct3D uses single precision floating-point computations. If an applica-
tion requires higher precision from the FPU, there are two choices. Either the
application can ensure that the FPU is in single precision mode when calling
into Direct3D, or it can request that the device preserve the application’s FPU
precision before Direct3D performs any floating-point operations and restore
the precision before returning to the application.

Direct3D also has some thread sensitivities that must be observed in mul-
tithreaded applications. The multithreaded create flag instructs Direct3D that
multiple threads will use the device. In this situation, Direct3D will use a global
critical section to ensure serialized access to the device. If a multithreaded ap-
plication can safely ensure that no two threads will use a device simultaneously,
then this flag can be omitted. It is recommended that multithreaded applica-
tions use the flag until a performance measurement indicates the overhead of
the critical section to be significant.

The pure device flag allows an application to create a device with the minimal
amount of internal state tracking. As we will see in the next chapter, devices
have a large amount of state that controls their operation. With the pure device
flag, the runtime does a minimal amount of checking on this state and passes
it directly to the driver. This can provide a small performance boost for an
application, at the cost of some ease of use. Pure devices will be discussed in
more detail in chapter 3.

The vertex processing flags allow the application to select pure software
vertex processing, pure hardware vertex processing or a mix of software and
hardware vertex processing. D3DCREATE SOFTWARE VERTEXPROCESSING selects
software vertex processing, which is always available from the runtime. The
runtime uses an efficient implementation of software vertex processing that is
optimized for the CPU. D3DCREATE MIXED VERTEXPROCESSING selects a combi-
nation of software and hardware vertex processing selected by SetSoftware-
VertexProcessing. Mixed vertex processing is incompatible with a pure device
and will fail if both are requested together. A device provides hardware vertex
processing when the D3DDEVCAPS HWTRANSFORMANDLIGHT bit of D3DCAPS9::-
DevCaps is set. Vertex processing is described in detail in section 6.2.

The presentation argument describes how the device will present new

2.13. CREATING THE DEVICE 65

renderings for display on the monitor with values stored in the D3DPRESENT -
PARAMETERS structure. The presentation parameters describe the behavior of
presentation for the device under windowed and full-screen modes. Some of the
values in this structure may be updated by the runtime before returning from
this function, so the parameter should point to a writable region of memory.

typedef struct _D3DPRESENT_PARAMETERS_
{

UINT BackBufferWidth;
UINT BackBufferHeight;
D3DFORMAT BackBufferFormat;
UINT BackBufferCount;
D3DMULTISAMPLE_TYPE MultiSampleType;
DWORD MultiSampleQuality;
D3DSWAPEFFECT SwapEffect;
HWND hDeviceWindow;
BOOL Windowed;
BOOL EnableAutoDepthStencil;
D3DFORMAT AutoDepthStencilFormat;
DWORD Flags;
UINT FullScreen_RefreshRateInHz;
UINT PresentationInterval;

} D3DPRESENT_PARAMETERS;

The BackBufferWidth, BackBufferHeight, BackBufferFormat, BackBuffer-
Count, MultiSampleType, MultiSampleQuality and SwapEffect members de-
scribe the swap chain created with the device. The details of a swap chain and
presentation are discussed in chapter 4.

The Windowed member differentiates between windowed operation and ex-
clusive operation. All DirectX 9.0c devices support windowed operation.

The AutoDepthStencil and AutoDepthStencilFormat members control the
automatic allocation of a depth/stencil buffer when the device is created. When
enabled, the format member describing the depth/stencil surface must be a
format validated by the adapter with CheckDepthStencilMatch. Allocating
depth/stencil buffer is described in detail in chapter 5.

The Flags member can be zero or one or more of the following values:

#define D3DPRESENTFLAG_DEVICECLIP 0x00000004
#define D3DPRESENTFLAG_DISCARD_DEPTHSTENCIL 0x00000002
#define D3DPRESENTFLAG_LOCKABLE_BACKBUFFER 0x00000001
#define D3DPRESENTFLAG_VIDEO 0x00000010

The D3DPRESENTFLAG DEVICECLIP flag restricts the results of a Present op-
eration to the client area of the device window in windowed mode. This flag
is supported only on Windows 2000 and Windows XP. The D3DPRESENTFLAG -
VIDEO flag is a hint to the device that the back buffer contains video data.

66 CHAPTER 2. DIRECT3D

The D3DPRESENTFLAG DISCARDDEPTHSTENCIL flag instructs the runtime to
discard the contents of the depth stencil surface after a call to Present, or
when a new depth stencil surface is set on the device. This effectively makes
the depth stencil surface a write only surface, allowing the device to improve
rendering performance. An error occurs if you try to set this flag and request
one of the lockable depth stencil surface formats D3DFMT D16 LOCKABLE or D3D-
FMT D32F LOCKABLE.

The D3DPRESENTFLAG LOCKABLEBACKBUFFER flag requests a default swap chain
with back buffer surfaces that can be directly accessed by the application. Ac-
cessing surface data directly with the IDirect3DSurface9 interface is described
in chapter 4.

The remaining members of the presentation parameters have differing inter-
pretations under windowed and full-screen modes.

In windowed mode, hDeviceWindow specifies the window whose client area
will be used for presentation in windowed operation. If hDeviceWindow is zero,
then the focus window will be used for presentation. The FullScreen Refresh-
RateInHz member must be zero for windowed operation. The presentation
intervals supported by windowed mode are listed in table 4.1.

In exclusive mode, hDeviceWindow specifies the top-level window used by
the application. If multiple devices are created in exclusive mode, only one
device can use the focus window for hDeviceWindow, with the remaining de-
vices using their own top-level windows for hDeviceWindow. The BackBuffer-
Width, BackBufferHeight, and BackBufferFormat members must be equal to
the respective members of a valid D3DDISPLAYMODE for this adapter. The Full-
Screen PresentationInterval specifies the desired relationship between the
presentation rate and the screen refresh rate. It is described in section 4.6. The
FullScreen RefreshRateInHz can be a refresh rate of a valid D3DDISPLAYMODE
consistent with the rest of the members, or the following special values.

#define D3DPRESENT_RATE_DEFAULT 0x00000000

D3DPRESENT RATE DEFAULT instructs the runtime to choose a suitable refresh
rate in exclusive mode, and uses the current refresh rate in windowed mode.

When a device is created in exclusive mode, the adapter is placed into the
requested display mode. Once a device has been created, the application will
construct any resources it needs for rendering and then present a sequence of
renderings to the monitor for display.

2.14 Multiple Monitors

For systems with multiple monitors, the virtual desktop consists of a bound-
ing rectangle containing all the adapters in the system that participate in the
Windows desktop. Secondary adapters that do not participate in the desktop
may also be attached to the system. Secondary adapters may be enumerated
by IDirect3D9 if support is available for the adapter. All adapters on the desk-
top share at least a 1 pixel boundary in common with other monitors on the

2.15. ADAPTER GROUP DEVICES 67

desktop. When the cursor is moved off screen at a boundary pixel adjacent
to another adapter’s display, the cursor moves to that adapter’s display. For
more information about multiple monitors on Windows operating systems see
the MSDN documentation.

An application may wish to create a full-screen display on a specific monitor.
The GetAdapterMonitor method returns an HMONITOR handle for an adapter.
Once you have the handle to the device’s monitor you can determine what part
of the virtual desktop is covered by the monitor.

For example, a driving simulation written in Direct3D could create a sin-
gle simulated image across a row of monitors arranged horizontally. using the
GDI function ::GetMonitorInfo you can determine the portion of the virtual
desktop described by each HMONITOR. Using the HMONITOR for an adapter you
can then partition the rendering of the scene across the devices. The screen
saver framework in the SDK provides an example of using multiple monitors in
a Direct3D application.

If your application is running in windowed mode, the DirectX runtime han-
dles the partitioning of your scene when your device window spans multiple
monitors on the desktop. When your application presents its rendering for
display, the runtime copies the appropriate pixel data to each device. An ap-
plication can also create devices on the appropriate adapters and partition the
scene itself. For full-screen multimonitor applications, devices must be created
on each monitor separately.

2.15 Adapter Group Devices

Multihead adapters provide distinct video outputs from a single card. When a
device is created with D3DCREATE ADAPTERGROUP DEVICE, instead of providing a
single D3DPRESENT PARAMETERS structure, an array of D3DPRESENT PARAMETERS
structures are supplied instead. The number of structures in the array is at least
as large as the NumberOfAdaptersInGroup member of D3DCAPS9. No matter
how many swap chains are created on an adapter group device, only a single
depth stencil surface will be created if requested.

Only one of the presentation parameter structures in the array passed to
CreateDevice can use the focus window parameter as its device window. The
remaining structures must use their own distinct top-level windows as the device
window.

An adapter group device has a swap chain associated with each monitor in
the adapter group. In this way, each monitor can share rendering resources
between them and the presentation of all monitors in the adapter group is
performed with a single call to Present.

68 CHAPTER 2. DIRECT3D

