
Chapter 4

2D Applications

“There is no time like the present time.”
Tobias Smollett: Humphrey Clinker, 1771

4.1 Overview

This chapter describes how to use IDirect3DDevice9 interface for a simple
“two dimensional” application that only copies pixels. However, every Direct-
3D application is going to use the methods and interfaces described in this
application, not just “two dimensional” applications.

We start by examining the IDirect3DSurface9 interface that Direct3D uses
to expose collections of pixel data. We show how to create surfaces, fill them
with data and use them in pixel copy operations in a simple demonstration
application.

Next we discuss the IDirect3DSwapChain9 interface that manages a collec-
tion of back buffers for presentation. Every device is created with a default swap
chain, but new swap chains can also be created for multiple views in windowed
mode.

Next, we discuss presentation. Present is one of the few IDirect3DDevice9
methods where a failed HRESULT is part of normal practice. Present will fail
when the device has been lost, leaving the application to regain the device at a
later time.

Even though Direct3D applications can avoid GDI, they still need to re-
spond to messages sent to the application’s top-level window. We recommend
strategies for a Direct3D application in responding to some of the messages.
DirectX provides no direct way to combine GDI and Direct3D. However, GDI
operations can be performed on a memory DC and the resulting pixel data used
in a Direct3D application.

Finally, we discuss the video scan out portion of the pipeline and the pre-
sentation of images from the back buffers of swap chains onto the front buffer

111

112 CHAPTER 4. 2D APPLICATIONS

of the device. From there, the video scan out circuitry reads the data, applies
a cursor overlay if a hardware cursor is used, gamma correction is applied, and
the pixel data is converted to analog signals for the monitor.

4.2 Pixel Surfaces

Pixel surfaces are rectangular collections of pixel data. The memory layout of
the pixel data is given by its D3DFORMAT. There are several places where sur-
faces are used on the device: back buffer surfaces, depth/stencil buffer surfaces,
texture level surfaces, render target surfaces, and image surfaces.

Direct3D exposes a surface through the IDirect3DSurface9 interface, sum-
marized in interface 4.1. Some device properties act as containers for surfaces
and expose their contents by returning IDirect3DSurface9 interfaces to the
application. An image surface can be created explicitly with the Create-
OffscreenPlainSurface method. You can create surfaces in scratch memory,
system memory, or device memory pools. The CreateDepthStencilSurface
and CreateRenderTarget methods also return IDirect3DSurface9 interfaces
for depth/stencil and render target surfaces discussed in chapter 5. A plain
surface can’t be the target of 3D rendering, but you can copy between plain
surfaces and other surfaces.

HRESULT CreateOffscreenPlainSurface(UINT width,
UINT height,
D3DFORMAT format,
D3DPOOL pool,
IDirect3DSurface9 **result,
HANDLE *unused);

CreateOffscreenPlainSurface will fail if the requested type of surface isn’t
supported on the device, or if there is insufficient memory in the system memory
pool. Validate a surface format for use with CreateOffscreenPlainSurface
by calling CheckDeviceFormat with the desired format and a resource type of
D3DRTYPE SURFACE. The unused argument must be NULL.

Interface 4.1: Summary of the IDirect3DSurface9 interface.

IDirect3DSurface9

Read-Only Properties
GetContainer The containing resource or device.
GetDesc A description of the contained pixel data.
GetDC Creates a GDI device context for the surface.

Methods
LockRect Obtains direct access to the contained pixel data.
ReleaseDC Releases the GDI device context for the surface.

4.2. PIXEL SURFACES 113

UnlockRect Releases direct access to the contained pixel data.

interface IDirect3DSurface9 : IDirect3DResource9
{
//--
// read-only properties
HRESULT GetContainer(REFIID container_iid,

void **value);
HRESULT GetDC(HDC **value);
HRESULT GetDesc(D3DSURFACE_DESC *value);

//--
// methods
HRESULT LockRect(D3DLOCKED_RECT *data,

const RECT *locked_region,
DWORD flags);

HRESULT ReleaseDC(HDC context);
HRESULT UnlockRect();

};

For surfaces created with CreateOffscreenPlainSurface, GetContainer
will only return success when container iid is IID Direct3DDevice9. Calls
to GetContainer on surfaces returned by textures or cube textures succeed for
the IIDs of their respective containers. GetDevice returns the associated device
for all surfaces. IDirect3DSurface9 inherits from the IDirect3DResource9
interface, described in section 3.5.

The GetDesc method returns a description of the contained pixel data in
a D3DSURFACE DESC structure. The Format, Type, Usage, and Pool members
are as described in section 2.7. MultiSampleType gives the multisampling used
with a render target surface, as described in chapter 14. A surface created
with CreateOffscreenPlainSurface will have Usage and MultiSampleType
members set to zero, Type set to D3DRTYPE SURFACE and Pool set to D3DPOOL -
SYSTEMMEM.

typedef struct _D3DSURFACE_DESC
{

D3DFORMAT Format;
D3DRESOURCETYPE Type;
DWORD Usage;
D3DPOOL Pool;
D3DMULTISAMPLE_TYPE MultiSampleType;
DWORD MultiSampleQuality;
UINT Width;
UINT Height;

} D3DSURFACE_DESC;

114 CHAPTER 4. 2D APPLICATIONS

4.3 Accessing Surface Pixel Data

To access the pixel data contained in a surface, use the LockRect and Unlock-
Rect methods. A successful call to LockRect must be followed by a call to
UnlockRect before the surface can be used with the device. A subrectangle of
the surface can be locked, or it can be locked in its entirety when NULL is passed
for the locked region argument. The flags argument tells Direct3D how the
data is to be used once the surface is locked and can be zero or more of the
following flags:

#define D3DLOCK_DISCARD 0x00002000L
#define D3DLOCK_DONOTWAIT 0x00004000L
#define D3DLOCK_NO_DIRTY_UPDATE 0x00008000L
#define D3DLOCK_NOSYSLOCK 0x00000800L
#define D3DLOCK_READONLY 0x00000010L

D3DLOCK DISCARD informs the runtime that the entire locked region will be
written to but not read from. When a surface is locked with the discard flag,
the runtime can proceed without providing a copy of the data for reading to
the application. Without the discard flag, the runtime may be forced to flush
any pending rendering operations on the pipeline before returning a copy of the
surface data to the application. You can’t use the discard flag in conjunction
with a subregion; pass NULL for the subregion argument when using the discard
flag.

The D3DLOCK DONOTWAIT flag allows an application to determine if locking
the surface would cause the runtime to block, waiting for pending rendering
operations to complete. If the lock call would have blocked, then the method
returns D3DERR WASSTILLDRAWING and returns immediately without locking the
surface. If the lock can be completed immediately, then the surface is locked
normally.

Direct3D maintains a dirty region list for each managed surface that is used
to minimize the amount of data that must be copied into the device when a
resource is unlocked. A locked region doesn’t affect the dirty region list if D3D-
LOCK NO DIRTY UPDATE is used.

With D3DLOCK READONLY, the application guarantees that no write opera-
tions will be performed on the data in the locked region. If an attempt is made
to write into the locked region, the results are undefined.

D3DLOCK NOSYSLOCK applies only to surfaces in video memory (default mem-
ory pool). In order to prevent a device from being lost while a video memory
resource is locked, Direct3D obtains a system-wide critical section that prevents
the device from being lost. It also blocks other parts of the operating system
from executing, which can affect interactivity and responsiveness of the sys-
tem. Specifying D3DLOCK NOSYSLOCK prevents the system critical section from
being taken. This flag is intended for lengthy lock operations such as a software
renderer writing to a back buffer on a swap chain.

The LockRect method returns a D3DLOCKED RECT structure defining the con-
tained surface pixel data. Surface data is only guaranteed to be contiguous in

4.3. ACCESSING SURFACE PIXEL DATA 115

memory along a scanline. The Pitch member defines the distance in bytes
between adjacent scanlines. The pBits member points to the pixel data, begin-
ning with the topmost scanline of the locked region. Writing beyond the end of
the scanline, before the first scanline or after the last scanline of the region is
undefined.

typedef struct _D3DLOCKED_RECT
{

int Pitch;
void *pBits;

} D3DLOCKED_RECT;

When iterating over the pixels in a locked surface, it is very important to
observe the Pitch and the size of the pixel data. The size of the pixel data is
implied by its D3DFORMAT. A format of D3DFMT A8 has a size of 8 bits, or one byte
and can be represented by the standard Windows BYTE data type. A format of
D3DFMT A1R5G5B5 has a size of 16 bits, or two bytes and can be represented by
the standard Windows WORD data type. A format of D3DFMT A8R8G8B8 has a
size of 32 bits, or four bytes and can be represented by the standard Windows
DWORD data type. It is also the pixel format of D3DCOLOR, so that can also be
used. D3DFMT R8G8B8 has no convenient Windows data type of the same size,
so you must use a BYTE for each color channel and perform pointer arithmetic
in channels, not pixels.

The following code excerpt creates a 256x256 D3DFMT A8R8G8B8 surface and
fills it with a hue ramp. A scanline of D3DCOLOR is filled with a hue ramp, a
loop over the scanlines in the surface replicates the constructed scanline over
the surface with the Win32 ::CopyMemory routine.

// create an image surface
THR(m_pd3dDevice->CreateOffscreenPlainSurface(256, 256,

D3DFMT_A8R8G8B8, D3DPOOL_SYSTEMMEM, &m_surface, NULL));

// create one scanline of the surface on the stack
D3DCOLOR scanline[256];
UINT i;
for (i = 0; i < 256; i++)
{

float f = 0.5f + 0.5f*cosf(i*2.0f*D3DX_PI/255.0f);
scanline[i] = hsv_d3dcolor(f, 1.0f, 1.0f); // h, s, v

}

// lock the surface to initialize it
D3DLOCKED_RECT lr;
THR(m_surface->LockRect(&lr, NULL, 0));
{

BYTE *dest = static_cast<BYTE *>(lr.pBits);
for (i = 0; i < 256; i++)

116 CHAPTER 4. 2D APPLICATIONS

{
// copy scanline to the surface
::CopyMemory(dest, scanline, sizeof(scanline));
dest += lr.Pitch;

}
}
THR(m_surface->UnlockRect());

While IDirect3DSurface9 provides no methods for initializing surfaces from
image files, or for converting surfaces between pixel formats, D3DX provides a
variety of functions for these operations which are described in chapter 15.

If an application frequently locks surfaces and performs operations on the
underlying pixel data, it may be convenient to define a helper class that locks
a surface in its constructor and unlocks the surface in its destructor. This
also ensures exception safety and guarantees that every successful LockRect is
followed by an UnlockRect. The class can also provide accessors to avoid the
error-prone scanline pointer arithmetic.

Listing 4.1 gives a surface lock helper class. Note that the helper switches
the order of the locked region and flags arguments when compared to the
LockRect method and provides default values for these arguments. The helper
assumes the more common case is to use flags other than zero when locking
an entire surface instead of using flags of zero and locking a subrectangle of
the surface.

Listing 4.1: <rt/surface.h>: A surface lock helper class.

1 #if !defined(RT_SURFACE_H)
2 #define RT_SURFACE_H
3 //--
4 // surface.h
5 //
6 // Helper functions for manipulating surfaces.
7 //
8 #include <atlbase.h> // ATLASSERT(), CComPtr<>
9 #include <d3d9.h> // IDirect3DSurface9

10

11 namespace rt {
12

13 //--
14 // surface_lock
15 //
16 // Helper class that locks a surface in its c’tor and unlocks
17 // it in its d’tor. Provides accessors to the locked region.
18 //
19 class surface_lock
20 {

4.3. ACCESSING SURFACE PIXEL DATA 117

21 private:
22 // Pitch is specified in bytes, not pixels.
23 const BYTE *scanline(UINT y) const
24 {
25 return static_cast<const BYTE *>(m_data.pBits)
26 + m_data.Pitch*y;
27 }
28 BYTE *scanline(UINT y)
29 {
30 return static_cast<BYTE *>(m_data.pBits) +
31 m_data.Pitch*y;
32 }
33

34 CComPtr<IDirect3DSurface9> m_surface;
35 D3DLOCKED_RECT m_data;
36

37 public:
38 surface_lock(IDirect3DSurface9 *surface,
39 DWORD flags = 0,
40 const RECT *locked_region = NULL)
41 : m_surface(surface)
42 {
43 THR(m_surface->LockRect(&m_data,
44 locked_region, flags));
45 }
46 ~surface_lock()
47 {
48 // destructors should never throw exceptions, so
49 // we don’t use THR() here. Also, we will never
50 // be here unless the LockRect succeeded and
51 // constructed a surface_lock, so UnlockRect
52 // should always succeed. We check anyway by
53 // asserting success on the returned HRESULT.
54 //
55 // ATLASSERT is compiled out on optimized builds,
56 // so use two statements because this:
57 // ATLASSERT(SUCCEEDED(m_surface->Unlock()))
58 // would compile away the Unlock and introduce
59 // a bug on a release build.
60 const HRESULT hr = m_surface->UnlockRect(); hr;
61 ATLASSERT(SUCCEEDED(hr));
62 }
63

64 // 8 bits per pixel: 1 pixel = 1 BYTE
65 const BYTE *scanline8(UINT y) const
66 {

118 CHAPTER 4. 2D APPLICATIONS

67 return scanline(y);
68 }
69 BYTE *scanline8(UINT y)
70 {
71 return scanline(y);
72 }
73

74 // 16 bits per pixel: 1 pixel = 1 WORD
75 const WORD *scanline16(UINT y) const
76 {
77 return reinterpret_cast<const WORD *>(scanline(y));
78 }
79 WORD *scanline16(UINT y)
80 {
81 return reinterpret_cast<WORD *>(scanline(y));
82 }
83

84 // 24 bits per pixel: 1 pixel = 3 BYTEs
85 const BYTE *scanline24(UINT y) const
86 {
87 return scanline(y);
88 }
89 BYTE *scanline24(UINT y)
90 {
91 return scanline(y);
92 }
93

94 // 32 bits per pixel: 1 pixel = 1 DWORD
95 const DWORD *scanline32(UINT y) const
96 {
97 return reinterpret_cast<const DWORD *>(scanline(y));
98 }
99 DWORD *scanline32(UINT y)

100 {
101 return reinterpret_cast<DWORD *>(scanline(y));
102 }
103 }; // surface_lock
104

105 }; // rt
106

107 #endif

4.4. USING GDI ON A SURFACE 119

4.4 Using GDI On A Surface

The GetDC and ReleaseDC methods on the surface interface allow you to use GDI
on a surface whose Format is compatible with GDI. The only surface formats
compatible with GDI are D3DFMT R5G6B5, D3DFMT X1R5G5B5, D3DFMT R8G8B8,
and D3DFMT X8R8G8B8.

All the requirements for locking a surface apply to obtaining a GDI device
context on the surface. Accordingly, GetDC will fail if:

1. The surface is already locked.

2. A device context for this surface has not been released.

3. The surface is contained in a texture and another surface in the texture
is locked.

4. The surface is a render target that cannot be locked.

5. The surface is located in the default memory pool and was not created
with the dynamic usage flag.

6. The surface is in the scratch pool.

The returned GDI device context is meant to be used for a few rendering
operations on the surface through GDI and then immediately released. Once
the device context has been created, a lock is held in the Direct3D runtime. This
lock ensures that the runtime does not interfere with GDI rendering. Because
of this lock, an application should release a GDI device context as soon as
possible. In addition, the methods in the following table must not be called
until the device context has been released. The restriction on Present applies
only to swap chains containing the surface with the outstanding device context.

Interface Method
IDirect3DCubeTexture9 LockRect

IDirect3DDevice9 ColorFill
Present
StretchRect
UpdateSurface
UpdateTexture

IDirect3DSurface9 LockRect
IDirect3DSwapChain9 Present

IDirect3DTexture9 LockRect

4.5 Swap Chains

Every device contains a set of default swap chains. The number of swap chains
created with the device is returned by the GetNumberOfSwapChains method
and the GetSwapChain method returns the swap chain interface for each of the
swap chains in the default set. Only an adapter group device can be created

120 CHAPTER 4. 2D APPLICATIONS

with more than one swap chain. All devices can create additional swap chains
after they have been created.

The characteristics of the default swap chain set are defined in the D3D-
PRESENT PARAMETERS used to create the device. The swap chain consists of one,
two or three back buffer surfaces and a front buffer surface. The front buffer
surface is not directly accessible but still participates in the presentation of the
swap chain. A back buffer surface is displayed on the monitor when Present is
called, either on the device or on IDirect3DSwapChain9.

A device operating in exclusive mode uses its default swap chain for pre-
sentation. A device operating in windowed mode can use more than one swap
chain, each presenting rendering results to its own window. An adapter group
device in exclusive mode can present its rendering to multiple monitors in a
coordinated manner through Present.

The CreateAdditionalSwapChain creates a new swap chain based on the
given D3DPRESENT PARAMETERS and returns an IDirect3DSwapChain9 inter-
face. Note that a swap chain only contains back buffer surfaces and not a
depth/stencil surface; the AutoDepthStencil and AutoDepthStencilFormat
members of the presentation parameters are ignored by CreateAdditional-
SwapChain. See chapter 5 for more on using depth/stencil buffers with a swap
chain.

HRESULT CreateAdditionalSwapChain(D3DPRESENT_PARAMETERS *params,
IDirect3DSwapChain9 **result);

The IDirect3DSwapChain9 interface is summarized in interface 4.2. The
GetBackBuffer, GetDisplayMode, GetFrontBufferData and Present methods
are similar for a swap chain and for a device, except that they apply only to a
particular swap chain and not any swap chain on the device. The GetDevice
method returns the device associated with this swap chain.

Interface 4.2: Summary of the IDirect3DSwapChain9 interface.

IDirect3DSwapChain9

Read-Only Properties
GetBackBuffer One of the back buffers of the swap chain.
GetDevice Device associated with the swap chain.
GetDisplayMode The video mode.
GetFrontBufferData A copy of the front buffer.
GetPresentParameters The presentation parameters.
GetRasterStatus The raster scanout status.

Methods
Present Presents the next back buffer in the swap chain

for display.

4.5. SWAP CHAINS 121

interface IDirect3DSwapChain9 : IUnknown
{
//--
// read-only properties
HRESULT GetBackBuffer(UINT buffer,

D3DBACKBUFFER_TYPE kind,
IDirect3DSurface9 **value);

HRESULT GetDevice(IDirect3DDevice9 **value);
HRESULT GetDisplayMode(D3DDISPLAYMODE *value);
HRESULT GetFrontBufferData(IDirect3DSurface9 *destination);
HRESULT GetPresentParameters(D3DPRESENT_PARAMETERS *value);
HRESULT GetRasterStatus(D3DRASTER_STATUS *value);

//--
// methods
HRESULT Present(CONST RECT *source,

CONST RECT *destination,
HWND override,
CONST RGNDATA *dirty_region,
DWORD flags);

};

GetBackBuffer returns an interface pointer to one of the back buffer sur-
faces. The back buffers are numbered beginning with zero, with buffer zero being
the buffer that will be displayed by the next call to Present, buffer one being
displayed after buffer zero, and so-on. D3DBACKBUFFER TYPE defines the type of
back buffer to be retrieved. DirectX 9.0c does not support stereo rendering and
the kind argument must always be D3DBACKBUFFER TYPE MONO.

typedef enum _D3DBACKBUFFER_TYPE
{

D3DBACKBUFFER_TYPE_MONO = 0,
D3DBACKBUFFER_TYPE_LEFT = 1,
D3DBACKBUFFER_TYPE_RIGHT = 2

} D3DBACKBUFFER_TYPE;

The Present method performs the same function as the Present method
on the device. It has an additional flags parameter that can be zero or more of
the following values:

#define D3DPRESENT_DONOTWAIT 0x00000001L
#define D3DPRESENT_LINEAR_CONTENT 0x00000002L

The D3DPRESENT DONOTWAIT flag instructs the method to return immediately
with a failure result of D3DERR WASSTILLDRAWING if presentation would cause the
application to block before presentation could occur. The D3DPRESENT LINEAR -
CONTENT flag instructs the device that pixels in the source region should be

122 CHAPTER 4. 2D APPLICATIONS

converted from a linear color space to the sRGB color space during presentation.
Support for linear to sRGB color space conversion on a device is indicated by
the D3DCAPS3 LINEAR TO SRGB PRESENTATION bit in the Caps3 member of D3D-
CAPS9.

4.6 Presentation

The contents of back buffers on a swap chain are made visible on the front
buffer by calling Present. The front buffer is the source for pixel data read by
the video scan out circuitry resulting in an image displayed on a monitor. If
the D3DDEVCAPS CANRENDERAFTERFLIP bit of D3DCAPS9::DevCaps is set, then
the device can continue queuing rendering commands after a Present occurs,
allowing for more parallelism between the device and CPU by allowing the next
frame to be queued while the current frame is rendering. However, a device is
not allowed to queue more than two frames of rendering.

#define D3DDEVCAPS_CANRENDERAFTERFLIP 0x00000800L

HRESULT Present(const RECT *source_rect,
const RECT *dest_rect,
HWND override_window,
const RGNDATA *dirty_region);

The behavior of Present for a swap chain is defined by the SwapEffect
member of the D3DPRESENT PARAMETERS used to create the swap chain. Swap-
Effect can take on one of the values of the D3DSWAPEFFECT enumeration.

typedef enum _D3DSWAPEFFECT
{

D3DSWAPEFFECT_DISCARD = 1,
D3DSWAPEFFECT_FLIP = 2,
D3DSWAPEFFECT_COPY = 3

} D3DSWAPEFFECT;

In windowed mode, all swap effect semantics are implemented as copy op-
erations. Swap chains created with an immediate presentation interval do not
synchronize the copy operation with the monitor’s vertical retrace and take ef-
fect immediately. A copy operation performed during the video scan out process
can result in visible artifacts often described as “tearing” of the image. These
artifacts can be avoided by synchronizing the copy operation with the video scan
out process so that the copy does not take place if the video beam is located
within the destination of the copy operation. Synchronizing presentation to the
video refresh rate also ensures that frames will not be presented faster than
the video refresh rate. If the video card does not support video beam location
information, the copy happens immediately. See section 4.8.

4.6. PRESENTATION 123

D3DSWAPEFFECT DISCARD D3DSWAPEFFECT FLIP
Back Back Back Back Back Back

Action Front A B C Front A B C
Create F 0 ? 1 ? 2 ? F 0 ? 1 ? 2 ?
Draw F 0 A 1 ? 2 ? F 0 A 1 ? 2 ?
Present A 2 ? 0 ? 1 ? A 2 F 0 ? 1 ?
Draw A 2 ? 0 B 1 ? A 2 F 0 B 1 ?
Present B 1 ? 2 ? 0 ? B 1 F 2 A 0 ?
Draw B 1 ? 2 ? 0 C B 1 F 2 A 0 C
Present C 0 ? 1 ? 2 ? C 0 F 1 A 2 B
Draw C 0 A 1 ? 2 ? C 0 A 1 A 2 B
Present A 2 ? 0 ? 1 ? A 2 C 0 A 1 B

D3DSWAPEFFECT COPY DDDSwapEffectCopyVSync
Back Back

Action Front A Front A
Create F 0 ? F 0 ?
Draw F 0 A F 0 A
Present A 0 A A 0 A
Draw A 0 B A 0 B
Present B 0 B B 0 B
Draw B 0 C B 0 C
Present C 0 C C 0 C
Draw C 0 A C 0 A
Present A 0 A A 0 A

Figure 4.1: The semantics of D3DSWAPEFFECT on a swap chain for an application
drawing a repeating sequence of images A, B, C. Each entry contains a number
denoting its back buffer index and a symbol denoting the buffer’s contents after
the action has taken place. “?” denotes an undefined surface, “F” denotes the
initial contents of the front buffer.

The semantics of D3DSWAPEFFECT for a swap chain are summarized in fig-
ure 4.1. D3DSWAPEFFECT DISCARD and D3DSWAPEFFECT FLIP are are most easily
depicted with the maximum number of back buffers; the results for fewer back
buffers are similar. D3DSWAPEFFECT COPY requires a single back buffer and al-
ways perform a copy operation. D3DSWAPEFFECT DISCARD imposes the fewest
semantics on Present: all back buffer contents are undefined after Present.
This gives the device the most flexibility in meeting frame presentation seman-
tics, providing for low overhead presentation. D3DSWAPEFFECT FLIP is similar to
the discard swap effect, but here the front buffer participates in the cycling of
back buffers and the contents of the back buffers are preserved across Present.
Meeting this requirement may cause the device to allocate additional buffers
or perform additional copy operations during Present. Flip and discard swap
effects are often used in exclusive mode.

124 CHAPTER 4. 2D APPLICATIONS

Windowed Exclusive
D3DPRESENT INTERVAL DEFAULT D3DPRESENT INTERVAL DEFAULT
D3DPRESENT INTERVAL IMMEDIATE D3DPRESENT INTERVAL IMMEDIATE
D3DPRESENT INTERVAL ONE D3DPRESENT INTERVAL ONE

D3DPRESENT INTERVAL TWO
D3DPRESENT INTERVAL THREE
D3DPRESENT INTERVAL FOUR

Table 4.1: Presentation intervals supported in windowed and exclusive mode.

In exclusive mode, the frequency of presentation is determined by the Full-
Screen PresentationInterval member of the D3DPRESENT PARAMETERS used
to create the swap chain. The presentation interval specifies the maximum rate
of presentation. Presentation can occur as fast as possible with D3DPRESENT -
INTERVAL IMMEDIATE, but this may involve tearing if the presentation occurs
more rapidly than video scan out. The default presentation interval corresponds
to the refresh rate of the adapter’s video mode. Presentation can be synchro-
nized to every 1, 2, 3, or 4 video refresh periods with the remaining enumerants.
The presentation intervals supported by a particular device are given as a union
of all supported presentation intervals in D3DCAPS9::PresentationIntervals.

#define D3DPRESENT_INTERVAL_DEFAULT 0x00000000L
#define D3DPRESENT_INTERVAL_ONE 0x00000001L
#define D3DPRESENT_INTERVAL_TWO 0x00000002L
#define D3DPRESENT_INTERVAL_THREE 0x00000004L
#define D3DPRESENT_INTERVAL_FOUR 0x00000008L
#define D3DPRESENT_INTERVAL_IMMEDIATE 0x80000000L

If the dest window argument is not NULL, it specifies the window handle
whose client region will be the target of the Present. If the dest window argu-
ment is NULL and the hDeviceWindow member of the D3DPRESENT PARAMETERS
that created the swap chain is not NULL, then the hDeviceWindow member spec-
ifies the target of Present. If both dest window and hDeviceWindow are NULL,
then the swap chain is the default swap chain created with a device and the
focus window argument to CreateDevice is used as the target of Present.

The source and dest parameters can only be used with the copy swap ef-
fects and must be NULL for the flip and discard swap effects. A value of NULL
for source or dest specifies the entire source or destination surface, respec-
tively. With a copy swap effect, the source and destination rectangles are clipped
against the source surface and destination window client area, respectively. A
::StretchBlt operation is performed to copy the clipped source region to the
clipped destination region.

The dirty region parameter is only used with the copy swap effect and
should be NULL for all other swap effects. With the copy swap effect, the dirty
region allows the application to specify the minimal region of pixels within the
source region that must be copied. The device will copy anywhere from this

4.7. LOST DEVICES AND RESET 125

minimal region of the source rectangle up to the entire source rectangle and
only uses the dirty region as an optimization hint.

4.7 Lost Devices and Reset

The returned HRESULT from Present is one of the few places where a failure code
is expected as part of normal operation. Present will fail with D3DERR DEVICE-
LOST if the device has been lost. Once the device has been lost, all default pool
resources must be freed before the device can be regained.

TestCooperativeLevel indicates the status of the device by returning D3D-
ERR DEVICELOST when the device is lost and cannot be regained, D3DERR -
DEVICENOTRESET when the device was lost and can now be regained, or S OK if
the application has not lost the device. When the device can be regained, a call
to Reset will restore the device, resources can be restored and the application
can resume rendering.

HRESULT Reset(D3DPRESENT_PARAMETERS *params);
HRESULT TestCooperativeLevel();

Reset can also be used to change the values in the D3DPRESENT PARAMETERS
structure that defines the default swap chain. For instance, to support a toggle
between windowed and exclusive mode, an application toggles the Windowed
member of the presentation parameters, adjusts any other necessary data struc-
tures and calls Reset on the device.

4.8 Video Scan Out

The contents of the front buffer, resulting from Present, are read by the video
scan out circuitry to create a video signal for the monitor. A description of
the current display mode of the front buffer is returned by GetDisplayMode.
The front buffer is not directly accessible, but a copy of the front buffer can
be obtained with GetFrontBufferData. The destination argument must be
an existing surface whose pixel dimensions are equal to the adapter’s current
display mode and whose format is D3DFMT A8R8G8B8. The data is converted
from the adapter’s display mode format to the surface format during the copy.

HRESULT GetDisplayMode(D3DDISPLAYMODE *value);
HRESULT GetFrontBuffer(IDirect3DSurface9 *destination);

If the D3DCAPS READ SCANLINE bit of D3DCAPS9::Caps is set, then the device
can report its video scan out scanline and vertical blank status.

#define D3DCAPS_READ_SCANLINE 0x00020000L

GetRasterStatus returns the video scan out status in a D3DRASTER STATUS
structure. The ScanLine member gives the current position of the raster beam,

126 CHAPTER 4. 2D APPLICATIONS

with zero being the topmost scanline in the frame. The InVBlank member is
TRUE when the video beam is in vertical retrace from the bottom of the screen
to the top.

HRESULT GetRasterStatus(D3DRASTER_STATUS *value);

typedef struct _D3DRASTER_STATUS
{

BOOL InVBlank;
UINT ScanLine;

} D3DRASTER_STATUS;

4.8.1 Cursor

In exclusive mode, Direct3D manages the cursor display. A hardware cursor can
substitute the cursor image during video scan out. If a hardware cursor is not
available, the runtime provides a software cursor through a read-modify-write
operation on the front buffer. In windowed mode, an application can use either
the GDI cursor or the Direct3D cursor. The Direct3D cursor can be shown or
hidden with the ShowCursor method. ShowCursor does not return HRESULT,
but instead returns the previous hide state of the cursor. If the return value is
TRUE, then the cursor was visible before ShowCursor was called.

BOOL ShowCursor(BOOL show);
void SetCursorPosition(UINT x,

UINT y,
DWORD flags);

HRESULT SetCursorProperties(UINT hot_spot_x,
UINT hot_spot_y,
IDirect3DSurface9 *image);

The position of the cursor is set by calling SetCursorPosition. The flags
argument can be zero or D3DCURSOR IMMEDIATE UPDATE to request that the cur-
sor be refreshed at the rate of at least half the video refresh rate, but never
faster than the video refresh rate. Without this flag, the cursor position may
not change until the next call to Present. Using the flag prevents the visual
state of the cursor from lagging too far behind user input when presentation
rates are low. The x and y arguments specify the position of the cursor. In
windowed mode, the position is in virtual desktop coordinates. In exclusive
mode, the position is in screen space limited by the current display mode.

The cursor image can be moved relative to the position specified with Set-
CursorPosition by changing the cursor’s hot spot. The hot spot is a coordinate
relative to the top left of the cursor’s image that corresponds to the point
specified with SetCursorPosition. The hot spot and the cursor image can
be set with SetCursorProperties. The image argument must be a D3DFMT -
A8R8G8B8 surface whose pixel dimensions are smaller than the adapter’s display
mode. The dimensions must also be powers of two, although not necessarily

4.8. VIDEO SCAN OUT 127

identical. If the D3DCURSORCAPS COLOR bit of D3DCAPS9::CursorCaps is set, the
device supports a full color cursor in display modes with 400 or more scanlines.
If the D3DCURSORCAPS LOWRES bit is set, the device supports a full color cursor
in display modes with less than 400 scanlines.

#define D3DCURSORCAPS_COLOR 0x00000001L
#define D3DCURSORCAPS_LOWRES 0x00000002L

4.8.2 Gamma Ramp

In exclusive mode, after the cursor has been applied, a gamma correcting CLUT
can be applied to the pixel data before D/A conversion. In windowed mode,
the application can use GDI for gamma correction as described in section 1.3.
If the D3DCAPS2 FULLSCREENGAMMA bit of D3DCAPS9::Caps2 is set, the device
supports a gamma ramp in exclusive mode.

#define D3DCAPS2_FULLSCREENGAMMA 0x00020000L

The gamma ramp property can be read with GetGammaRamp, returning a
D3DGAMMARAMP structure.

void GetGammaRamp(D3DGAMMARAMP *value);
void SetGammaRamp(DWORD Flags,

const D3DGAMMARAMP *value);

typedef struct _D3DGAMMARAMP
{

WORD red[256];
WORD green[256];
WORD blue[256];

} D3DGAMMARAMP;

The gamma ramp property is set with SetGammaRamp and changes to the
gamma ramp occur immediately without regard for the refresh rate. The flags
argument indicates if the device should apply a calibration to the ramp with
one of the following values.

#define D3DSGR_NO_CALIBRATION 0x00000000L
#define D3DSGR_CALIBRATE 0x00000001L

If the D3DCAPS2 CANCALIBRATEGAMMA bit of D3DCAPS9::Caps2 is set, then
the device can apply a device specific calibration to the gamma ramp before
setting it into the device.

#define D3DCAPS2_CANCALIBRATEGAMMA 0x00100000L

128 CHAPTER 4. 2D APPLICATIONS

The following example shows how to compute the ramp values for a gamma-
correcting ramp given the gamma of the monitor. As described in section 1.3, the
gamma of a monitor can be measured interactively and this value used to create
an appropriate gamma ramp for the device. The rt Gamma sample demonstrates
this technique for measuring the gamma and using it in the device’s gamma
ramp.

void
compute_ramp(D3DGAMMARAMP &ramp, float gamma)
{

for (UINT i = 0; i < 256; i++)
{

const WORD val =
static_cast<int>(65535*pow(i/255.f, 1.f/gamma));

ramp.red[i] = val;
ramp.green[i] = val;
ramp.blue[i] = val;

}
}

4.9 2D Pixel Copies

If we requested lockable back buffers as described in section 2.13, we could lock
a rectangle of the back buffer and write into it directly with software. However,
back buffer surfaces are device surfaces that reside in video memory. Accessing
video memory directly with the CPU is an expensive operation and should be
avoided. An image surface that resides in the system or scratch memory pools
can be directly and quickly accessed by the CPU.

Direct3D considers three scenarios for copying rectangles of pixels: copying
from device memory to device memory, copying from system memory to device
memory and copying from device memory to system memory. The StretchRect
method provides a way of efficiently copying pixels from one device memory sur-
face to another. The UpdateSurface and UpdateTexture methods are tailored
for moving data from system memory to device memory under application con-
trol and the GetRenderTargetData method is used to retrieve pixels from device
memory into system memory.

Typically you would use StretchRect to compose a back buffer from im-
ages in an offscreen plain surface, or to move data between one device resource
and another. UpdateSurface and UpdateTexture are useful when you need to
update an image surface or texture resource in the default pool from data gen-
erated by the CPU. (Resources in the managed pool have their device resources
updated automatically by the runtime when you modify the system memory
shadow copy.) When you need to capture a screen shot or save rendered frames
out for creating a movie file, you’ll need to use GetRenderTargetData.

4.9. 2D PIXEL COPIES 129

4.9.1 Pixel Copies Within Device Memory

StretchRect copies a rectangle of pixels from one device surface to another,
possibly with stretching and filtering. StretchRect can copy an entire surface
or subrectangles of a surface to a destination surface. The source and destination
surface must be different surface objects. The two surfaces usually have the same
D3DFORMAT, but StretchRect can also perform a limited form of color conversion
during the copy. The source and destination surface can have different pixel
dimensions.

HRESULT StretchRect(IDirect3DSurface9 *source,
const RECT *source_rect,
IDirect3DSurface9 *destination,
const RECT *dest_rect,
D3DTEXTUREFILTERTYPE filter);

When the source rect parameter is NULL, the entire source surface is copied
to the destination surface. When source rect is not NULL, it points to a subrect-
angle of the source surface that is copied to the destination surface. Similarly,
the dest rect parameter gives the region into which the source pixels should
be copied. A value of NULL causes the source pixels to be copied over the entire
destination surface.

There are no size constraints between the source rectangle and the desti-
nation rectangle other than the pixel dimensions of the source and destination
surfaces. StretchRect performs no clipping of source and destination rectangles
and will fail if either the source rectangle or the corresponding destination rect-
angle lie outside the source or destination surfaces, respectively. StretchRect
only performs a raw copy of pixel data; it does not perform any read-modify-
write operations or interact with any device render states or texture stage states.
Pixel copy operations involving transparency, rotation, filtering, stretching or
other effects are best accomplished using the rendering pipeline with geometric
primitives and textures.

The filter parameter specifies the filter to be used when resizing the source
region to fit the destination region and can be D3DTEXF NONE, D3DTEXF POINT or
D3DTEXF LINEAR. The point and linear filters may be supported when minimiz-
ing or magnifying the source region. The following bit flags in the StretchRect-
FilterCaps member of the D3DCAPS9 structure describes the filtering support
for StretchRect:

#define D3DPTFILTERCAPS_MAGFLINEAR 0x02000000L
#define D3DPTFILTERCAPS_MAGFPOINT 0x01000000L
#define D3DPTFILTERCAPS_MINFLINEAR 0x00000200L
#define D3DPTFILTERCAPS_MINFPOINT 0x00000100L

TODO: How relevant
is this CAPS bit any-
more?

If the D3DDEVCAPS CANBLTSYSTONONLOCAL bit of D3DCAPS9::DevCaps is set,
then the device can perform StretchRect from system memory to non-local
video memory, such as AGP memory.

#define D3DDEVCAPS_CANBLTSYSTONONLOCAL 0x00020000L

130 CHAPTER 4. 2D APPLICATIONS

Format Conversion With Device Pixel Copies

StretchRect can perform a color conversion operation when copying pixels.
The supported conversions are from high-performance YUV surface formats
to high-performance RGB surface formats. The exact format conversions sup-
ported are discovered by calling the CheckDeviceFormatConversion method
on the IDirect3D9 interface. The method succeeds if the device supports a
Present or StretchRect operation from the source format to the target for-
mat.

HRESULT CheckDeviceFormatConversion(UINT adapter,
D3DDEVTYPE device_kind,
D3DFORMAT source_fmt,
D3DFORMAT target_fmt);

The adapter and device type parameters identify the device to be queried.
The source format parameter must be either a FOURCC format or a valid back
buffer format. The target format must be one of the following formats:

D3DFMT A1R5G5B5 D3DFMT A8B8G8R8 D3DFMT A16B16G16R16
D3DFMT X1R5G5B5 D3DFMT A8R8G8B8 D3DFMT A16B16G16R16F
D3DFMT R5G6B5 D3DFMT X8B8G8R8 D3DFMT A32B32G32R32F
D3DFMT R8G8B8 D3DFMT X8R8G8B8

D3DFMT A2R10G10B10
D3DFMT A2B10G10R10

Device Pixel Copy Limitations

Because StretchRect operates on device memory directly, it is subject to a
number of limitations and restrictions.

Stretch restrictions: 1. can’t stretch when source and destination are the
same surface 2. can’t stretch from a render target surface to an offscreen plain
surface 3. can’t stretch on compressed formats 4. D3DDEVCAPS2 CAN STRETCH-
RECT FROM TEXTURES if source is texture surface

Source/dest combinations:
DX8 Driver no stretching
Source Destination

Texture RT Texture RT Off-screen Plain
Texture No No No No
RT Texture No Yes Yes No
RT No Yes Yes No
Off-screen Plain Yes Yes Yes Yes

DX8 Driver stretching
Source Destination

Texture RT Texture RT Off-screen Plain
Texture No No No No
RT Texture No No No No
RT No Yes Yes No
Off-screen Plain No Yes Yes No

4.9. 2D PIXEL COPIES 131

DX9 Driver no stretching
Source Destination

Texture RT Texture RT Off-screen Plain
Texture No Yes Yes No
RT Texture No Yes Yes No
RT No Yes Yes No
Off-screen Plain No Yes Yes Yes

DX9 Driver stretching
Source Destination

Texture RT Texture RT Off-screen Plain
Texture No Yes Yes No
RT Texture No Yes Yes No
RT No Yes Yes No
Off-screen Plain No Yes Yes No

Depth/stencil restrictions: 1. can’t be textures 2. can’t be discardable 3.
entire surface must be copied 4. source and destination must be the same size
5. no filtering supported 6. cannot be called from within a scene

Downsampling multisample render target: 1. create multisample render
target 2. create a non-multisampled render target of the same size 3. copy MS
RT to non-MS RT

4.9.2 Copies From System Memory To Device Memory

You can use the CPU to directly fill any surface you can lock, but not all surfaces
are lockable. Surfaces in device memory are not often lockable and access is slow
when they are locked. Instead, the preferred approach is to update a system
memory surface with the CPU and then use UpdateSurface or UpdateTexture
to schedule a transfer of bits from system memory to device memory. The
runtime queues the copy command along with the other rendering commands
allowing the application to continue.

HRESULT UpdateSurface(IDirect3DSurface9 *source,
CONST RECT *source_rect,
IDirect3DSurface9 *destination,
CONST POINT *offset);

UpdateSurface transfers a rectangular region of pixels from the source sur-
face to the destination surface. The source rect parameter specifies the extent
of the source surface that will be copied into the destination surface. If this
parameter is NULL, then the entire source surface will be copied. The offset
parameter gives the offset into the destination surface for the pixels that cor-
responds to the upper left corner of the source rectangle. If this parameter
is NULL, then the upper left corner of the destination rectangle will be used.
The function will fail if either the source rectangle or its shifted extent in the
destination surface are outside the dimensions of the surfaces.

The source surface must be in the system memory pool and the destination
surface must be in the default pool. The source and destination surfaces must

132 CHAPTER 4. 2D APPLICATIONS

Destination Formats
Texture RT texture RT Plain

Source Formats Texture Yes Yes Yes Yes
RT texture No No No No
RT No No No No
Plain Yes Yes Yes Yes

Table 4.2: Combinations of source and destination surfaces supported with
UpdateSurface.

have the same format, but they can be different sizes. UpdateSurface cannot be
called while there is an outstanding GDI device context on the surface obtained
from GetDC. UpdateSurface fails when either the source or destination surface
is a surface created with multisampling or a depth stencil surface.

Surfaces that are contained within other resource types, render target sur-
faces and offscreen plain surfaces can be used with UpdateSurface. The sup-
ported combinations are given in table 4.2.

UpdateTexture is similar in function to UpdateSurface, but operates on an
entire texture resource instead of a single surface. The dirty region maintained
by the runtime for the source texture is used to determine the extent of the
copy operation from system memory to device memory. See the discussion of
each of the texture objects in chapter 11 for details on manipulating the dirty
region of a texture.

HRESULT UpdateTexture(IDirect3DBaseTexture9 *source,
IDirect3DBaseTexture9 *destination);

When UpdateTexture is called, the accumulated dirty region since the last
update is computed for level 0, the most detailed level of the texture. For
mipmapped textures, the corresponding region of each mip level are considered
dirty as well. The dirty region for a texture is an optimization hint and the
driver may decide to copy more than just the dirty region.

UpdateTexture has similar restrictions to UpdateSurface. It will fail if the
source texture is not in the system memory pool or if the destination texture
is not in the default pool. The textures must be the same type (2D, cube, or
volume) and format.

Level 0 of both texture must be the same size. The source texture cannot
have fewer levels than the destination texture. If the source texture has more
levels than the destination, then only the matching levels from the source are
copied. If the destination texture has automatically generated mipmap levels,
then level 0 of the source texture is copied to the destination and the desti-
nation mipmap levels are automatically regenerated. If the source texture has
automatically generated mipmap levels, then the destination texture must also
have automatically generated mipmap levels.

4.10. FILLING RECTANGLES 133

4.9.3 Copies From Device Memory To System Memory

There are only two ways to read back rendered images from the device: either
create the device with a lockable back buffer or call GetRenderTargetData.
Locking the back buffer is generally the slower of the two methods. GetRender-
TargetData transfers the entire contents of the source render target surface to
the destination surface.

HRESULT GetRenderTargetData(IDirect3DSurface9 *source,
IDirect3DSurface9 *destination);

The source and destination surfaces must be the same format and size. Get-
RenderTargetData fails if the source is multisampled or is not a render target
surface or a level of a render target texture. GetRenderTargetData may re-
turn D3DERR DRIVERINTERNALERROR or D3DERR DEVICELOST with a proper set
of parameters and its return value should be handled accordingly.

4.10 Filling Rectangles

If your application needs to fill a rectangle on a surface with a solid color, you
can do this directly with the ColorFill method instead of locking and filling
with the CPU. This is one way to easily initialize a surface to a solid color. To
fill a surface with a pattern, you can render a textured quadrilateral and copy
as needed.

HRESULT ColorFill(IDirect3DSurface9 *destination,
CONST RECT *region,
D3DCOLOR color);

If the region parameter is NULL, then the entire surface will be filled with
the given color. The destination parameter must be a plain or render target
surface in the default memory pool. The destination surface can be any format
and the color value will be converted as needed. The only YUV surface formats
supported by ColorFill on DirectX 7 and DirectX 8 level drivers are D3DFMT -
UYVY and D3DFMT YUY2.

4.11 Window Messages

The CreateDevice and Reset methods can generate windows messages during
their execution. An application should not call device methods in response to
messages generated during the execution of these methods. No methods should
be called on the device until the device window has been fully constructed.

To reshape a device’s default swap chain to new dimensions, the device must
be Reset with new D3DPRESENT PARAMETERS. To resize an additional swap chain,
release the existing swap chain and create a new swap chain with the new D3D-
PRESENT PARAMETERS. All references to default pool resources must be released

134 CHAPTER 4. 2D APPLICATIONS

before a device can be reset and need to be recreated after reset. Any other
device state used will need to be explicitly restored to previous values. This
could be an expensive operation to perform in response to dragging the window,
but is reasonable once the final position has been selected. The ::StretchBlt
performed by presentation in windowed mode handles the disparity in size until
the device is Reset. Present’s rectangle parameters can also be used to manage
changes in aspect ratio and window size.

Applications such as real-time simulations and first-person games often use
idle processing to continuous redraw the state of the simulation. The appli-
cation’s message loop is coded to avoid blocking when there are no messages
waiting to be processed. Instead, the application continues to render new frames
while awaiting for a message to arrive. Such applications need to respond prop-
erly to power management events or screen saver activation.

The following table gives a list of common windows messages and suggestions
for handling them in a Direct3D application. This table is not a comprehensive
list of all possible windows messages a Direct3D application will receive. Refer
to the MSDN documentation for a comprehensive listing of applicable messages.
The SDK sample framework follows most of these suggestions, see appendix A.

WM ACTIVATEAPP Sent when the active window changes between appli-
cations. Suspend or resume continuous redraw.

WM CLOSE Sent to signal application termination. Release all ob-
jects on the device, release the device and exit. When
closing a window used with a swap chain, release the
swap chain.

WM COMPACTING Sent to indicate a low memory condition in the system.
Release all resources not currently in use.

WM CONTEXTMENU Sent when the user clicks the context button in the
window. In windowed mode, handle popup menus.

WM CREATE Sent to a window while it is being created. The WM -
CREATE message is sent to a window before the corre-
sponding ::CreateWindow call has completed. You
should not construct a device in response to WM -
CREATE, but at some point after the corresponding call
to ::CreateWindow returns.

WM DISPLAYCHANGE Sent when the display resolution of the desktop has
changed. The device may have been lost as a result of
the change. Reshape the swap chain.

WM ENTERMENULOOP Sent when a modal menu loop is entered. Pause con-
tinuous redraw when using menus.

WM ENTERSIZEMOVE Sent when starting a window size or move operation.
Suspend generation of new frames while the user be-
gins a resize or move operation on the window’s frame.

WM ERASEBKGND Sent when the window’s background needs erasing.
Return TRUE to indicate that the background has been
erased.

4.12. RT 2DAPP SAMPLE APPLICATION 135

WM EXITMENULOOP Sent when the modal menu loop is exited. Resume
continuous redraw when the menu is no longer in use.

WM EXITSIZEMOVE Sent after a window size or move operation has com-
pleted. Reshape the swap chain.

WM GETMINMAXINFO Sent when the size or position of a window is about
to change. An application can enforce aspect ratio or
other size constraints.

WM MOUSEMOVE Sent when the mouse moves. If using Direct3D’s
cursor, make the cursor follow the mouse with Set-
CursorPosition.

WM NCHITTEST Sent when the mous moves or a mouse button is
pressed or released. Prevent menu selection in exclu-
sive mode.

WM PAINT Sent to repaint damaged portions of a window. Re-
spond to paint messages by rendering the scene, if
necessary, and presenting the back buffer.

WM POWERBROADCAST Sent when a power management event is generated.
Suspend or resume the application. An application
should always allow the system to enter sleep mode
to conserve power by properly implementing suspend
and resume logic in its message loop.

WM SETCURSOR Sent to set the cursor on a window. Turn off Win32
cursor and use Direct3D cursor in exclusive mode.

WM SHOWWINDOW Sent when the window is about to be hidden or shown.
Suspend or resume continuous redraw.

WM SIZE Sent after the size of a window has changed. Check for
minimization or hiding of the application’s window.
Reshape the swap chain.

WM SIZING Sent while a window is being resized. If the applica-
tion is dynamically refreshing during a resize opera-
tion, render into the back buffer and present normally.
Enforce aspect ratio or other size constraints by mod-
ifying the allowed window size. Reshape the swap
chain.

WM SYSCOMMAND Sent during a system command. When the screen
saver is activated or the display is powering down, this
indicates an idle situation and the application should
suspend continuous redraw. Disable moving or resiz-
ing the window in exclusive mode.

4.12 rt 2DApp Sample Application

The sample application listed here creates a hue ramp in a D3DFMT A8R8G8B8
image surface and uses StretchRect to draw each frame. A list of subrectangles
is constructed to replicate a single tile surface across the entire back buffer with

136 CHAPTER 4. 2D APPLICATIONS

one call to StretchRect.
The DirectX AppWizard was used to create the sample. Only the sample-

specific source file rt 2DApp.cpp is listed here. See appendix A for a description
of the DirectX AppWizard and the SDK sample framework.

Listing 4.2: rt 2DApp.cpp: A simple 2D application using StretchRect.

1 //
2 // rt_2DApp.cpp
3 //
4 // A simple demonstration of 2D application capabilities in
5 // Direct3D
6

7 // C++ includes
8 #include <algorithm>
9 #include <sstream>

10 #include <vector>
11

12 // Win32 includes
13 #define STRICT
14 #define WIN32_LEAN_AND_MEAN
15 #include <windows.h>
16 #include <basetsd.h>
17 #include <commdlg.h>
18 #include <commctrl.h>
19

20 // ATL includes
21 #include <atlbase.h>
22

23 // Direct3D includes
24 #include <d3dx9.h>
25 #include <dxerr9.h>
26

27 // SDK framework includes
28 #include "DXUtil.h"
29 #include "D3DEnumeration.h"
30 #include "D3DSettings.h"
31 #include "D3DApp.h"
32 #include "D3DFont.h"
33 #include "D3DUtil.h"
34

35 // rt includes
36 #include "rt/app.h"
37 #include "rt/hr.h"
38 #include "rt/hsv.h"
39 #include "rt/mat.h"

4.12. RT 2DAPP SAMPLE APPLICATION 137

40 #include "rt/media.h"
41 #include "rt/misc.h"
42 #include "rt/rtgdi.h"
43 // rt smart surface lock; comment this out for manual locking
44 #include "rt/surface.h"
45 #include "rt/tstring.h"
46

47 // sample includes
48 #include "resource.h"
49 #include "rt_2DApp.h"
50

51 //
52 // Global access to the app (needed for the global WndProc())
53 //
54 CMyD3DApplication* g_pApp = NULL;
55 HINSTANCE g_hInst = NULL;
56

57 //
58 // WinMain()
59 //
60 // Entry point to the program. Initializes everything, and
61 // goes into a message-processing loop. Idle time is used to
62 // render the scene.
63 //
64 INT WINAPI WinMain(HINSTANCE hInst, HINSTANCE, LPSTR, INT)
65 {
66 CMyD3DApplication d3dApp;
67

68 g_pApp = &d3dApp;
69 g_hInst = hInst;
70

71 InitCommonControls();
72 if (FAILED(d3dApp.Create(hInst)))
73 return 0;
74

75 return d3dApp.Run();
76 }
77

78 //
79 // CMyD3DApplication()
80 //
81 // Application constructor. Paired with ~CMyD3DApplication()
82 // Member variables should be initialized to a known state
83 // here. The application window has not yet been created
84 // and no Direct3D device has been created, so any
85 // initialization that depends on a window or Direct3D should

138 CHAPTER 4. 2D APPLICATIONS

86 // be deferred to a later stage.
87 //
88 CMyD3DApplication::CMyD3DApplication() :
89 CD3DApplication(),
90 m_device_tile(),
91 m_tile_width(256),
92 m_tile_height(256),
93 m_system_tile(),
94 m_stretch(false),
95 m_capture_front(false),
96 m_capture_back(false),
97 m_magnify(false),
98 m_filter(D3DTEXF_NONE),
99 m_capture_file(_T("")),

100 m_background_file(_T("")),
101 m_background(BACKGROUND_HUE_RAMP),
102 m_fill_colors(false),
103 m_statistics(true),
104 m_dialogs(false),
105 m_draw_sprites(true),
106 m_sprite(),
107 m_sprite_state(),
108 m_sprite_file(rt::find_media(_T("banana.bmp"))),
109 m_sprite_texture(),
110 m_sprite_xform(1, 0, 0, 0,
111 0, 1, 0, 0,
112 0, 0, 1, 0,
113 0, 0, 0, 1),
114 m_bLoadingApp(TRUE),
115 m_font(_T("Arial"), 12, D3DFONT_BOLD)
116 {
117 m_dwCreationWidth = 500;
118 m_dwCreationHeight = 375;
119 m_strWindowTitle = TEXT("rt_2DApp");
120 m_d3dEnumeration.AppUsesDepthBuffer = TRUE;
121 m_bStartFullscreen = false;
122 m_bShowCursorWhenFullscreen = false;
123

124 // Read settings from registry
125 ReadSettings();
126 }
127

128 //
129 // ~CMyD3DApplication()
130 //
131 // Application destructor. Paired with CMyD3DApplication()

4.12. RT 2DAPP SAMPLE APPLICATION 139

132 //
133 CMyD3DApplication::~CMyD3DApplication()
134 {
135 }
136

137 //
138 // OneTimeSceneInit()
139 //
140 // Paired with FinalCleanup(). The window has been created
141 // and the IDirect3D9 interface has been created, but the
142 // device has not been created yet. Here you can perform
143 // application-related initialization and cleanup that does
144 // not depend on a device.
145 //
146 HRESULT CMyD3DApplication::OneTimeSceneInit()
147 {
148 // Drawing loading status message
149 ::SendMessage(m_hWnd, WM_PAINT, 0, 0);
150 m_bLoadingApp = FALSE;
151 return S_OK;
152 }
153

154 //
155 // FinalCleanup()
156 //
157 // Paired with OneTimeSceneInit(). Called before the app
158 // exits, this function gives the app the chance to cleanup
159 // after itself.
160 //
161 HRESULT CMyD3DApplication::FinalCleanup()
162 {
163 // Write the settings to the registry
164 WriteSettings();
165 return S_OK;
166 }
167

168 //
169 // ReadSettings()
170 //
171 // Read the app settings from the registry
172 //
173 void CMyD3DApplication::ReadSettings()
174 {
175 HKEY hkey;
176 if (ERROR_SUCCESS == ::RegCreateKeyEx(HKEY_CURRENT_USER,
177 DXAPP_KEY, 0, NULL, REG_OPTION_NON_VOLATILE, KEY_READ,

140 CHAPTER 4. 2D APPLICATIONS

178 NULL, &hkey, NULL))
179 {
180 // Read the stored window width/height.
181 ::DXUtil_ReadIntRegKey(hkey, TEXT("Width"),
182 &m_dwCreationWidth, m_dwCreationWidth);
183 ::DXUtil_ReadIntRegKey(hkey, TEXT("Height"),
184 &m_dwCreationHeight, m_dwCreationHeight);
185 ::RegCloseKey(hkey);
186 }
187 }
188

189 //
190 // WriteSettings()
191 //
192 // Write the app settings to the registry
193 //
194 VOID CMyD3DApplication::WriteSettings()
195 {
196 HKEY hkey;
197

198 if (ERROR_SUCCESS == ::RegCreateKeyEx(HKEY_CURRENT_USER,
199 DXAPP_KEY, 0, NULL, REG_OPTION_NON_VOLATILE, KEY_WRITE,
200 NULL, &hkey, NULL))
201 {
202 // Write the window width/height.
203 ::DXUtil_WriteIntRegKey(hkey, TEXT("Width"),
204 m_rcWindowClient.right);
205 ::DXUtil_WriteIntRegKey(hkey, TEXT("Height"),
206 m_rcWindowClient.bottom);
207 ::RegCloseKey(hkey);
208 }
209 }
210

211 //
212 // InitDeviceObjects()
213 //
214 // Paired with DeleteDeviceObjects(). The device has been
215 // created. Resources that are not lost on Reset() can be
216 // created here -- resources in D3DPOOL_MANAGED,
217 // D3DPOOL_SCRATCH, or D3DPOOL_SYSTEMMEM. Vertex shaders
218 // and pixel shaders can also be created here as they are
219 // not lost on Reset().
220 //
221 HRESULT CMyD3DApplication::InitDeviceObjects()
222 {
223 init_background();

4.12. RT 2DAPP SAMPLE APPLICATION 141

224 THR(::D3DXCreateSprite(m_pd3dDevice, &m_sprite));
225 init_sprite();
226 m_font.InitDeviceObjects(m_pd3dDevice);
227 return S_OK;
228 }
229

230 //
231 // DeleteDeviceObjects()
232 //
233 // Paired with InitDeviceObjects(). Called when the app
234 // is exiting, or the device is being changed, this function
235 // deletes any device dependent objects.
236 //
237 HRESULT CMyD3DApplication::DeleteDeviceObjects()
238 {
239 m_system_tile = 0;
240 m_sprite = 0;
241 m_sprite_texture = 0;
242 m_font.DeleteDeviceObjects();
243 return S_OK;
244 }
245

246 //
247 // RestoreDeviceObjects()
248 //
249 // Paired with InvalidateDeviceObjects(). The device exists,
250 // but may have just been Reset(). Resources in D3DPOOL_DEFAULT
251 // and any other device state that persists during rendering
252 // should be set here. Render states, matrices, textures, etc.,
253 // that don’t change during rendering can be set once here to
254 // avoid redundant state setting during Render() or FrameMove().
255 //
256 HRESULT CMyD3DApplication::RestoreDeviceObjects()
257 {
258 // is the background tile magnified?
259 m_magnify = (m_tile_width < m_d3dsdBackBuffer.Width) ||
260 (m_tile_height < m_d3dsdBackBuffer.Height);
261 // set stretch rect filter menu item state
262 HMENU menu = ::GetMenu(m_hWnd);
263 rt::check_menu(menu, ID_STRETCHFILTER_NONE, false);
264 rt::check_menu(menu, ID_STRETCHFILTER_POINT, false);
265 rt::check_menu(menu, ID_STRETCHFILTER_LINEAR, false);
266 rt::enable_menu(menu, ID_STRETCHFILTER_POINT, true);
267 rt::enable_menu(menu, ID_STRETCHFILTER_LINEAR, true);
268 if (m_magnify)
269 {

142 CHAPTER 4. 2D APPLICATIONS

270 if (!(m_d3dCaps.StretchRectFilterCaps & D3DPTFILTERCAPS_MAGFPOINT))
271 {
272 if (D3DTEXF_POINT == m_filter)
273 {
274 m_filter = D3DTEXF_NONE;
275 }
276 rt::enable_menu(menu, ID_STRETCHFILTER_POINT, false);
277 }
278 if (!(m_d3dCaps.StretchRectFilterCaps & D3DPTFILTERCAPS_MAGFLINEAR))
279 {
280 if (D3DTEXF_LINEAR == m_filter)
281 {
282 m_filter = D3DTEXF_NONE;
283 }
284 rt::enable_menu(menu, ID_STRETCHFILTER_LINEAR, false);
285 }
286 }
287 else
288 {
289 if (!(m_d3dCaps.StretchRectFilterCaps & D3DPTFILTERCAPS_MINFPOINT))
290 {
291 if (D3DTEXF_POINT == m_filter)
292 {
293 m_filter = D3DTEXF_NONE;
294 }
295 rt::enable_menu(menu, ID_STRETCHFILTER_POINT, false);
296 }
297 if (!(m_d3dCaps.StretchRectFilterCaps & D3DPTFILTERCAPS_MINFLINEAR))
298 {
299 if (D3DTEXF_LINEAR == m_filter)
300 {
301 m_filter = D3DTEXF_NONE;
302 }
303 rt::enable_menu(menu, ID_STRETCHFILTER_LINEAR, false);
304 }
305 }
306 rt::check_menu(menu, ID_STRETCHFILTER_NONE + m_filter, true);
307

308 // can we display GDI dialogs?
309 m_dialogs = ((D3DFMT_X8R8G8B8 == m_d3dpp.BackBufferFormat) ||
310 (D3DFMT_R5G6B5 == m_d3dpp.BackBufferFormat) ||
311 (D3DFMT_X1R5G5B5 == m_d3dpp.BackBufferFormat)) &&
312 (D3DMULTISAMPLE_NONE == m_d3dsdBackBuffer.MultiSampleType) &&
313 (D3DPRESENTFLAG_LOCKABLE_BACKBUFFER & m_d3dpp.Flags) &&
314 (D3DSWAPEFFECT_DISCARD == m_d3dpp.SwapEffect) &&
315 !(D3DCREATE_ADAPTERGROUP_DEVICE & m_dwCreateFlags);

4.12. RT 2DAPP SAMPLE APPLICATION 143

316 if (m_dialogs)
317 {
318 THR(m_pd3dDevice->SetDialogBoxMode(true));
319 }
320

321 m_font.RestoreDeviceObjects();
322 restore_background();
323 restore_sprite();
324

325 rt::enable_menu(menu, ID_OPTIONS_DRAWSPRITES, m_sprite_texture != 0);
326

327 return S_OK;
328 }
329

330 void
331 CMyD3DApplication::restore_sprite()
332 {
333 THR(m_sprite->OnResetDevice());
334 const UINT NUM_SPRITES = 10;
335 const float SPRITE_SIZE = 64.f;
336 m_sprite_state.resize(NUM_SPRITES);
337 const float scale = 2.f*D3DX_PI/(NUM_SPRITES-1);
338 for (UINT s = 0; s < NUM_SPRITES; s++)
339 {
340 const float cx = m_d3dsdBackBuffer.Width/2.f;
341 const float cy = m_d3dsdBackBuffer.Height/2.f;
342 const float x = cx*(1.f + 0.5f*cosf(s*scale)) - SPRITE_SIZE*0.5f;
343 const float y = cy*(1.f + 0.5f*sinf(s*scale)) - SPRITE_SIZE*0.5f;
344 m_sprite_state[s].m_position = D3DXVECTOR3(x, y, 0.0f);
345 m_sprite_state[s].m_color =
346 D3DCOLOR_ARGB(32 + (255-32)*s/(NUM_SPRITES-1), 255, 255, 255);
347 }
348 }
349

350 //
351 // InvalidateDeviceObjects()
352 //
353 // Invalidates device objects. Paired with
354 // RestoreDeviceObjects()
355 //
356 HRESULT CMyD3DApplication::InvalidateDeviceObjects()
357 {
358 if (BACKGROUND_GDI_ELLIPSE == m_background)
359 {
360 m_system_tile = 0;
361 }

144 CHAPTER 4. 2D APPLICATIONS

362 m_device_tile = 0;
363 m_font.InvalidateDeviceObjects();
364

365 // might not be able to call this after Reset
366 if (m_dialogs)
367 {
368 THR(m_pd3dDevice->SetDialogBoxMode(false));
369 }
370

371 m_sprite_state.clear();
372 THR(m_sprite->OnLostDevice());
373

374 return S_OK;
375 }
376

377 //
378 // Render()
379 //
380 // Called once per frame, the call is the entry point for 3d
381 // rendering. This function sets up render states, clears the
382 // viewport, and renders the scene.
383 //
384 HRESULT CMyD3DApplication::Render()
385 {
386 // copy the tile all over the back buffer
387 const UINT width = m_d3dsdBackBuffer.Width;
388 const UINT height = m_d3dsdBackBuffer.Height;
389 CComPtr<IDirect3DSurface9> back;
390 THR(m_pd3dDevice->GetBackBuffer(0, 0,
391 D3DBACKBUFFER_TYPE_MONO, &back));
392 if (m_stretch)
393 {
394 THR(m_pd3dDevice->StretchRect(m_device_tile, NULL,
395 back, NULL, m_filter));
396 }
397 else
398 {
399 for (UINT y = 0; y < height; y += m_tile_height)
400 {
401 for (UINT x = 0; x < width; x += m_tile_width)
402 {
403 const RECT src =
404 {
405 0, 0,
406 x + m_tile_width <= width ?
407 m_tile_width : width-x,

4.12. RT 2DAPP SAMPLE APPLICATION 145

408 y + m_tile_height <= height ?
409 m_tile_height : height-y
410 };
411 const RECT dest =
412 {
413 x, y,
414 x + src.right, y + src.bottom
415 };
416 THR(m_pd3dDevice->StretchRect(m_device_tile,
417 &src, back, &dest, m_filter));
418 }
419 }
420 }
421

422 // draw rainbow circle of squares
423 if (m_fill_colors)
424 {
425 const UINT cx = m_d3dsdBackBuffer.Width/2;
426 const UINT cy = m_d3dsdBackBuffer.Height/2;
427 const UINT radius = (cx < cy ? cx : cy) - 8;
428 const UINT num_fills = 64;
429 const float scale = 2.f*D3DX_PI/float(num_fills-1);
430 for (UINT i = 0; i < num_fills; i++)
431 {
432 const UINT x = cx + UINT(radius*cosf(i*scale));
433 const UINT y = cy + UINT(radius*sinf(i*scale));
434 const RECT dest = { x-4, y-4, x+4, y+4 };
435 const float hue = 0.5f + 0.5f*cosf(i*3.f*scale);
436 THR(m_pd3dDevice->ColorFill(back, &dest,
437 rt::hsv(hue, 0.5f, 1.f)));
438 }
439 }
440

441 THR(m_pd3dDevice->BeginScene());
442 if (m_draw_sprites)
443 {
444 THR(m_sprite->Begin(D3DXSPRITE_ALPHABLEND));
445 THR(m_sprite->SetTransform(rt::anon(rt::mat_scale(0.75f))));
446 for (size_t s = 0; s < m_sprite_state.size(); s++)
447 {
448 D3DXVECTOR3 pos = m_sprite_state[s].m_position;
449 THR(m_sprite->Draw(m_sprite_texture, NULL, NULL,
450 &m_sprite_state[s].m_position, m_sprite_state[s].m_color));
451 }
452 THR(m_sprite->End());
453 }

146 CHAPTER 4. 2D APPLICATIONS

454 // Render stats and help text
455 if (m_statistics)
456 {
457 RenderText();
458 }
459 THR(m_pd3dDevice->EndScene());
460

461 // capture front buffer to a file
462 if (m_capture_front)
463 {
464 CComPtr<IDirect3DSurface9> front;
465 THR(m_pd3dDevice->CreateOffscreenPlainSurface(
466 m_d3dSettings.Windowed_DisplayMode.Width,
467 m_d3dSettings.Windowed_DisplayMode.Height,
468 D3DFMT_A8R8G8B8, D3DPOOL_SYSTEMMEM, &front,
469 NULL));
470 THR(m_pd3dDevice->GetFrontBufferData(0, front));
471 THR(::D3DXSaveSurfaceToFile(m_capture_file.c_str(),
472 D3DXIFF_BMP, front, NULL, NULL));
473 m_capture_front = false;
474 }
475 // capture back buffer to a file
476 else if (m_capture_back)
477 {
478 THR(::D3DXSaveSurfaceToFile(m_capture_file.c_str(),
479 D3DXIFF_BMP, back, NULL, NULL));
480 m_capture_back = false;
481 }
482

483 return S_OK;
484 }
485

486 //
487 // RenderText()
488 //
489 // Renders stats and help text to the scene.
490 //
491 HRESULT CMyD3DApplication::RenderText()
492 {
493 const D3DCOLOR yellow = D3DCOLOR_ARGB(255,255,255,0);
494 m_font.DrawText(2, 20.0f, yellow, m_strDeviceStats);
495 m_font.DrawText(2, 0.0f, yellow, m_strFrameStats);
496 m_font.DrawText(2, m_d3dsdBackBuffer.Height - 20.0f,
497 yellow, TEXT("Press ’F2’ to configure display"));
498 return S_OK;
499 }

4.12. RT 2DAPP SAMPLE APPLICATION 147

500

501 //
502 // MsgProc()
503 //
504 // Overrrides the main WndProc, so the sample can do custom
505 // message handling (e.g. processing mouse, keyboard, or
506 // menu commands).
507 //
508 LRESULT
509 CMyD3DApplication::MsgProc(HWND hWnd, UINT msg,
510 WPARAM wParam, LPARAM lParam)
511 {
512 bool handled = false;
513 LRESULT result = 0;
514

515 switch (msg)
516 {
517 case WM_PAINT:
518 if (m_bLoadingApp)
519 {
520 // tell the user that the app is loading
521 HDC hDC = TWS(::GetDC(hWnd));
522 RECT rct;
523 TWS(::GetClientRect(hWnd, &rct));
524 ::DrawText(hDC, TEXT("Loading... Please wait"),
525 -1, &rct, DT_CENTER|DT_VCENTER|DT_SINGLELINE);
526 TWS(::ReleaseDC(hWnd, hDC));
527 }
528 break;
529

530 case WM_COMMAND:
531 result = on_command(hWnd, wParam, lParam, handled);
532 break;
533 }
534

535 return handled ? result :
536 CD3DApplication::MsgProc(hWnd, msg, wParam, lParam);
537 }
538

539 //
540 // on_command
541 //
542 // WM_COMMAND message handler
543 //
544 LRESULT
545 CMyD3DApplication::on_command(HWND window, WPARAM wp,

148 CHAPTER 4. 2D APPLICATIONS

546 LPARAM, bool &handled)
547 {
548 const UINT control = LOWORD(wp);
549 HMENU menu = ::GetMenu(window);
550 handled = true;
551 switch (control)
552 {
553 case ID_OPTIONS_DRAWSPRITES:
554 rt::toggle_menu(menu, control, m_draw_sprites);
555 break;
556

557 case ID_OPTIONS_SPRITEIMAGE:
558 if (get_sprite_filename())
559 {
560 m_sprite_texture = 0;
561 init_sprite();
562 rt::enable_menu(menu, ID_OPTIONS_DRAWSPRITES, m_sprite_texture != 0);
563 }
564 break;
565

566 case ID_BACKGROUND_HUERAMP:
567 rt::check_menu(menu, ID_BACKGROUND_HUERAMP + m_background, false);
568 m_background = BACKGROUND_HUE_RAMP;
569 rt::check_menu(menu, ID_BACKGROUND_HUERAMP + m_background, true);
570 recreate_background();
571 break;
572

573 case ID_BACKGROUND_IMAGE:
574 if (get_background_filename())
575 {
576 rt::check_menu(menu, ID_BACKGROUND_HUERAMP + m_background, false);
577 m_background = BACKGROUND_IMAGE;
578 rt::check_menu(menu, ID_BACKGROUND_HUERAMP + m_background, true);
579 recreate_background();
580 }
581 break;
582

583 case ID_BACKGROUND_GDIELLIPSE:
584 rt::check_menu(menu, ID_BACKGROUND_HUERAMP + m_background, false);
585 m_background = BACKGROUND_GDI_ELLIPSE;
586 rt::check_menu(menu, ID_BACKGROUND_HUERAMP + m_background, true);
587 recreate_background();
588 break;
589

590 case ID_FILE_SAVEBACK:
591 m_capture_back = get_save_filename();

4.12. RT 2DAPP SAMPLE APPLICATION 149

592 break;
593

594 case ID_FILE_SAVEFRONT:
595 m_capture_front = get_save_filename();
596 break;
597

598 case ID_OPTIONS_STATISTICS:
599 rt::toggle_menu(menu, control, m_statistics);
600 break;
601

602 case ID_OPTIONS_STRETCHBACKGROUND:
603 rt::toggle_menu(menu, control, m_stretch);
604 break;
605

606 case ID_OPTIONS_FILLCOLORS:
607 rt::toggle_menu(menu, control, m_fill_colors);
608 break;
609

610 case ID_STRETCHFILTER_NONE:
611 case ID_STRETCHFILTER_POINT:
612 case ID_STRETCHFILTER_LINEAR:
613 rt::check_menu(menu,
614 ID_STRETCHFILTER_NONE + m_filter, false);
615 m_filter = D3DTEXTUREFILTERTYPE(control -
616 ID_STRETCHFILTER_NONE);
617 rt::check_menu(menu,
618 ID_STRETCHFILTER_NONE + m_filter, true);
619 break;
620

621 default:
622 handled = false;
623 }
624

625 return 0;
626 }
627

628 //
629 // get_save_filename
630 //
631 // Gets the filename for saving the front or back buffer.
632 //
633 bool
634 CMyD3DApplication::get_save_filename()
635 {
636 rt::pauser pause(*this);
637 TCHAR buffer[MAX_PATH] = { 0 };

150 CHAPTER 4. 2D APPLICATIONS

638 OPENFILENAME ofn =
639 {
640 sizeof(ofn), NULL, NULL,
641 _T("Bitmap files (*.bmp)\0")
642 _T("*.bmp\0")
643 _T("All files (*.*)\0")
644 _T("*.*\0")
645 _T("\0"), NULL, 0, 1, buffer, NUM_OF(buffer),
646 NULL, 0, NULL, NULL,
647 OFN_PATHMUSTEXIST | OFN_CREATEPROMPT
648 };
649 if (!m_dialogs && !m_bWindowed)
650 {
651 THR(ToggleFullscreen());
652 }
653 if (::GetSaveFileName(&ofn))
654 {
655 m_capture_file = buffer;
656 return true;
657 }
658 return false;
659 }
660

661 //
662 // get_background_filename
663 //
664 // Open an image file for reading as the background image.
665 //
666 bool
667 CMyD3DApplication::get_background_filename()
668 {
669 rt::pauser pause(*this);
670 TCHAR buffer[MAX_PATH] = { 0 };
671 OPENFILENAME ofn =
672 {
673 sizeof(ofn), m_hWnd, NULL,
674 _T("All image files\0")
675 _T("*.bmp;*.dib;*.jpg;*.jpeg;*.png;")
676 _T("*.dds;*.tga;*.pbm;*.pgm;*.ppm;*.pnm\0")
677 _T("Bitmap images (*.bmp,*.dib)\0")
678 _T("*.bmp;*.dib\0")
679 _T("JPEG images (*.jpg,*.jpeg)\0")
680 _T("*.jpg;*.jpeg\0")
681 _T("PNG images (*.png)\0")
682 _T("*.png\0")
683 _T("DDS images (*.dds)\0")

4.12. RT 2DAPP SAMPLE APPLICATION 151

684 _T("*.dds\0")
685 _T("Targa images (*.tga)\0")
686 _T("*.tga\0")
687 _T("PNM images (*.p[bgpn]m)\0")
688 _T("*.pbm;*.pgm;*.ppm;*.pnm\0")
689 _T("All files (*.*)\0")
690 _T("*.*\0")
691 _T("\0"), NULL, 0, 1, buffer, NUM_OF(buffer),
692 NULL, 0, NULL, NULL,
693 OFN_PATHMUSTEXIST | OFN_FILEMUSTEXIST
694 };
695 if (!m_dialogs && !m_bWindowed)
696 {
697 THR(ForceWindowed());
698 }
699 if (::GetOpenFileName(&ofn))
700 {
701 m_background_file = buffer;
702 return true;
703 }
704 return false;
705 }
706

707 //
708 // hue_ramp
709 //
710 // Construct a hue ramp on a scanline.
711 //
712 void
713 hue_ramp(D3DCOLOR *scanline, UINT width)
714 {
715 for (UINT i = 0; i < width; i++)
716 {
717 scanline[i] = rt::hsv(i/float(width-1), 1.0f, 0.9f);
718 }
719 }
720

721 //
722 // hue_background
723 //
724 // Create the initial background image: a hue ramp.
725 //
726 void
727 CMyD3DApplication::hue_background()
728 {
729 m_tile_width = m_tile_height = 256;

152 CHAPTER 4. 2D APPLICATIONS

730

731 // create an image surface
732 m_system_format = D3DFMT_A8R8G8B8;
733 THR(m_pd3dDevice->CreateOffscreenPlainSurface(
734 m_tile_width, m_tile_height, m_system_format,
735 D3DPOOL_SYSTEMMEM, &m_system_tile, NULL));
736

737 // lock the surface to initialize it
738 #if defined(RT_SURFACE_H)
739 {
740 rt::surface_lock lock(m_system_tile);
741

742 // create one scanline of the surface
743 D3DCOLOR *scanline = lock.scanline32(0);
744 hue_ramp(scanline, m_tile_width);
745

746 // initialize it using a smart lock
747 for (UINT i = 1; i < m_tile_height; i++)
748 {
749 ::CopyMemory(lock.scanline32(i), scanline,
750 m_tile_width*sizeof(D3DCOLOR));
751 }
752 }
753 #else
754 {
755 // initialize it using manual locking
756 D3DLOCKED_RECT lr;
757 THR(m_system_tile->LockRect(&lr, NULL, 0));
758

759 D3DCOLOR *scanline =
760 static_cast<D3DCOLOR *>(lr.pBits);
761 hue_ramp(scanline, m_tile_width);
762

763 BYTE *dest =
764 static_cast<BYTE *>(lr.pBits) + lr.Pitch;
765 for (UINT i = 1; i < m_tile_height; i++)
766 {
767 // replicate scanline across entire surface
768 ::CopyMemory(dest, scanline,
769 m_tile_width*sizeof(D3DCOLOR));
770 dest += lr.Pitch;
771 }
772 THR(m_system_tile->UnlockRect());
773 }
774 #endif
775 }

4.12. RT 2DAPP SAMPLE APPLICATION 153

776

777 //
778 // init_background
779 //
780 // Create the system memory version of the background image.
781 //
782 void
783 CMyD3DApplication::init_background()
784 {
785 switch (m_background)
786 {
787 case BACKGROUND_HUE_RAMP:
788 hue_background();
789 break;
790

791 case BACKGROUND_IMAGE:
792 {
793 D3DXIMAGE_INFO info;
794 THR(::D3DXGetImageInfoFromFile(
795 m_background_file.c_str(), &info));
796 m_tile_width = info.Width;
797 m_tile_height = info.Height;
798 m_system_format = D3DFMT_A8R8G8B8;
799 THR(m_pd3dDevice->CreateOffscreenPlainSurface(
800 m_tile_width, m_tile_height, m_system_format,
801 D3DPOOL_SYSTEMMEM, &m_system_tile, NULL));
802 THR(::D3DXLoadSurfaceFromFile(m_system_tile, NULL,
803 NULL, m_background_file.c_str(), NULL,
804 D3DX_FILTER_NONE, 0, NULL));
805 }
806 break;
807

808 case BACKGROUND_GDI_ELLIPSE:
809 m_tile_width = m_d3dsdBackBuffer.Width/3;
810 m_tile_height = m_d3dsdBackBuffer.Height/3;
811 m_system_format = D3DFMT_X8R8G8B8;
812 break;
813

814 default:
815 ATLASSERT(false);
816 }
817 }
818

819 //
820 // restore_background
821 //

154 CHAPTER 4. 2D APPLICATIONS

822 // Restore the background image from system memory to
823 // device memory
824 //
825 void
826 CMyD3DApplication::restore_background()
827 {
828 if (BACKGROUND_GDI_ELLIPSE == m_background)
829 {
830 m_tile_width = m_d3dsdBackBuffer.Width/3;
831 m_tile_height = m_d3dsdBackBuffer.Height/3;
832 THR(m_pd3dDevice->CreateOffscreenPlainSurface(
833 m_tile_width, m_tile_height, m_system_format,
834 D3DPOOL_SYSTEMMEM, &m_system_tile, NULL));
835

836 // acquire the surface’s DC via GetDC. Control the
837 // lifetime of the DC by the lifetime of the ’dc’
838 // variable.
839 {
840 rt::c_surface_dc dc(m_system_tile);
841 RECT r = { 0, 0, m_tile_width, m_tile_height };
842 HBRUSH brush = static_cast<HBRUSH>(TWS(::GetStockObject(BLACK_BRUSH)));
843 TWS(::FillRect(dc, &r, brush));
844 brush = static_cast<HBRUSH>(TWS(::GetStockObject(WHITE_BRUSH)));
845 rt::c_push_gdi<HBRUSH> push(dc, brush);
846 TWS(::Ellipse(dc, 20, 20, m_tile_width-20, m_tile_height-20));
847 }
848 }
849

850 // create a tile surface in the back buffer format
851 THR(m_pd3dDevice->CreateOffscreenPlainSurface(
852 m_tile_width, m_tile_height, m_d3dsdBackBuffer.Format,
853 D3DPOOL_DEFAULT, &m_device_tile, NULL));
854

855 // the surface we built in InitDeviceObjects is A8R8G8B8,
856 // but the back buffer may be a different format
857 if (m_system_format == m_d3dsdBackBuffer.Format)
858 {
859 // we can copy the system surface directly
860 THR(m_pd3dDevice->UpdateSurface(m_system_tile, NULL,
861 m_device_tile, NULL));
862 }
863 else
864 {
865 // use D3DX to do the format conversion
866 THR(::D3DXLoadSurfaceFromSurface(m_device_tile, NULL,
867 NULL, m_system_tile, NULL, NULL, D3DX_FILTER_NONE,

4.12. RT 2DAPP SAMPLE APPLICATION 155

868 0));
869 }
870 }
871

872 //
873 // recreate_background
874 //
875 // Destroy the existing background images and recreate them
876 //
877 void
878 CMyD3DApplication::recreate_background()
879 {
880 m_system_tile = 0;
881 m_device_tile = 0;
882 init_background();
883 restore_background();
884 }
885

886 bool
887 CMyD3DApplication::get_sprite_filename()
888 {
889 rt::pauser pause(*this);
890 TCHAR buffer[MAX_PATH] = { 0 };
891 OPENFILENAME ofn =
892 {
893 sizeof(ofn), m_hWnd, NULL,
894 _T("All image files\0")
895 _T("*.bmp;*.dib;*.jpg;*.jpeg;*.png;")
896 _T("*.dds;*.tga;*.pbm;*.pgm;*.ppm;*.pnm\0")
897 _T("Bitmap images (*.bmp,*.dib)\0")
898 _T("*.bmp;*.dib\0")
899 _T("JPEG images (*.jpg,*.jpeg)\0")
900 _T("*.jpg;*.jpeg\0")
901 _T("PNG images (*.png)\0")
902 _T("*.png\0")
903 _T("DDS images (*.dds)\0")
904 _T("*.dds\0")
905 _T("Targa images (*.tga)\0")
906 _T("*.tga\0")
907 _T("PNM images (*.p[bgpn]m)\0")
908 _T("*.pbm;*.pgm;*.ppm;*.pnm\0")
909 _T("All files (*.*)\0")
910 _T("*.*\0")
911 _T("\0"), NULL, 0, 1, buffer, NUM_OF(buffer),
912 NULL, 0, NULL, NULL,
913 OFN_PATHMUSTEXIST | OFN_FILEMUSTEXIST

156 CHAPTER 4. 2D APPLICATIONS

914 };
915 if (!m_dialogs && !m_bWindowed)
916 {
917 THR(ForceWindowed());
918 }
919 if (::GetOpenFileName(&ofn))
920 {
921 m_sprite_file = buffer;
922 return true;
923 }
924 return false;
925 }
926

927 void
928 CMyD3DApplication::init_sprite()
929 {
930 if (m_sprite_file.length() > 0)
931 {
932 THR(::D3DXCreateTextureFromFile(m_pd3dDevice,
933 m_sprite_file.c_str(), &m_sprite_texture));
934 D3DSURFACE_DESC sd;
935 THR(m_sprite_texture->GetLevelDesc(0, &sd));
936 const float scale = 64.0f/std::max(sd.Width, sd.Height);
937 m_sprite_xform = rt::mat_scale(scale);//*rt::mat_trans(-32.0, -32.0, 0.0);
938 }
939 }
940

941 DWORD
942 CMyD3DApplication::PresentFlags() const
943 {
944 return D3DPRESENTFLAG_LOCKABLE_BACKBUFFER | CD3DApplication::PresentFlags();
945 }

