
Chapter 9

Vertex Shaders

“Great trees are good for nothing but shade.”
George Herbert: Outlandish Proverbs, 1640

9.1 Overview

In chapter 6 and chapter 7, we saw how the fixed-function pipeline processes
vertices from a model coordinate system into the coordinate system of the screen.
While the fixed-function pipeline is versatile with many ways we can change the
end result, its overall functionality is still limited. If we have an exotic lighting
model, an exotic transformation method, an exotic method of computing fog,
point sizes, etc., we would have to forego hardware acceleration with fixed-
function processing and compute everything on the CPU using transformed
vertices.

With vertex shaders we can have our cake and eat it too: we replace the
fixed-function vertex processing with a small program we load into the hardware.
The program receives our model space vertices as input and produces a vertex in
homogeneous clip space as output, complete with per-vertex diffuse and specular
colors, fog, transparency, texture coordinates and a point size.

A vertex shader exposes the vertex processing hardware as a vector-oriented
CPU with an instruction set and sets of registers used to carry out the in-
structions. Different hardware may implement different levels of support for
vertex shaders and this support is grouped roughly into a version of the shader
architecture.

In this chapter we will explain the assembly language programming model
available for vertex shaders with a complete discussion of the instruction sets
and the available registers. Using high level shader language for vertex shaders
is discussed in chapter 18. Following that we will look at how we can per-
form the elements of fixed-function vertex processing using a verion 1.1 vertex
shader. We will discuss some examples of vertex shaders from the SDK as well

301

302 CHAPTER 9. VERTEX SHADERS

Vertex Components

?
Input

Registers

?

Arithmetic
and Logic Unit

?

Temporary
Registers

-¾

Version 3.0

Sampler
Registers

-¾

Texture
Memory

6

?

Address, Loop
Registers

-

6

¾

¾ Version 3.0

Version 3.0

Constant
Registers

¾

Output
Registers

?

Primitive Assembly

Figure 9.1: Vertex shader architecture.

as some examples of vertex processing that is possible with a vertex shader, but
impossible with the fixed-function pipeline.

9.2 Vertex Shader Architecture

Direct3D exposes the details of different graphics processors as different shader
architecture versions. Each version of the architecture can have different num-
bers and kinds of registers and different instruction sets. For the most part, the
higher versions are an evolution of the lower versions, providing more instruc-
tions and fewer limits on the execution model. We’ll look at shader version 1.1
in the most detail and cover the additions to the architecture of each succesive
version.

DirectX 9.0c supports the following vertex shader architecture versions: 1.1,
2.0, 2.x and 3.0. The assembly language syntax for identifying these versions
is vs 1 1, vs 2 0, vs 2 x, and vs 3 0, so you may see reference to the shader

9.2. VERTEX SHADER ARCHITECTURE 303

Shader Version
vs 1 1 vs 2 0 vs 2 x vs 3 0

Instruction Count 128 256 ≥ 256 ≥ 512

Table 9.1: Vertex shader version instruction counts.

architecture by either syntax. Sometimes the different architecture versions are
referred to as shader profiles or shader models; all these terms describe the same
concept. Older versions of the SDK and documentation may also refer to the
vs 2 a and vs 2 b shader versions; these versions have been incorporated into
the vs 2 x shader version.

When you install the SDK, special software versions of the vertex shader
architecture are available. These versions are designated as vs 2 sw and vs 3 sw
and they are only available with software vertex processing on the reference
rasterizer. Because of this restriction, they are slow and only available when
the SDK is installed. They are only suitable for development purposes and
should not be used in a shipping product. Each software version exposes all
the features of the 2.x or 3.0 architecture and most of the shader validation
requirements are relaxed for these software implementations.

All the architecture versions share a common execution model, shown in
figure 9.1. A program, called a shader, is executed once for each vertex drawn in
the scene. The shader contains one or more instructions and each instruction
consists of an opcode and zero or more operands. The shader has access to five
distinct groups of registers: input registers for vertex data, constant registers
for rendering parameters, an address register for array lookups into the constant
registers, temporary registers for storing intermediate results, sampler registers
for sampling textures and output registers for the result of the shader. The
instruction count limits for different shader versions are shown in table 9.1.
The number of each kind of register is shown in table 9.2.

Each temporary register stores a four dimensional vector value and most
instructions operate on four dimensional vector values. Each value is a floating-
point quantity with a range and precision comparable to an IEEE single preci-
sion floating-point number, or about 6 decimal digits. Instructions are provided
for the usual arithmetic operations, such as addition and multiplication, as well
as vector arithmetic operations, such as dot product and vector matrix mul-
tiplication. Unlike a typical CPU, some versions of the shader architecture
support no control flow with only linear sequencing. This restriction makes
vertex shaders simpler and easier to accelerate with hardware.

9.2.1 Input Registers

The input registers supply the shader with the vertex data in the scene. The ver-
tex components are mapped to semantics through a suitable vertex declaration,
as discussed in section 5.8. The semantics are associated with input registers in
the shader through the use of the dcl usage instructions. The input registers
are read-only and can only be used as the source of data in the vertex shader

304 CHAPTER 9. VERTEX SHADERS

Shader Registers
Version a0 aL bn cn in on p0 rn sn vn
vs 1 1 1 0 0 ≥ 96 0 13 0 12 0 16
vs 2 0 1 1 16 ≥ 256 16 13 0 12 0 16
vs 2 x 1 1 16 ≥ 256 16 13 1 ≥ 12 0 16
vs 3 0 1 1 16 ≥ 256 16 12 1 32 4 16

Table 9.2: Vertex shader version register counts.

instructions. Each instruction can reference a single input register, although
different source operands can apply different modifiers.

In shader version 3.0, the input registers can be indexed by the address
register. This allows a loop to iterate over vertex elements and address them
by the loop counter.

9.2.2 Constant Registers and the Address Register

Parameters that do not vary per-vertex are supplied to the shader through
the constant registers. Floating-point constants are available in all shader ver-
sions, while integer and boolean constants are available in shader version 2.0
or higher. Each instruction can access only a single constant at a time, but
multiple source operands may access the same constant register with different
modifiers. The values in the constant registers may be defined in the shader with
the def, defb and defi instructions. They can also be loaded from the device
with the SetVertexShaderConstantF, SetVertexShaderConstantB and Set-
VertexShaderConstantI methods as described in section 9.14. You can think
of values defined by shader instructions as “local constants” and those defined
by the API as “global constants”, with the local constants having precedence
in any given shader.

The address register is a signed integer offset from a base constant register,
addressing the constants as an array. The constant registers are read-only and
the address register is write-only. When the register addressed is out of range
for the constant registers, the returned value is always 〈0, 0, 0, 0〉. The address
register must be initialized before it can be used.

Shader version 1.1 provides a limited form of the address register. Only the
x component of the register is available for indexing. The address register can
only be set as the destination of a mov instruction. The value is rounded to the
nearest integer value when it is loaded.

Shader versions 2.0 and higher provide a more general form of the address
register. All four components of the register are available for indexing, allowing
for addressing of different portions of the constant arrays simultaneously. The
mova instruction is used to set the address register values.

9.2. VERTEX SHADER ARCHITECTURE 305

9.2.3 Output Registers

The output registers are used to store the results of the shader computation that
are passed to the rasterizer for source pixel generation. The output registers are
write-only. The output of a vertex shader consists of a position in homogeneous
clip space and per-vertex data to be interpolated by the rasterizer, such as colors
and texture coordinates.

In shader versions before 3.0, the output registers are individually named.
The available registers are the position register oPos, the color registers oD0
and oD1, the fog register oFog, the point size register oPts and the texture
coordinate registers oT0 through oT7. Every vertex shader must write all four
components of the position register oPos. The scalar values of the fog factor and
point size are extracted from the x component of the oFog and oPts registers,
respectively. The oFog and oPts values are clamped to the interval [0, 1] before
being passed on to the rasterizer.

In shader version 3.0, the output registers are declared with a dcl usage
instruction. Unlike previous shader versions, there is no requirement that any
particular register be written. The output values of the shader are interpolated
and presented as inputs to pixel processing. If the fixed-function pixel processing
is used, then the vertex shader should declare outputs as appropriate for the
fixed-function pipeline. As with the input registers in version 3.0, the output
registers can be indexed with the address register for processing vertex elements
from within a loop.

9.2.4 Temporary Registers

A significant amount of work generally takes place in a vertex shader. A bank of
read-write temporary registers provide a vertex shader with a small scratchpad
for storing intermediate results. The shader generally moves data from the
inputs to the temporary registers, performs computations on the temporary
registers and then writes the results to the output registers. The other register
types can only be used once in a given instruction, but the temporary registers
can be used multiple times. Up to three different temporary registers can be
read and a one register written during a single instruction. Any attempt to
read a temporary register before its value is written results in an error when the
shader is created.

9.2.5 The Loop Counter Register

Shader versions 2.0 and higher provide looping flow control with the loop and
endloop instructions. The loop counter register aL contains the current value
of the counter that is incremented by these instructions. Its value is undefined
outside the body of a loop. Within the body of a loop its value can be used as
an offset into the constant array. In shader version 3.0 the loop counter register
can be used to index the output registers as well as the constant registers.

306 CHAPTER 9. VERTEX SHADERS

Destination register write mask r.xyzw
Source register multiplex r.[xyzw][xyzw][xyzw][xyzw]
Source register negation -r
Absolute value r abs
Logical negation !r

Table 9.3: Vertex shader register modifiers. The [] notation indicates an op-
tional vertex component specifier. See the text for details on their meaning.

9.2.6 The Predicate Register

Shader versions 2.x and higher provide a predicate register that contains a four
dimensional vector of boolean values. The boolean values can be used to perform
conditional flow control. The setp comp instruction is the only instruction that
can write to the predicate register. The boolean values in the predicate register
are used to control the if, callnz and breakp instructions.

9.2.7 Sampler Registers

Shader version 3.0 provides access to textures with sampler registers. The sam-
pler registers themselves are only used with the texldl instruction to sample
a texture. The sampler registers must be declared with the dcl texture in-
struction before they can be used. With sampler registers, vertex shaders can
perform texture lookups for data driven displacement effects and efficient table
lookup operations.

9.2.8 Register Modifiers

The source and destination operands to each instruction operate on the entire
four dimensional vector value by default. To increase the flexibility of a vertex
shader while keeping the instruction count low, each operand can contain mod-
ifiers that change the way the operand is used. For vertex shader instructions,
there are four kinds of modifiers: a destination operand write mask modifier,
a source operand multiplex, or “swizzle”, modifier, a source operand negation
modifier and an absolute value modifier. The syntax of the modifiers is sum-
marized in table 9.3.

The write mask modifier restricts the output of the instruction to a subset of
the four components in the destination register. The components to be written
are appended to the register name with a separating dot, such as .xy to write
only the first two components. Omitting the destination register write mask
is equivalent to specifying r.xyzw. Only those components in the write mask
will be written during processing of the instruction. In this way, any of the
four components of a temporary register can be changed without changing the
remaining components.

The multiplex modifier allows a four-dimensional vector to be constructed
from any of the four components in a source register. The components are

9.3. VERTEX SHADER 1.1 ARCHITECTURE 307

denoted by r.xyzw, respectively. Individual components may be replicated to
multiple components in the resulting vector. You can think of this as if a
multiplexor were used for each component in the resulting vector to select one
of the four components from the source register.

For example, the source register specification r0.yyxx results in a four di-
mensional vector whose first two components are taken from the second com-
ponent of register 0 and whose second two components are taken from the first
component of register 0. In this way the components of source registers can be
arbitrarily moved around, or “swizzled”.

When fewer than four components are present in the modifier, the last com-
ponent used is implicitly repeated for the remaining components. The source
operand r0.x is equivalent to r0.xxxx, r0.xy is equivalent to r0.xyyy, and
r0.xyz is equivalent to r0.xyzz. Specifying no source register multiplexing
modifier is equivalent to specifying r.xyzw.

The negation modifier performs an arithmetic negation on the vector, chang-
ing the sign of all the components of the vector. The negation of a source regis-
ter vector happens after any multiplexing has been applied. Shader version 3.0
provides the abs modifier. It returns the absolute value of the register.

The boolean constant registers and the predicate register contain boolean
values. The logical negation operator, !, can be used with the boolean constant
registers and the predicate register to change its logical value before it is used
in a conditional test.

Multiple register modifiers can be combined in a single instruction. For
instance, a source register can be swizzled and negated while the destination
register is write masked.

9.3 Vertex Shader 1.1 Architecture

Vertex shader 1.1 architecture is the simplest architecture. It provides for no
conditional branching and no flow control. A minimum of 96 vertex shader
constant registers are required for the vertex shader version 1.1. An implemen-
tation may provide more registers, however, and a DirectX 8 or higher level
driver will report the maximum number of constant registers available in the
MaxVertexShaderConst member of D3DCAPS9. The constant registers can only
be indexed by the x component of the address register.

Instructions are provided for declarations, basic arithmetic, matrix arith-
metic, simple comparisons and basic lighting calculations. These basic instruc-
tions are generally used unmodified in subsequent shader architecture versions.
The instructions are described in detail in section 9.10.

The higher versions of the shader architecture include the 1.1 version in-
structions and registers, with minor variations in some instructions. To fully
understand the later version architectures, it is important to understand the
instructions in version 1.1 of the architecture.

308 CHAPTER 9. VERTEX SHADERS

9.4 Vertex Shader 2.0 Architecture

The version 2.0 architecture incorporates all of the instructions and registers of
version 1.1 and extends it with additional features. The instructions added by
version 2.0 are discussed in detail in section 9.11. The main improvement with
version 2.0 is the addition of static flow control to the execution model. Subrou-
tines, branching and looping instructions are introduced with static conditions.
In static flow control, all the conditional expressions for evaluating branch points
refer to values that are constant for the duration of the shader. With static flow
control, loops execute a fixed number of times and conditional execution always
follows the same path for all primitives drawn with the same set of constants.
Different batches of primitives can have different flow control behavior by chang-
ing the constants between batches. All flow control instructions are issued in
pairs and surround a block of instructions.

New constant register files are provided for defining the constants used to
govern the flow control. With static flow control, you can write a single shader
that applies to different kinds of vertices and make choices on a primitive-
by-primitive basis. The constants defining the flow control conditions can be
updated between successive calls to draw primitives.

Versions 2.0 and higher enhance the use of the address register and provide
new boolean and integer constant register files. All four components of the
address register a0 can be used to index the floating-point constant register
files; the boolean and integer register files cannot be indexed. Any component
of the address register can be used as an index, but all source operands in an
instruction must use the same component and base register.

The address register can only be set with the new mova instruction. The mov
instruction is still used to write values into the temporary and output registers.
New arithmetic operations are provided with the abs, crs, lrp, nrm, pow, sgn
and sincos instructions.

The boolean constant registers bn are used for conditional branching with the
if, else and endif instructions. Each register has one component containing a
boolean value. Values in the boolean register file can be defined with the defb
instruction. Unconditional subroutine calls are made with the call instruction
and the target of the subroutine call is a block between the label and ret
instructions. Conditional subroutine calls with the boolean registers are made
with the callnz instruction.

The integer constant register file in has four components per register, but
the fourth component must always be zero. The registers control the execution
count of loops defined with the rep, endrep, loop, and endloop, instructions.
The rep instruction defines a simple loop with a repeat count and no access to
the internal count register during the loop.

The loop instruction defines a loop that exposes its internal counter through
the aL loop counter register. The loop counter register holds a scalar value that
is initialized before the loop starts and is incremented every time the loop is
repeated. The loop counter register can be used to index the floating-point
constant registers like the address register. The starting value, increment and

9.5. VERTEX SHADER 2.X ARCHITECTURE 309

number of loop repititions are encoded into the integer constant register file.
Values in the integer register file can be defined in the shader with the defi
instructions or through the API with the SetVertexShaderConstantI method
on the device.

9.5 Vertex Shader 2.x Architecture

Version 2.x introduces optional extensions of the version 2.0 architecture, with
support indicated in the D3DCAPS9 for a device. Version 2.0 is extended by
adding predication, deeper nesting of static flow control instructions and dy-
namic flow control instructions. The instructions added by version 2.x are dis-
cussed in detail in section 9.12.

The optional support is described by the VS20Caps member of D3DCAPS9,
which is a D3DVSHADERCAPS2 0 structure. The optional support in 2.x includes
the predicate register, support for dynamic flow control, support for more than
12 temporary registers and support for deeper nesting of static flow control.

typedef struct _D3DVSHADERCAPS2_0
{

DWORD Caps;
INT DynamicFlowControlDepth;
INT NumTemps;
INT StaticFlowControlDepth;

} D3DVSHADERCAPS2_0;

If the D3DVS20CAPS PREDICATION bit of the Caps member is set, then the de-
vice supports the predicate register p0 and its associated instructions setp comp,
if, callnz and breakp. The predicate register is a four-dimensional vector of
boolean values and can only be initialized by the setp comp instruction.

#define D3DVS20CAPS_PREDICATION (1<<0)

Predication is a form of conditional execution that can be applied to individ-
ual instructions without branching. One of the components from the predicate
register can be applied to the entire instruction, or individual components from
the register can be applied to the four components of the result, acting as a
dynamic per-channel write mask. The syntax for predication is shown in sec-
tion 9.11.

The NumTemps gives the number of rn temporary registers and will be at
least 12, as in version 2.0. The actual value will be within the range [12, 32] as
defined by the D3DVS20 MIN NUMTEMPS and D3DVS20 MAX NUMTEMPS constants.

#define D3DVS20_MIN_NUMTEMPS 12
#define D3DVS20_MAX_NUMTEMPS 32

Dynamic flow control is provided by the if comp and break comp instruc-
tions. If the DynamicFlowControlDepth member is non-zero, then dynamic flow

310 CHAPTER 9. VERTEX SHADERS

control is supported. A more restricted form of dynamic flow control can also
be performed with predication.

9.6 Vertex Shader 3.0 Architecture

Version 3.0 of the vertex shader architecture relaxes architectural limits, gener-
alizes the input and output register files, adds the saturate instruction modifier
and introduces texture sampling with new sampler registers and associated in-
structions. The number of temporary registers is increased to 32, as shown in
table 9.2. The minimum number of available instruction slots is increased to 512,
as shown in table 9.1. The new instructions, the saturate instruction modifier
and details of the flow control limits and nesting are described in section 9.13.

The input and output registers are generalized so that they can be indexed
similarly to the floating-point constant registers by any component of the ad-
dress register or by the scalar loop count register. This allows a shader that
traverses its input data in a loop to generate output data. The output registers
are not given specific names as they are in previous shader versions; they are
named on, like the input registers. To associate an output semantic with a par-
ticular register, the dcl usage instructions are used. This allows the runtime to
map shader outputs to the corresponding fixed-function pipeline rasterization
inputs or the appropriate pixel shader input semantic.

Texture sampling in a vertex shader allows for advanced sample based dis-
placement mapping of base geometry. The sn sampler registers are associated
with textures with the dcl texture instruction. Once declared, the sampler reg-
isters can be used in the texldl instruction to obtain sampled values from the
bound texture.

9.7 Shader Instruction Syntax

Internally Direct3D uses an array of DWORDs to encode a shader program. This
encoding can be thought of as the “machine language” for a shader program.
Because it is difficult to write programs by creating arrays of DWORDs directly,
the SDK includes programs and functions for assembling and compiling shader
programs from a text syntax into DWORDs. D3DX provides the functions for
assembling shader text into a DWORD array as described in chapter 15. D3DX also
provides functions for compiling high-level shader language text, as described
in chapter 18. The SDK includes a command-line assemblers and compilers
as described in appendix A. This section describes the text syntax for shader
assembly programs, both vertex shaders and pixel shaders.

The syntax for shader instructions is like most CPU assembly languages,
with the instruction opcode appearing first, followed by the operands for
the instruction. Shader program text is first parsed into a stream of parsing
tokens. White space and comments are ignored during parsing, but may serve
as a separator between two parsing tokens. Unlike some assembly languages,

9.7. SHADER INSTRUCTION SYNTAX 311

Opcode Operands Comments
mov oPos, r1 ; write oPos
add r0, r1, r2 // r0 = r1+r2
add r0, r0, r0 /* r0 = 2*r0 */

Figure 9.2: Shader assembly language syntax illustrating opcodes, operands and
supported comment styles.

it is not necessary for each instruction to appear on a line of text by itself;
multiple instructions may appear on a single line of text input provided that
the instructions are properly separated by white space or comments. Typical
syntax is illustrated in figure 9.2.

Each shader instruction consists of an opcode and uses zero or more operands.
Each opcode is represented by a case sensitive reserved word, such as mov. Once
an opcode has been parsed, parsing continues by consuming the operands for the
instruction from the shader input. Since each instruction uses a fixed number
of operands, no terminating token is necessary to indicate the end of an instruc-
tion’s operands. The destination operand of an instruction always appears first,
followed by zero or more source operands depending on the instruction. The
operands are separated by commas (,).

Operands generally consist of case sensitive reserved words indicating spe-
cific registers, such as r0 or oPos, or a limited form of arithmetic expression.
The arithmetic expressions allowed by an operand are specific to the shader
model and the particular instruction. For instance, the source operand r0.xyyz
uses the source operand multiplex modifier to rearrange the components of the
register r0 before it is used in the execution of the instruction.

In general, constant register source operands are referred to by the name of
the register, such as c0. However, a vertex shader allows the constant register
to be indexed as an array by the address register a0. In this case C-style array
syntax is used to indicate the use of the index register and the base register offset,
such as c[16 + a0.x]. A variant of this syntax is to index the base register
directly as in c16[a0.x]. The constant register array syntax, i.e. c[16] instead
of c16 can also be used when the address register is not used.

Comments are supported with three different styles: assembly comment
style, C comment style and C++ comment style. An assembly comment be-
gins with a semi-colon (;) and ignores all characters from the semi-colon to the
end of the input line. A C++ comment is similar and begins with two slashes
(//) and also ignores the remainder of the input line. A C comment begins
with a slash-asterisk character combination (/*) and causes all characters in
the input stream to be ignored until the asterisk-slash character combination
(*/) is parsed. This allows multiple lines of a shader, or only a portion of a line,
to be commented out.

The D3DX functions that assemble shader source text have provisions for a
limited form of preprocessing. If you wish a fully compliant C++ style preproces-
sor, you can invoke this as a separate program before passing your source code

312 CHAPTER 9. VERTEX SHADERS

to the assembler. The shader assembler does not support any preprocessing on
the shader file. To use the C preprocessor on shader source you must invoke the
preprocessor on the source before using the assembler on it.

In our discussions, shader instructions are shown in their assembly syntax.
The effect of each instruction is depicted by a formula in terms of the operands
from the assembly syntax. Individual components of a vector operands are
designated by a subscript, such as sw indicating the w component of the operand
s. Flow control instructions are shown manipulating named quantities like pc
and loop. These names are only used to explain the behavior of the instructions
and do not represent any particular implementation.

9.8 Execution Model

The execution model for a vertex shader is fairly simple. Each instruction is
executed in the order it appears within the shader function DWORD array. Each
instruction is executed by first performing any source register multiplexing mod-
ifiers and then performing any source register negation modifiers. This results
in vector operands that are used as inputs to the instruction. The instruction
is performed and the result is written to the destination with any write mask
modifiers. This sequence continues until the last shader instruction has been
executed.

Every vertex shader begins with a vs version instruction that defines the
vertex shader architecture version used by the shader. For versions before 3.0,
every vertex shader must store a value in the oPos output register. For version
3.0, the output register associated with the position semantic must be written.
Except for these two requirements and architectural restrictions governing the
number of registers and instructions available, a vertex shader can contain any
valid instruction sequence.

Care must be taken in multipass algorithms that require vertices to line
up identically on the screen. If one pass is executed using the fixed-function
pipeline and another pass is executed using a vertex shader, the vertices may
not line up identically since they travel through different code paths. One way
around this is to eliminate the use of the vertex shader effects in this situation,
falling back to a simpler fixed-function effect. Another alternative is to code the
fixed-function passes as vertex shader passes that use vertex shader instructions
to implement the fixed-function processing. In this case, care should be taken
to process the vertex position component identically in all passes.

9.9 Software Vertex Processing

A device created with software or mixed vertex processing can execute vertex
shader programs on the CPU. A device using software vertex processing always
supports all versions of the vertex shader architecture. When a vertex shader
is used with software vertex processing, the Direct3D runtime compiles the

9.10. VERTEX SHADER 1.1 INSTRUCTIONS 313

shader program into native CPU instructions. If the CPU supports the Intel
SSE or the AMD 3DNow! instruction set extensions, then the runtime will use
those instruction set extensions in the native code version of the vertex shader
program.

This means that even on a card that does not support vertex shaders in
hardware, they can still perform at an acceptable rate. Of course, the more
complicated the vertex shader program, the more work will have to be done on
the CPU, so while vertex shader execution in software is reasonable, it isn’t as
fast as executing vertex shaders in hardware.

9.10 Vertex Shader 1.1 Instructions

Vertex shader instructions are grouped into two categories: simple instructions
and complex1 instructions. All simple instructions execute in one slot, while
complex instructions may execute in one or more slots. In text form, each
instruction is given in the form of an operation code, or opcode, followed by a
destination operand and finally source operands. Not every instruction takes
the same number of operands. The vertex shader version 1.1 instruction set is
summarized in table 9.4.

Before we take a look at the instructions in detail, let’s take a look at a
simple vertex shader. This shader simply moves the input vertex data to the
appropriate vertex output registers. Like all vertex shaders, it begins with a
vertex shader version instruction defining the vertex shader architecture ver-
sion used by the shader and declaration instructions mapping vertex element
semantics to the input registers used by the shader.

vs_1_1
dcl_position v0
dcl_color0 v1
dcl_color1 v2
dcl_fog v2.w
dcl_texcoord0 v3
dcl_texcoord1 v4
dcl_texcoord2 v5
dcl_texcoord3 v6
mov oPos, v0
mov oD0, v1
mov oD1, v2.xyz
mov oFog.x, v2.w
mov oT0, v3
mov oT1, v4
mov oT2, v5

1The SDK documentation refers to the complex instructions as “macros”, but this is a
misnomer. They are not macros in the C++ sense. To avoid confusion, we will refer to these
instructions as complex instructions.

314 CHAPTER 9. VERTEX SHADERS

Instruction Slots Function
add d, s0, s1 1 add

dcl usage d — declare input registers
def d, v0, v1, v2, v3 — constant definition
dp3 d, s0, s1 1 3D dot product
dp4 d, s0, s1 1 4D dot product
dst d, s0, s1 1 distance
exp d, s ≤ 10 full-precision exponentiate
expp d, s 1 partial-precision exponentiate
frc d, s ≤ 3 fractional part
lit d, s 1 lighting
log d, s ≤ 10 full-precision logarithm
logp d, s 1 partial-precision logarithm
m3x2 d, s0, s1 ≤ 2 vector, 3× 2 matrix product
m3x3 d, s0, s1 ≤ 3 vector, 3× 3 matrix product
m3x4 d, s0, s1 ≤ 4 vector, 3× 4 matrix product
m4x3 d, s0, s1 ≤ 3 vector, 4× 3 matrix product
m4x4 d, s0, s1 ≤ 4 vector, 4× 4 matrix product
mad d, s0, s1, s2 1 multiply accumulate
max d, s0, s1 1 maximum
min d, s0, s1 1 minimum
mov d, s 1 copy
mul d, s0, s1 1 multiply
nop 1 no operation
rcp d, s ≥ 1 reciprocal
rsq d, s ≥ 1 reciprocal square root
sge d, s0, s1 1 ≥ compare
slt d, s0, s1 1 < compare
sub d, s0, s1 1 subtract
vs major minor — shader version

Table 9.4: Vertex shader 1.1 instruction summary. The instructions are shown
in assembly syntax. Simple instructions execute in a single slot, complex in-
structions execute in one or more slots, up to a maximum of the slot count
shown.

9.10. VERTEX SHADER 1.1 INSTRUCTIONS 315

mov oT3, v6

9.10.1 Declaration Instructions

Every vertex shader must declare the version of the architecture that will be
used with the shader with the vs instruction. This instruction must be the first
instruction in the shader. The major and minor operands give the major and
minor version numbers, respectively, of the architecture used by the shader.

Vertex shader constant registers may also be bound at the time that a vertex
shader is bound to the device with SetVertexShader. The def instruction
defines the contents of a constant register with four scalar floating-point values
v0, v1, v2, and v3.

vs major minor
def d, v0, v1, v2, v3

d ← 〈v0, v1, v2, v3〉

The def instruction must appear after the version instruction and before any
computation instructions. When D3DX parses a vertex shader definition, the
def instruction results in a vertex shader declaration fragment which contains
the constant definitions. In this sense, the def instruction is not a true instruc-
tion and merely a convenience for the programmer to define constants and code
that uses those constants in the same file. Therefore, the def instruction does
not count against the instruction count for a vertex shader definition.

To map the vertex input registers to the corresponding components in a
vertex and the elements in its declaration, the dcl usage instruction is used. The
usage is one of the D3DDECLUSAGE enumerations followed by a usage index. If the
usage index is omitted, then an index of zero is assumed. The vertex declaration
instructions are listed below. Note that there is no instruction corresponding
to D3DDECLUSAGE POSITIONT, since that declaration instructs the API that the
vertices are already in transformed homogeneous clip space and require no vertex
processing.

dcl positionn s
dcl blendweightn s
dcl blendindicesn s
dcl normaln s
dcl psizen s
dcl texcoordn s
dcl tangentn s
dcl binormaln s
dcl tessfactorn s
dcl colorn s
dcl fogn s
dcl depthn s
dcl samplen s

316 CHAPTER 9. VERTEX SHADERS

The declaration of input registers can omit vertex components not needed
by the shader and no harm will result. Any of the available input registers can
be declared in any order; there is no requirement that the registers used by the
shader begin at any particular register or be contiguous in the register file. Of
course, any undeclared vertex data will not be accessible by the shader.

9.10.2 Basic Arithmetic Instructions

The mov instruction is used to copy data from a source operand to a destina-
tion operand. In its simplest form, it simply copies the source vector to the
destination. With the source negation, absolute value, source multiplex, and
destination write mask operand modifiers the mov instruction can permute vec-
tor components and change the sign of its inputs.

Basic arithmetic is performed with the add, sub, mul, and mad instructions.
Vector addition and subtraction are handled with the add and sub instructions.

mov d, s
d ← s

add d, s0, s1

d ← 〈s0x + s1x, s0y + s1y, s0z + s1z, s0w + s1w〉
sub d, s0, s1

d ← 〈s0x − s1x, s0y − s1y, s0z − s1z, s0w − s1w〉

The mul instruction performs the component-wise multiplication of its two
source operands. Note carefully that this is not the dot-product of two vectors,
but simply the product of their respective components. The mad instruction per-
forms a component-wise multiplication as in mul and then adds the components
of the third operand.

mul d, s0, s1

d ← 〈s0xs1x, s0ys1y, s0zs1z, s0ws1w〉
mad d, s0, s1, s2

d ← 〈s0xs1x + s2x, s0ys1y + s2y, s0zs1z + s2z, s0ws1w + s2w〉

A division instruction is not supplied directly, but the reciprocal instruction
rcp computes the scalar reciprocal of the w component of the source operand.
The other components of the source operand are ignored. The instruction guar-
antees that a reciprocal of one is exactly one and a reciprocal of zero is +∞.
Similarly, a reciprocal square-root can be computed with the rsq instruction.
The rsq instruction uses the absolute value of the w component of the source
operand to compute the result. Some hardware may stall if the result of the
reciprocal instructions are used in the next instruction.2

2This is why the slot count in table 9.4 is listed as ≥ 1.

9.10. VERTEX SHADER 1.1 INSTRUCTIONS 317

rcp d, s

d ←



〈1, 1, 1, 1〉, sw = 1
〈+∞, +∞, +∞, +∞〉, sw = 0
〈f, f, f, f〉, f = 1

sw
, otherwise

rsq d, s

d ←





〈1, 1, 1, 1〉, |sw| = 1
〈+∞, +∞, +∞, +∞〉, |sw| = 0
〈f, f, f, f〉, f = 1√

|sw|
, otherwise

The dp3 and dp4 instructions perform dot products between two vectors.
The dp3 instruction computes a dot product of the first three components of
the two source vectors, while the dp4 instruction computes the dot product of
all four components. In each case, the scalar result is replicated to all four
components of the destination.

dp3 d, s0, s1

d ← 〈f, f, f, f〉, f = s0xs1x + s0ys1y + s0zs1z

dp4 d, s0, s1

d ← 〈f, f, f, f〉, f = s0xs1x + s0ys1y + s0zs1z + s0ws1w

Component-wise minima and maxima of two vectors can be computed with
the min and max instructions.

min d, s0, s1

d ← 〈min(s0x, s1x), min(s0y, s1y), min(s0z, s1z), min(s0w, s1w)〉
max d, s0, s1

d ← 〈max(s0x, s1x), max(s0y, s1y), max(s0z, s1z), max(s0w, s1w)〉

Base two logarithms and exponentials can be computed with the log, logp,
exp, and expp instructions. The simple instructions logp and expp compute a
10-bit precision result in a single slot. The complex instructions log and exp
compute an full precision result in at most ten slots.

exp d, s
d ← 〈f, f, f, f〉, f = 2sw

expp d, s
d ← 〈2bswc, sw − bswc, 2sw , 1〉

log d, s

d ←
{ 〈 −∞, −∞, −∞, −∞〉, |sw| = 0
〈f, f, f, f〉, f = log2(|sw|), otherwise

logp d, s

d ←
{ 〈 −∞, 1, −∞, 1〉, |sw| = 0
〈f, |sw| − 2f , log2(|sw|), 1〉, f = blog2(|sw|)c, otherwise

318 CHAPTER 9. VERTEX SHADERS

9.10.3 Matrix Instructions

The m3x2, m3x3, m3x4, m4x3 and m4x4 instructions are complex instructions
that implement the product of a vector by a matrix. The first source operand
gives the vector and the second source operand gives the matrix. The matrix
is assumed to be stored in consecutively numbered registers beginning with s1

and in the same register file. In the following formulas, we use the notation s′,
s′′, and s′′′ to denote the consecutive rows of the matrix stored in the register
file. For instance, if s1 is the register c[5], then s′1 is the register c[6], s′′1 is
c[7] and s′′′1 is the register c[8]. Typically the matrix will be stored in the
constant register file.

m3x2 d, s0, s1

dxy ←



s0x

s0y

s0z




[
s1x s1y s1z

s′1x s′1y s′1z

]

m3x3 d, s0, s1

dxyz ←



s0x

s0y

s0z







s1x s1y s1z

s′1x s′1y s′1z

s′′1x s′′1y s′′1z




m3x4 d, s0, s1

d ←



s0x

s0y

s0z







s1x s1y s1z

s′1x s′1y s′1z

s′′1x s′′1y s′′1z

s′′′1x s′′′1y s′′′1z




m4x3 d, s0, s1

dxyz ←




s0x

s0y

s0z

s0w







s1x s1y s1z s1w

s′1x s′1y s′1z s′1w

s′′1x s′′1y s′′1z s′′1w




m4x4 d, s0, s1

d ←




s0x

s0y

s0z

s0w







s1x s1y s1z s1w

s′1x s′1y s′1z s′1w

s′′1x s′′1y s′′1z s′′1w

s′′′1x s′′′1y s′′′1z s′′′1w




Only the m4x4 and m3x4 variants of these instructions modify all four com-
ponents of the destination register. The m3x2 instruction modifies only the
x and y components of the destination, leaving the z and w components un-
changed. Similarly, the m3x3 and m4x3 instructions modify only the x, y, and z
components of the destination register, leaving the w component unchanged.

The source operand multiplex and negation modifiers are not allowed with
these instructions. These complex instructions can be implemented using simple
instructions, but it is recommended that applications use the complex instruc-
tions to more clearly indicate their intentions to the device. These complex
instructions correspond to the following simple instruction sequences.

9.10. VERTEX SHADER 1.1 INSTRUCTIONS 319

; m3x2 r1, r0, c0 ; m4x3 r1, r0, c0
dp3 r1.x, r0, c0 dp4 r1.x, r0, c0
dp3 r1.y, r0, c1 dp4 r1.y, r0, c1

dp4 r1.z, r0, c2
; m3x3 r1, r0, c0
dp3 r1.x, r0, c0 ; m4x4 r1, r0, c0
dp3 r1.y, r0, c1 dp4 r1.x, r0, c0
dp3 r1.z, r0, c2 dp4 r1.y, r0, c1

dp4 r1.z, r0, c2
; m3x4 r1, r0, c0 dp4 r1.w, r0, c3
dp3 r1.x, r0, c0
dp3 r1.y, r0, c1
dp3 r1.z, r0, c2
dp3 r1.w, r0, c3

9.10.4 Comparison Instructions

Although no branching is allowed within a version 1.1 vertex shader, it is possible
to perform a limited form of comparison. Suppose you need to sometimes add a
secondary color Cs to the diffuse color Cd of a vertex. Since you can’t perform a
branch to add Cs, you might think that you need to create two distinct shaders:
one that adds Cs and one that doesn’t. However, you may be able to perform
everything in a single shader if you can create a color S that is zero when you
don’t want the secondary color added and Cs when the secondary color is to
be added. Then you can compute Cd + S as the diffuse color of the vertex and
everything will be fine.

The sge and slt comparison instructions allow you to perform this trick.
They perform a comparison between two source operands and store a value in
each component for the result of the comparison. The component will be 1.0
when the comparison is true and 0.0 when the comparison is false. The sge
instruction tests if the first operand is greather than or equal to the second
operand and the slt instruction tests if the first operand is less than the second
operand. These two comparisons are logical opposites.

sge d, s0, s1

d ← 〈s0x ≥ s1x, s0y ≥ s1y, s0z ≥ s1z, s0w ≥ s1w〉
slt d, s0, s1

d ← 〈s0x < s1x, s0y < s1y, s0z < s1z, s0w < s1w〉
If you need to compute x > y, remember that this can be rewritten as y < x

which is directly available via the slt instruction. Similarly, x ≤ y can be
rewritten as y ≥ x. At times it can also be useful to note that if x < y this
implies −x > −y and if x ≥ y this implies −x ≤ −y. The source operand
negation modifier can be used directly to implement these comparisons. For
instance, the following two instructions are identical in their result.

slt r0, r1, r2 ; r0 = (r1 < r2)

320 CHAPTER 9. VERTEX SHADERS

slt r0, -r2, -r1 ; r0 = (-r2 < -r1) = (-r1 > -r2) = (r1 < r2)

A logical “and” of two comparisons can be performed by computing the
product of the results from two comparisons or the minimum of the two results.
A logical “or” of two comparisons can be performed by computing the maximum
of the two results. To invert the result of a comparison test, subtract the result of
the test from the constant 1. To perform other comparison tests, rearrange the
desired comparison in terms of the two available comparisons. For example, a
test for equality between r0 and r1 can be performed by the following instruction
sequence:

sge r2, r0, r1 ; r2 = (r0 >= r1)
sge r3, r1, r0 ; r3 = (r1 >= r0)
min r2, r2, r3 ; r2 = (r2 && r3) = (r0 == r1)

After the first instruction, r2 will contain a 1 for each component of r0 that
is greater than or equal to the corresponding component of r1. After the second
instruction, r3 will contain a 1 for each component of r1 that is greater than
or equal to the component of r0. With the third instruction, we combine the
results of both tests into r2. The conditions x ≥ y and y ≥ x can both be true
only when x = y.

As mentioned in chapter 1, floating-point representations are approxima-
tions and care should be taken when comparing between two such values. An
epsilon equality comparison can be performed by subtracting the two values and
comparing the result to an accuracy criteria, ε. Other epsilon-based comparison
tests are similar.

; c0.x = epsilon
def c0, 1e-6, 0, 0, 0

; perform epsilon comparison of r0 and r1
sub r2, r0, r1 ; r2 = r0 - r1
max r2, r2, -r2 ; r2 = abs(r2)
slt r2, r2, c0.x ; r2 = (r2 < epsilon)

9.10.5 Lighting Instructions

The dst and lit instructions aid in the computation of lighting effects. The
dst instruction computes a distance vector given s0 = 〈∗, k2, k2, ∗〉, and s1 =
〈∗, 1

k , ∗, 1
k 〉, where the component values shown as ∗ are ignored.

The lit instruction computes lighting coefficients given two dot products
and an exponent. The x component of the source register contains the dot
product of the vertex normal and the light vector, #»n · #»

l , the y component
contains the dot product of the vertex normal and the halfway vector #»n · #»

h , and
the w component contains the exponent. The exponent must be in the interval
[−128, 128].

9.11. VERTEX SHADER 2.0 INSTRUCTIONS 321

dst d, s0, s1

d ← 〈1, k, k2, 1
k 〉, s0 = 〈∗, k2, k2, ∗〉, s1 = 〈∗, 1

k , ∗, 1
k 〉

lit d, s

d ←



〈1, sx, sy

sw , 1〉, sx > 0 and sy > 0
〈1, sx, 0, 1〉, sx > 0 and sy ≤ 0
〈1, 0, 0, 1〉, otherwise

9.11 Vertex Shader 2.0 Instructions

Similar to the def instruction in version 1.1, version 2.0 provides the defb and
defi instructions to define values for the boolean and integer constant registers.
The mova instruction is used to write the four components of th eaddress register.
The mov instruction cannot be used to write the address register in version 2.0.

defb d, v
d ← v

defi d, i0, i1, i2, i3
d ← 〈i0, i1, i2, i3〉

mova d, s
d ← 〈round(sx), round(sy), round(sz), round(sw)〉

New mathematical operations are introduced for absolute value, sign of
operand, vector cross product, linear interpolation, vector normalization and
the trigonometric functions cosine and sine. The abs instruction writes the
absolute value of its source operand to its destination operand. The sgn in-
structions writes the sign function of its source operand to its destination.

abs d, s
d ← 〈|sx|, |sy|, |sz|, |sw|〉

sgn d, s0, s1, s2

d ← 〈f(s0x), f(s0y), f(s0z), f(s0w)〉,

f(x) =




−1, x < 0

0, x = 0
1, x > 0

The crs instruction writes the vector cross product of its source operands
to its destination. The cross product is often computed in lighting computa-
tions and to determine a vector that is normal to two other vectors. The lrp
instruction performs linear interpolation between

crs d, s0, s1

d ← #»s0 ⊗ #»s1

lrp d, s0, s1, s2

d ← 〈f(s0x, s1x, s2x), f(s0y, s1y, s2y), f(s0z, s1z, s2z), f(s0w, s1w, s2w)〉,
f(s0, s1, s2) = s0s1 + (1− s0)s2

nrm d, s
d ← #»s

‖ #»s ‖

322 CHAPTER 9. VERTEX SHADERS

Instruction Slots Function
abs d, s 1 absolute value

call l 2 call a subroutine
callnz l, b 3 conditionally call a subroutine

crs d, s0, s1 2 vector cross product
defb d, v0 — boolean constant definition
defi d, v0, v1, v2, v3 — integer constant definition
else 1 start an else block

endif 1 end an if or else block
endloop 2 end a loop block
endrep 2 end a repeat block

if b 3 start an if block
label l — start a subroutine block
loop aL, i 3 start a loop block
lrp d, s0, s1, s2 2 linear interpolation

mova d, s 1 write address register
nrm d, s 3 vector normalization
pow d, s0, s1 3 full precision xy

rep i 3 start a repeat block
ret 1 end a subroutine block
sgn d, s 3 sign function

sincos d, s0, s1, s2 8 sine and cosine

Table 9.5: Vertex shader 2.0 instruction summary. The instructions are shown
in assembly syntax. Simple instructions execute in a single slot, complex in-
structions execute in one or more slot, up to a maximum of the slot count
shown.

9.11. VERTEX SHADER 2.0 INSTRUCTIONS 323

Write Mask Resulting Vector
.x 〈 cos(s0c), ?, ?, ∗〉
.y 〈?, sin(s0c), ?, ∗〉
.xy 〈 cos(s0c), sin(s0c), ?, ∗〉

Table 9.6: sincos results based on write mask. ? indicates a component that
has an undefined value after the instruction executes. ∗ indicates a component
that is not changed by the instruction.

The pow instruction computes a full-precision power function. The two
source arguments must use one of the replicate register modifiers .x, .y, .z
or .w to select the scalar components of the source operands to the function.
The resulting vector replicates the scalar result to all four components and has at
least 15 bits of precision. The destination register should be a different register
than s1.

pow d, s0, s1

d ← |s0|s1

The sincos instruction computes the sine and cosine of the angle in source
operand s0. The source angle must use one of the replicate register modifiers .x,
.y, .z and .w and must be in the interval [−π, π]. The source operands s1 and
s2 are floating-point constant registers that contain the constants D3DSINCOS-
CONST1 and D3DSINCOSCONST2, respectively. The constants can be defined with
a def instruction or through the API with the SetVertexShaderConstantF
method.

sincos d, s0, s1, s2

d ← 〈 cos(s0c), sin(s0c), ?, ?〉

#define D3DSINCOSCONST1 \
-1.5500992e-6f, -2.1701389e-5f, 0.0026041667f, 0.00026041668f

#define D3DSINCOSCONST2 \
-0.020833334f, -0.12500000f, 1.0f, 0.5f

The destination operand to sincos must be a temporary register and must
use one of the write masks .x, .y or .xy. The components of the destination
operand vary slightly, depending on the write mask used. The combinations are
summarized in table 9.6.

The simplest form of looping is a repeat block. The block of instructions to
be repeated is enclosed in a rep and endrep instruction pair. In the pseudocode
for these instructions the value pc refers to the value of the program counter
for the instruction. The expression pc + 1 referring to the address of the next
instruction. The rep instruction uses an integer constant register as its operand.
The operand’s x component contains the number of times the block will be
repeated and is in the range [0, 255]. A repeat count of zero will not execute
the block. The counter used for the repeat block is not available for use within

324 CHAPTER 9. VERTEX SHADERS

the block of instructions, so its only use is to perform a sequence of operations
a certain number of times.

rep i
count ← ix
loop ← pc + 1
if count = 0 then pc ← endloop

endrep
endloop ← pc + 1
count ← count − 1
if count > 0 then pc ← loop

A loop block repeatedly executes the block between the loop and endloop
instructions. A loop block provides access to the counter used to control the
loop through the aL register. This register is always given as the destination
operand to the loop instruction. The source operand is the integer register that
contains the constants defining the loop execution.

loop aL, i
aL← iy
count ← ix
loop ← pc + 1
if count = 0 then pc ← endloop

endloop
endloop ← pc + 1
count ← count − 1
aL← aL + iz
if count > 0 then pc ← loop

A conditional block evaluates a boolean register and executes the instructions
in the block if the value is true. An optional block can be included to execute
instructions if the value is false. The if and endif instructions surround the
block to be executed when the value is true. To provide alternate blocks to be
executed when the value is true or false, use if, else and endif to surround
the true and false blocks. The logical negation operator, !, can be used on the
source operand to invert the sense of the test.

if b
if b = false then pc ← else

else
else ← pc + 1
if b = true then pc ← endif

endif
endif ← pc + 1

A subroutine block is surrounded by a label and ret instruction pair. In
order to have a subroutine, you must first end the main routine at the start of the
shader with a ret instruction. If your main shader routine has no subroutines,

9.11. VERTEX SHADER 2.0 INSTRUCTIONS 325

then the ret instruction at the end of the main routine is optional. The call
instruction invokes a subroutine and its target must be a forward reference.

label l
l ← pc + 1

ret
pc ← pop(pc)

call l
push(pc, pc + 1)
pc ← l

Conditional subroutine calls can be made with the callnz instruction. The
subroutine call to the label is made if boolean value is true. The logical negation
operator, !, can be used on the boolean operand to logically negate the value
before it is used.

callnz l, b
if b = true then

push(pc, pc + 1)
pc ← l

endif

9.11.1 Version 2.0 Flow Control Nesting Limits

The limited resources of a GPU imposes limits on the amount of flow control
that can be used within a shader. Each type of flow control instruction (loop-
ing, branching, and subroutines) has its own set of nesting limits. When one
instruction block is enclosed in another block, the enclosed block is referred to
as a nested block. The nesting limits and static flow count for the different
vertex shader versions are listed in table 9.7.

In addition to the nesting limits, there is also a limit on the total number
of control flow instructions that can appear in the shader, regardless of nesting
level. The total number of control flow instructions is called the static flow
count. Generally, each control flow instruction that introduces a decision point
adds one to the static flow count for the shader. For instance, the if and else
instructions add to the flow count, but the endif instruction does not because
if and else involve a potential branch in control flow, but the endif only
marks the target for such a branch. The if, else, rep, loop, call and callnz
instructions count towards the static flow count for a 1.1 shader.

The static conditional instructions in version 2.0 have a nesting limit of one.
This means that an if block can appear in a 2.0 shader, but only when it is
located at the top-level of a routine. While you cannot nest one if block inside
another, you can still utilize the comparison instructions sge and slt and the
conditional evaluation tricks described in section 9.17.

Similarly, the call and callnz instructions have a nesting limit of one. This
means that you can call a subroutine, but that subroutine cannot call another
subroutine. You can have multiple subroutines as long as they are called from

326 CHAPTER 9. VERTEX SHADERS

Shader Version
Feature 2.0 2.x 3.0

Call Nesting 1 1-4 4
Static Conditions 16 16 24

Dynamic Conditions — 0-24 24
Loop Nesting 1 1-4 4

Static Flow Count 16 16 ∞

Table 9.7: Vertex shader version nesting limits.

Instruction Slots Function
break 1 break out of a loop

break comp s0, s1 3 conditionally break out of a loop
break p 3 conditionally break out of a loop

callnz l, p 3 conditionally call a subroutine
if comp s0, s1 3 start a dynamic if block

if p 3 start a dynamic if block
setp comp d, s0, s1 1 set predicate register

Table 9.8: Vertex shader 2.x instruction summary. The instructions are shown
in assembly syntax. Simple instructions execute in a single slot, complex in-
structions execute in one or more slot, up to a maximum of the slot count
shown.

the main routine. The subroutine call nesting limit is separate from the static
condition nesting limit, so a subroutine can contain an if instruction as long as
it is not called from inside an if block in the main routine.

The loop and rep looping instructions have a nesting limit of one. Both
forms of loop count towards the limit, so while a rep can be nested inside an
if, it cannot be nested inside a loop and vice-versa. This nesting limit is
separate from the subroutine call and static condition nesting limits.

9.12 Vertex Shader 2.x Instructions

Version 2.x of the shader architecture extends version 2.0 with instructions for
predication and dynamic flow control. The new instructions are summarized
in table 9.8. Dynamic control flow can be provided either through the use of
predication on instructions or through dynamic conditional expressions. Predi-
cation of instructions is exposed through an instruction modifier syntax on each
instruction. The instructions that support the predicate instruction modifier
are listed in table 9.9.

An instruction is marked for predication by placing the predicate register
in parenthesis before the instruction. The boolean negation operator can be
used on the predicate register to invert the value from the predicate register
before using it. The replicate source register modifiers .x, .y, .z and .w can be

9.12. VERTEX SHADER 2.X INSTRUCTIONS 327

abs dst log mad nrm slt
add exp logp max pow sgn
crs expp lrp min rcp sincos
dp3 frc m3x4 mov rsq sub
dp4 lit m4x4 mul sge

Table 9.9: Vertex shader instructions supporting predication

used on the predicate register to select a single boolean value that operates on
all channels of the destination register. If no multiplex modifier or the .xyzw
modifier are used on the predicate register then each of its four boolean values
applies individually to the four channels of the destination register.

The instructions listed in table 9.9 can be marked with the predication in-
struction modifier. Here are some examples of the predicate instruction modifier.

// p0 = <true, false, false, true>
(p0.x) add r3, r1, r2 // r3 = r1 + r2
(p0) add r4, r1, r2 // r4.x = r1.x + r2.x,

// r4.w = r1.w + r2.w
(!p0.x) add r5, r1, r2 // r5 unchanged

The setp comp instructions are the only instructions that can write to the
predicate register. Each instruction applies the appropriate test and writes the
components of the destination register specified by its write mask. If no write
mask is specified, then all four channels of the predicate register are written.

setp eq d, s0, s1

d ← 〈s0x = s1x, s0y = s1y, s0z = s1z, s0w = s1w〉
setp ne d, s0, s1

d ← 〈s0x 6= s1x, s0y 6= s1y, s0z 6= s1z, s0w 6= s1w〉
setp ge d, s0, s1

d ← 〈s0x ≥ s1x, s0y ≥ s1y, s0z ≥ s1z, s0w ≥ s1w〉
setp gt d, s0, s1

d ← 〈s0x > s1x, s0y > s1y, s0z > s1z, s0w > s1w〉
setp le d, s0, s1

d ← 〈s0x ≤ s1x, s0y ≤ s1y, s0z ≤ s1z, s0w ≤ s1w〉
setp lt d, s0, s1

d ← 〈s0x < s1x, s0y < s1y, s0z < s1z, s0w < s1w〉

The if instruction can be used with a component of the predicate register for
dynamic conditional execution. The source replicate modifier must be used on
the predicate register to select one of the four boolean values for the conditional
expression.

328 CHAPTER 9. VERTEX SHADERS

if p.c
if pc = false then pc ← else

else
else ← pc + 1
if pc = true then pc ← endif

endif
endif ← pc + 1

The break, breakp and break comp instructions allow static and dynamic
exits from inside the body of a loop to resume execution after the loop body. The
break instructions work with both rep and loop blocks. The break instruction
terminates the loop unconditionally and can be used even when predication and
dynamic control flow is not provided.

break
pc ← endloop

breakp p.c
if pc = true then pc ← endloop

The breakp instruction provides dynamic conditional termination of a loop
block based on the value in a component of the predicate register. The break comp
instructions dynamically terminate a loop based on a conditional expression
computed from two scalar values. The source registers in the break comp in-
structions must be specified with a replicate register modifier to specify the
scalar value to be used in the comparison.

break eq s0.c, s1.c
if s0c = s1c then pc ← endloop

break ne s0.c, s1.c
if s0c 6= s1c then pc ← endloop

break ge s0.c, s1.c
if s0c ≥ s1c then pc ← endloop

break gt s0.c, s1.c
if s0c > s1c then pc ← endloop

break le s0.c, s1.c
if s0c ≤ s1c then pc ← endloop

break lt s0.c, s1.c
if s0c < s1c then pc ← endloop

Although the predication instruction modifier cannot be used with the call
instruction, you could surround the subroutine call with an if instruction and
the predicate register to conditionally call a subroutine. The callnz instruction
conditionally calls a subroutine in a single instruction. The first source operand
identifies the subroutine label to be called and the second source operand gives
the component of the predicate register to be used for the condition.

9.13. VERTEX SHADER 3.0 INSTRUCTIONS 329

callnz l, p.c
if pc = true then

push(pc, pc + 1)
pc ← l

endif

Dynamic conditional execution can be performed without predication by
using the if comp instructions. The two source operands must both use the
replicate register modifier to specify the two scalar values to be used in the
comparison.

if eq s0.c, s1.c
if s0c = s1c then . . .

if ne s0.c, s1.c
if s0c 6= s1c then ...

if ge s0.c, s1.c
if s0c ≥ s1c then ...

if gt s0.c, s1.c
if s0c > s1c then ...

if le s0.c, s1.c
if s0c ≤ s1c then ...

if lt s0.c, s1.c
if s0c < s1c then ...

9.12.1 Version 2.x Flow Control Nesting Limits

The general mechanism of flow control limits described in subsection 9.11.1
applies to version 2.x as well. Version 2.x has at least the same limits as version
2.0, but some of the limits may be increased as summarized in table 9.7. The
static flow count described in subsection 9.11.1 applies to version 2.x as well.

The VS20Caps member of D3DCAPS9 is a D3DVSHADERCAPS2 0 structure that
gives the exact value for the static call nesting depth, the dynamic condition
nesting depth and the loop nesting depth. The StaticFlowControlDepth and
DynamicFlowControlDepth members give the amount of nesting allowed for
static and dynamic flow control, respectively. The static flow control depth is
always at least one, as in version 2.0. The static flow control depth applies also
to the maximum loop nesting depth; the two values are always the same but
each control structure maintains its own nesting depth.

#define D3DVS20_MIN_STATICFLOWCONTROLDEPTH 1
#define D3DVS20_MAX_STATICFLOWCONTROLDEPTH 4
#define D3DVS20_MIN_DYNAMICFLOWCONTROLDEPTH 0
#define D3DVS20_MAX_DYNAMICFLOWCONTROLDEPTH 24

330 CHAPTER 9. VERTEX SHADERS

Instruction Slots Function
dcl positionn d — declare a position output

dcl blendweightn d — declare a blend weight output
dcl blendindicesn d — declare a blend indices output

dcl psizen d — declare a point size output
dcl fogn d — declare a fog factor output

dcl normaln d — declare a normal vector output
dcl texcoordn d — declare a texture coordinate output
dcl tangentn d — declare a tangent vector output

dcl binormaln d — declare a binormal vector output
dcl tessfactorn d — declare a tessellation factor output

dcl depthn d — declare a depth output
dcl 2d s — declare a 2D texture sampler

dcl cube s — declare a cube texture sampler
dcl volume s — declare a volume texture sampler

texldl s 2 or 5 sample texture

Table 9.10: Vertex shader 3.0 instruction summary. The instructions are shown
in assembly syntax.

9.13 Vertex Shader 3.0 Instructions

In version 3.0 of the shader architecture, all output registers must be declared.
The declaration syntax is similar to that for declaring input registers and con-
sists of a declaration instruction that associates a semantic usage name and
index with the register. The output register semantics for the vertex shader are
matched with corresponding input register semantics on the pixel shader for use
in rendering.

The address register can be used to index the input and output registers in
addition to the constant registers.

Version 3.0 of the vertex shader architecture introduces the ability to sam-
ple a texture during vertex processing. The topology of the source texture is
declared with one of the dcl 2d, dcl cube or dcl volume instructions. Each of
these instructions takes a single operand that associates a sampling register sn
with a texture of the corresponding topology.

dcl 2d s
dcl cube s
dcl volume s

Once a sampling register has been declared, the texldl instruction is used to
sample the texture into a temporary register. The semantics of this instruction
are fairly complicated, so first we’ll go over the operands and then we’ll explain
the execution behavior. The destination operand d will receive the filtered
texture sample. The destination register d must be a temporary register. A
write mask can be used on the destination register to control which texture

9.13. VERTEX SHADER 3.0 INSTRUCTIONS 331

values are written. The s0 source operand provides the texture coordinates at
which the texture will be sampled. The s1 source operand is the sampler register
indicating which texture is to be sampled. A source replicate modifier can be
used on the sampler register, which will permute the sample values before the
write mask on the destination register is applied.

texldl d, s0, s1

L ← s0w + SSLODBias
if (L ≤ 0) then

L ← max(SSMaxMipLevel , 0)
filter ← SSMagFilter
q ← lookup(s0, s1, L,filter)

else
L ← max(SSMaxMipLevel , L)
filter ← SSMinFilter
q ← lookup(s0, s1, bLc,filter)
if (SSMipFilter = Linear) then

r ← lookup(s0, s1, dLe,filter)
f ← s0w − bs0wc
q ← (1− f)q + fr

endif
endif
d ← q

The lookup function samples the texture bound to the sampler at the ap-
propriate coordinates. If the texture is mipmapped, then a mipmap level must
be chosen before addressing a texture level. The w component of s0 is used to
select the mipmap level of detail. If this value is negative, then the effect is
to select the most detailed level of the texture with a magnification filter. The
fractional part of this value may be used to interpolate between levels of detail
if SS Mip Filter is set to D3DTEXF LINEAR on the sampler. The sampler states
SS Mip Map LOD Bias and SS Max Mip Level are honored for textures bound to
the vertex shader sampler registers.

For a 2D texture, the x and y components of s0 are used as the coordinates.
For a cube or volume texture the x, y and z components of s0 are taken as the
texture coordinates. A value of 〈0, 0, 0, 1〉 is returned when a texture stage is
sampled that has no bound texture.

The pseudocode for this instruction handles three basic scenarios: magnifica-
tion, minification and mipmapping. In magnification, the most detailed texture
mipmap level is used for the texture, influenced by the SS Max Mip Level sam-
pler state and the filter used is the magnification filter. In minification, the
appropriate texture level is sampled using the minification filter. Again, the
SS Max Mip Level sampler state influences the level chosen. If linear mipmap
filtering is enabled and the texture is minified, then a sample on the adjacent
mipmap level is blended with the existing minified sample. Conceputally, the
lookup function performs the sampling of a texture level using a set of texture

332 CHAPTER 9. VERTEX SHADERS

coordinates, a sampler, a level number and a sampling filter. This is purely an
attempt to illustrate the behavior of this instruction and is not meant to imply
any particular implementation or design.

9.13.1 Version 3.0 Flow Control Nesting Limits

The general mechanism of flow control limits described in subsection 9.11.1
applies to version 3.0 as well. Version 3.0 meets or exceeds the limits for version
2.x in every respect as summarized in table 9.7. The static flow count described
in subsection 9.11.1 no longer applies in version 3.0; the only limit to the number
of flow control instructions is the total number of instructions allowed in a
shader.

9.14 Manipulating Shaders

In section 5.11, we described the CreateVertexShader, GetVertexShader and
SetVertexShader methods on the device for manipulating vertex shaders. Your
application will use D3DX to assemble or compile vertex shader source code into
an appropriate DWORD array for use with CreateVertexShader.

If you need to construct shaders dynamically at run-time, an easy way to do
this is to construct the shader function as a string and use D3DX to assemble
the string into a DWORD array. The assembly is fast and a cache of already
assembled shaders can be used to avoid re-assembling shaders unnecessarily.
Dynamic construction of high-level shaders can also be performed in this way,
although compiling from high-level shader language is more CPU intensive than
assembly language.

The vertex shader constant register file properties of the device are directly
manipulated through the GetVertexShaderConstant and SetVertexShader-
Constant, methods. Each register file has its own device methods with the
corresponding data type on its arguments.

HRESULT GetVertexShaderConstantB(DWORD start,
BOOL *value,
DWORD count);

HRESULT GetVertexShaderConstantF(DWORD start,
float *value,
DWORD count);

HRESULT GetVertexShaderConstantI(DWORD start,
int *value,
DWORD count);

HRESULT SetVertexShaderConstantB(DWORD start,
const BOOL *value,
DWORD count);

HRESULT SetVertexShaderConstantF(DWORD start,
const float *value,

9.14. MANIPULATING SHADERS 333

DWORD count);
HRESULT SetVertexShaderConstantI(DWORD start,

const int *value,
DWORD count);

The start argument gives the number of the first register retrieved or stored
and the count argument gives the number of four dimensional vector values to
retrieve or store. The value parameter should point to enough storage for all
the data stored or retrieved. For example, the following code snippet stores a
single four dimensional vector value in register c15.

const float data[4] = { 1.f, 0.f, 0.f, 0.f };
device->SetVertexShaderConstantF(15, &data[0], 1);

Vertex shader constants can also be changed implicitly by the vertex shader
declaration, or when a vertex shader is set on the device if the shader includes
vsDef instructions. The contents of the constant registers persist until the
device is reset. If several vertex shaders use the same constant register layout,
then the constant registers can be loaded once and the application can switch
back and forth between several vertex shaders without reloading the constant
registers each time. The maximum number of constant registers supported by
the device is given by the MaxVertexShaderConst member of D3DCAPS9. This
value will always be at least 96 for vertex shader architecture version 1.1 as
shown in table 9.2.

A device supports vertex shaders if the VertexShaderVersion member of
D3DCAPS9 is non-zero. The least significant BYTE contains the minor version
number and the next most significant BYTE contains the major version number.
For instance, a device that supports vertex shader version 1.1 would correspond
to the value 0x0101. The macros D3DSHADER VERSION MAJOR and D3DSHADER -
VERSION MINOR can be used to extract the major and minor version numbers,
respectively, from the VertexShaderVersion member.

DWORD D3DSHADER_VERSION_MAJOR(DWORD version);
DWORD D3DSHADER_VERSION_MINOR(DWORD version);
DWORD D3DVS_VERSION(DWORD major, DWORD minor);

The high WORD of the version member contains 0xFFFE, so care should be
taken when performing version comparisons without the provided macros. The
D3DVS VERSION macro constructs a DWORD value that can be used in a direct
comparison with the VertexShaderVersion member. For example, the follow-
ing code snippet checks for version 1.1 vertex shader architecture support:

bool
vs1_1_supported(const D3DCAPS *caps)
{

return caps->VertexShaderVersion >= D3DVS_VERSION(1, 1);
}

334 CHAPTER 9. VERTEX SHADERS

A device in software vertex processing mode always supports version 3.0 of
the vertex shader architecture. Therefore it also supports versions 1.1, 2.0, and
2.x. To check for 2.x architecture support, check for a base support of shader
level 2.0 or higher and then examine the VS20Caps member of D3DCAPS9.

When w-buffering is used, a proper projection matrix must still be set on
the device, even though the projection matrix will not be used with a vertex
shader. The Direct3D runtime uses the projection matrix with w buffering to
determine some auxiliary values.

9.15 Drawing Multiple Instances

Version 3.0 of the vertex shader architecture introduces the ability to sample
different vertex streams at different rates. This allows you to draw multiple
instances of a model with data that varies per-instance as well as per-vertex.
The scene data is split into at least two streams, with one stream containing per-
vertex data and a second stream containing per-instance data. The sampling
frequency of the source streams is set with the SetStreamSourceFreq method.TODO: explain stream

frequency as counters
operating on each
stream

HRESULT SetStreamSourceFreq(UINT stream, UINT frequency);

The frequency parameter tells the runtime how many times to reuse each set
of vertex components before advancing to the next set of components within the
stream. Flags telling the runtime whether to interpret the stream as per-vertex
data or per-instance data are logically orred to the repeat count. Hardware
vertex processing with vertex shader version 3.0 supports indexed primitives
with instancing. Instancing with non-indexed primitives is only supported with
software vertex processing and a version 3.0 vertex shader. Additionally, the
per-vertex streams must be bound to consecutive streams beginning with stream
zero. The per-instance streams are bound to higher numbered streams.TODO: Diagram

showing indexed data
case

In the simplest case of drawing n instances with identical geometry and
differing per-instance data, the geometry would repeat n times and the per-
instance data would repeat once for each primitive. With differing amounts of
repetition on the two types of streams, you can achieve various levels of reuse
of vertex buffer data with a single DrawIndexedPrimitive call.

For indexed primitives, set the geometry data stream frequencies to D3D-
STREAMSOURCE INDEXEDDATA combined with the number of times the stream
data should be reused. Set the per-instance data stream frequencies to D3D-
STREAMSOURCE INSTANCEDATA combined with the reuse count.

#define D3DSTREAMSOURCE_INDEXEDDATA (1<<30)
#define D3DSTREAMSOURCE_INSTANCEDATA (2<<30)

The following code snippet demonstrates how to draw 20 instances with
identical geometry on stream zero and different per-instance data on stream one.
In this simple example, the per-vertex data consists of a position and normal and
the per-instance data holds a position offset and a diffuse color. The per-instance

9.16. SHADER DESIGN 335

offset would be used within the vertex shader to reposition each instance within
the scene and the diffuse color used in a typical lighting calculation with the
position and normal to compute the colors fed to the rasterizer.

// Structure for geometry vertex data
struct GeometryVertex
{

D3DVECTOR m_position;
D3DVECTOR m_normal;

};

// Structure for instance vertex data
struct InstanceVertex
{

D3DVECTOR m_offset;
D3DCOLOR m_diffuse;

};

// Fill vertex buffers holding the data
IDirect3DVertexBuffer9 *geometry = fill_geometry();
IDirect3DVertexBuffer9 *instances = fill_instances();

// Bind the geometry stream and repeat it 20 times per DIP
THR(device->SetStreamSource(0,

geometry, 0, sizeof(GeometryVertex));
THR(device->SetStreamSourceFreq(0,

D3DSTREAMSOURCE_INDEXEDDATA | 20));

// Bind the instance stream and repeat it 1 time per DIP
THR(device->SetStreamSource(1,

instances, 0, sizeof(InstanceVertex));
THR(device->SetStreamSourcFreq(0,

D3DSTREAMSOURCE_INSTANCEDATA | 1));

For non-indexed primitives, the geometry data streams must contain a com-
plete copy of all the vertices for each instance drawn. The geometry streams
have their frequency set to the number of instances to be drawn. The instance
streams have their frequency set to the number of vertices in an instance. This
allows each instance component to be repeated for every vertex in the geometry
for the instance.

9.16 Shader Design

Given the large range of functionality available in fixed-function vertex process-
ing, designing a shader to perform similar operations can be a daunting task.

336 CHAPTER 9. VERTEX SHADERS

Presumably, the reason you want a vertex shader instead of fixed-function pro-
cessing is because you wish to perform some custom processing not supported
by the fixed-function pipeline. However, it is likely that you will still need to
duplicate some of the functionality of the fixed-function pipeline for portions of
your vertex processing. You cannot use fixed-function processing and a vertex
shader program simultaneously; you must choose one or the other. The next
section gives vertex shader fragments that implement each of the stages of fixed-
function processing. In this section we outline a strategy for implementing a
shader from scratch.

Start with algorithm for what you want to accomplish. Next, write down
the equations for the necessary operations in each step of the algorithm. Divide
algorithm into steps that can be implemented and debugged individually and
combined to product the final result. For instance, first write a shader that in-
corporates only the position component of your algorithm and get that working
before moving on to computing color, fog, point size and texture coordinates.

For each step in your algorithm, write down the shader instructions that
implement the equations for that step. As shader instructions are very simple,
it is likely that you will need more than one instruction for all but the most
simplest of formulas. Implement these instructions in your shader. Edit and
revise the implementation until you’re confident that it is working properly.

Next, write shader instructions that combine any previously computed re-
sults for the final algorithm using the results computed from the step you just
implemented. Repeat this process for all the steps in your algorithm.

Finally, look for ways to reduce the number of instructions and constant
registers used by your shader. The presence of any mov instructions in your
shader is a good place to start. Usually a mov instruction can be eliminated by
the use of an appropriate source or destination operand in another instruction.
Look for places in your shader where you can replace a mul and add instruction
pair with a single mad instruction. Multiple scalar constants can be combined
into a single constant register. Scalars can be replicated to multiple channels to
create a vector constant using the source operand multiplexing modifier. If you
are using only part of the results of a complex instruction, consider expanding
the complex instruction to a series of simple instructions that only compute
what you need. For example, if only the x component resulting from an m4x4
instruction is used, replace it with a single dp4 instruction that transforms the
x component.

9.17 Common Computations

You may need to compute values in your vertex shader that cannot be directly
realized by a single instruction. Of course, multiple instructions can be combined
to compute results. This section outlines a few common operations that can be
used in your vertex shaders and will serve as examples to inspire you in coding

9.17. COMMON COMPUTATIONS 337

other operations.3

9.17.1 Constant Generation

Since each instruction can reference only a single constant register, using multi-
ple constant registers as source operands is illegal. You can use a mov instruction
to copy a constant to a temporary register. However, if the constant is one or
zero you can also use the conditional instructions to generate the value with-
out consuming a constant register. An implementation can recognize this as
always generating the constants one and zero, regardless of the contents of the
constant register file, and may be able to perform additional optimizations with
this knowledge.

slt r0, r0, r0 ; r0 = (r0 < r0) = <0, 0, 0, 0>
sge r0, r0, r0 ; r0 = (r0 >= r0) = <1, 1, 1, 1>

9.17.2 Fractional Part

The simple instruction expp calculates sw − bswc in the y component of its
result, which is the fractional portion of the w component of the source operand.
The complex instruction frc calculates the fractional portion of all components
in its source operand in multiple slots. However, sometimes you only need
the fractional portion of one, two, or three components of the source operand.
Using portions of the code below you can compute the fractional parts of only
the components you need. Use the frc instruction when you need the fractional
part of all four components.

; compute fractional part of r0 in r1
expp r1.y, r0.x ; r1.y = r0.x - floor(r0.x)
mov r1.x, r1.y
expp r1.y, r0.z ; r1.y = r0.z - floor(r0.z)
mov r1.z, r1.y
expp r1.y, r0.w ; r1.y = r0.w - floor(r0.w)
mov r1.w, r1.y
expp r1.y, r0.y ; r1.y = r0.y - floor(r0.y)

9.17.3 Absolute Value

The most common way of thinking of the absolute value function |x| would be
in terms of a conditional expression:

|x| =
{

x, if x ≥ 0
−x, if x < 0

3This section is based on the nVidia white paper “Where Is That Instruction? How To
Implement “Missing” Vertex Shader Instructions”, by Matthias Wloka. Used with permission.

338 CHAPTER 9. VERTEX SHADERS

Another equivalent formulation of |x| is to take the maximum of x and −x,
while −|x| becomes the minimum of x and −x.

|x| = max(x,−x) − |x| = min(x,−x)

This latter formulation can be directly computed in vertex shader instructions.

; |r0|: absolute value of r0’s components
max r0, r0, -r0

; -|r0|: negative of absolute value of r0’s components
min r0, r0, -r0

9.17.4 Division

The instruction set does not provide a scalar division instruction directly, but
you can compute x/y as the product of x and 1/y.

; r2 = r0.x / r1.x
rcp r2.x, r1.x ; 1/r1.x
mul r2.x, r2.x, r0.x ; r0.x/r1.x

9.17.5 Square Root

Similar to division, there is no scalar square root instruction. You can compute
the square root as a product of x and 1/

√
x:
√

x = x/
√

x. You might be tempted
to compute the reciprocal of the reciprocal square root, but that results in a
loss of precision.

; r1.x = square root of r0.x
rsq r1.x, r0.x ; 1/sqrt(r0.x)
mul r1.x, r1.x, r0.x ; r0.x/sqrt(r0.x) = sqrt(r0.x)

9.17.6 Conditional Selection

Occasionally you’ll want to select one of two values, v1 or v2 based on a condition
c. Without actual branching in the instruction set, you can simulate this as the
following expression.

x = cv1 + (1− c)v2

Where c is 1 when value v1 is to be selected and 0 when the value v2 is selected.
The expression above is readily computed using the mad instruction after we
compute c and 1 − c. If we are computing c from a conditional test, we can
compute 1− c by simply inverting the test used to compute c.

; r0 = (r1 < r2) ? r3 : r4
slt r0, r1, r2 ; c = (r1 < r2)
mul r3, r3, r0 ; r3 = r3*c
sge r0, r1, r2 ; c = (r1 >= r2)
mad r0, r0, r4, r3 ; r0 = c*r4 + r3

9.17. COMMON COMPUTATIONS 339

If we can compute the value v1 − v2 without any loss of precision, we can
shave off another instruction here by rewriting the above formula.

x = c(v1 − v2) + v2

; r0 = (r1 < r2) ? r3 : r4
slt r0, r1, r2 ; c = (r1 < r2)
sub r1, r3, r4
mad r0, r0, r1, r4 ; r0 = c*(r3 - r4) + r4

9.17.7 Clamping To An Interval

We can clamp a scalar value to the interval [A,B] using the min and max in-
structions with the interval endpoints stored in a constant register. All the
components of a vector can be clamped in this manner.

clamp(x,A, B) =





A, x < A
x, A ≤ x ≤ B
B, x > B

; interval [A, B]
def c0, A, B, 0, 0

; r0 = clamp(r0, A, B)
max r0, r0, c0.x
min r0, r0, c0.y

9.17.8 Floor and Ceiling

The expp instruction computes sw−bswc which we can use to compute the floor
and ceiling functions of any scalar value.

bxc = x− (x− bxc)
dxe = x + ((−x)− b−xc)

; r1.y = floor(r0.x)
expp r1.y, r0.x
add r1.y, r0.x, -r1.y

; r1.y = ceil(r0.x)
expp r1.y, -r0.x
add r1.y, r0.x, r1.y

340 CHAPTER 9. VERTEX SHADERS

9.17.9 Vector Cross Product

We can use the multiplex source operand modifier to compute a vector cross
product. Each component in the result is a difference of two terms, with each
term being the product of two components from the input vectors.

#»c = #»a × #»

b = 〈aybz − azby, azbx − axbz, axby − aybx〉

The straightforward implementation is to use two mul instructions to compute
the component product terms and then add or sub to compute the difference.
However, the mad instruction can be used to combine one of the multiply oper-
ations with the subtraction. With three-dimensional vectors, the w component
of the registers is not needed, so we use the multiplex modifier to compute
awbw − awbw, resulting in a value of zero for the w channel. Write masks can
be used on the mad instruction to avoid overwriting the w channel if so desired.

; r2 = cross(r0, r1)
mul r2, r0.yzxw, r1.zxyw
mad r2, r0.zxyw, -r1.yzxw, r2

9.17.10 Vector Normalization

A three dimensional vector is normalized by scaling the vector by the reciprocal
of its magnitude. The square of the magnitude of a vector can be computed as
a dot product of the vector with itself. It is then a simple matter to compute
the reciprocal square root and multiply this through the vector to normalize it.

dp3 r0.w, r0, r0
rsq r0.w, r0.w
mul r0, r0, r0.w

9.17.11 Transposed Matrix Multiplication

The matrix multiply instructions, such as m4x4, assume that the matrix has been
stored in the constant register file in a transposed form, with matrix columns
stored in each constant register. If you have a matrix stored in the constant reg-
ister file with one row per register, you can still perform a matrix multiplication
with multiple simple vertex shader instructions.

; c0-c3 are the 4 rows of the 4x4 matrix
; r0 is the 4D point to be transformed
mul r0, c0, r1.x
mad r0, c1, r1.y, r0
mad r0, c2, r1.z, r0
mad r0, c3, r1.w, r0

The method for a smaller matrix (2× 3, 3× 3, etc.), or a smaller dimension
point, is similar.

9.17. COMMON COMPUTATIONS 341

9.17.12 Signum Function

The signum function returns the sign of its argument:

signum(x) =




−1, x < 0
0, x = 0
1, x > 0

To compute this, we can perform two exclusive comparisons and subtract the
result of one from the other. We get the correct result because a scalar value
cannot simultaneously be positive and negative. If the value is positive, then
we compute 1− 0 = 1. If the value is negative then we compute 0− 1 = −1.

; constant for zero
def c0, 0, 0, 0, 0

; r1 = signum(r0)
slt r1, r0, c0 ; r1 = (r0 < 0)
slt r2, c0, r0 ; r2 = (0 < r0)
sub r1, r2, r1

9.17.13 Minimum and Maximum Vector Component

We can compute a vector with a 1 in the component that has the minimum
magnitude of all the components in the vector. Similarly, we can compute
a vector with a 1 in the component tha thas the maximum magnitude of all
components in the vector. This can be useful as a modulating factor to extract
the minimum or maximum vector component.

The minimum component is obtained by performing two comparisons on the
source register and combining their results. The comparisons use the multiplex-
ing source operand modifier to perform three component comparisons in a single
slot.

mincomp(#»a) =




〈1, 0, 0, 0〉, |ax| ≤ |ay| and |ax| < |az|
〈0, 1, 0, 0〉, |ay| < |ax| and |ay| ≤ |az|
〈0, 0, 1, 0〉, |az| ≤ |ax| and |az| < |ay|

; compute r1 = mincomp(r0)
max r1, r0, -r0 ; r1 = |r0|
slt r2, r1, r1.zxyw ; x < z, y < x, z < y
sge r1, r1.yzxw, r1 ; y >= x, z >= y, x >= z
min r1, r2, r1 ; r1 = r1 && r2

The maximum component is obtained in the same manner.

maxcomp(#»a) =




〈1, 0, 0, 0〉, |ax| ≥ |ay| and |ax| > |az|
〈0, 1, 0, 0〉, |ay| > |ax| and |ay| ≥ |az|
〈0, 0, 1, 0〉, |az| ≥ |ax| and |az| > |ay|

342 CHAPTER 9. VERTEX SHADERS

; compute r1 = maxcomp(r0)
max r1, r0, -r0 ; r1 = |r0|
slt r2, r1.zxy, r1 ; z < x, x < y, y < z
sge r1, r1, r1.yzx ; x <= y, y <= z, z <= x
min r1, r2, r1 ; r2 = r1 && r2

9.17.14 Trigonometric Functions

While vector and digital signal processing operations are well supported by
the instruction set, trigonometric functions are one area where you must create
your own functions from scratch. Several different approaches are outlined here,
but the basic idea behind most of them is to perform some sort of polynomial
approximation the function and compute the value of the polynomial function.
Another approach is to use a table lookup scheme and interpolate between values
in the table.

Power Series Approximation of Cosine and Sine

The Taylor series expansion for cos(x) and sin(x) are:

cos(x) =
∞∑

n=0

(−1)nx2n

(2n)!

= 1− x2

2!
+

x4

4!
− x6

6!
+ · · ·

sin(x) =
∞∑

n=1

(−1)n−1x2n−1

(2n− 1)!

=
x

1!
− x3

3!
+

x5

5!
− x7

7!
+ · · ·

The following vertex shader snippet computes the power terms of x in a
temporary register. The first four coefficients of each power series expansion are
stored in the constant register file. By using a 4D dot product, the coefficients
are multiplied by the powers and summed.

; scalar r0.x = cos(r1.x), r0.y = sin(r1.x)

def c0, PI, 1/2, 2*PI, 1/(2*PI)
def c1, 1.0, -1/2, 1/24, -1/720
def c2, 1.0, -1/6, 1/120, -1/5040

; normalize argument into [-pi, +pi]
mad r0.x, r1.x, c0.w, c0.y
expp r0.y, r0.x
mad r0.x, r0.y, c0.z, -c0.x

9.17. COMMON COMPUTATIONS 343

; generate 1, (r0.x)^2, .. (r0.x)^6
dst r2.xy, r0.x, r0.x
mul r2.z, r2.y, r2.y
mul r2.w, r2.y, r2.z

; generate r0.x, (r0.x)^3, .., (r0.x)^7
mul r0, r2, r0.x
dp4 r0.y, r0, c2 ; compute sin(r0.x)
dp4 r0.x, r2, c1 ; compute cos(r0.x)

Table Lookup Cosine and Sine

A common way to evaluate complex functions is to build a data table of func-
tion values and linearly interpolate between the two closest values.4 Computing
trigonometric functions by table lookup is quite fast, provided you have enough
constant registers to devote to the table. This snippet uses only the two compo-
nents of the constant registers for the table values, so additional function tables
can be overlapped with this table for sin x and cos x. For simplicity, the example
shown here uses a table with only 6 entries for the entire range of [0, 2π]. In
practice, a table with 16 to 32 entries should be used for better accuracy. An-
other alternative is to use a table with fewer entries and exploit the symmetry
of the trigonometric functions:

sin(x) = − sin(−x), 0 ≤ x ≤ π
cos(x) = cos(−x), 0 ≤ x ≤ π

at the cost of a few additional instructions.

def c0, 1, 5, 0, 1/(2*PI)

; the table values, shown symbolicly
def c1, SIN(0.0 * 2*PI), COS(0.0 * 2*PI), 0, 0
def c2, SIN(0.2 * 2*PI), COS(0.2 * 2*PI), 0, 0
def c3, SIN(0.4 * 2*PI), COS(0.4 * 2*PI), 0, 0
def c4, SIN(0.6 * 2*PI), COS(0.6 * 2*PI), 0, 0
def c5, SIN(0.8 * 2*PI), COS(0.8 * 2*PI), 0, 0
def c6, SIN(1.0 * 2*PI), COS(1.0 * 2*PI), 0, 0

; scalar r0.x = cos(r1.x), r0.y = sin(r1.x)
mul r0.x, c0.w, r1.x ; normalize input
expp r1.y, r0.x ; to [0..1] range

; scale to table-size and add table-base
mad r0.w, c0.y, r1.y, c0.x

4This shader snippet originally provided by Phil Teschner.

344 CHAPTER 9. VERTEX SHADERS

mov a0.x, r0.w
expp r1.yw, r0.w ; use fractional part for lerp
add r1.x, r1.w, -r1.y ; use (1 - fractional part) for lerp

; linear interpolation
mul r0.xy, c[a0.x].xy, r1.x
mad r0.xy, c[a0.x + 1].xy, r1.y, r0.xy

Arctangent

The following vertex-shader fragment computes tan−1 to a precision of 1e-5
using a remodulated Pade/Chebychev expansion5. The arc tangent is evaluated
in the interval [−1, 1) and extended towards −∞ or +∞ using the formulae
tan−1(x) = π/2− tan−1(1/x), x > 1 and tan−1(x) = − tan−1(−x).

; c0,c1,c2,c3 and r0,r1,r2,r3,r4 are used
def c0, 1.98888994, 2.13982195, 0.49868736, 0.01307137
def c1, 1.98888995, 2.80278416, 1.03518917, 0.08158508
def c2, -1.0, 1.0, -1.0, 0.0
def c3, -PI/2.0, 0.0, PI/2.0, 0.0

; compute r0.x = arctan(r0.x)
slt r1.xy, r0.xx, c2.xy ; range check: -inf..-1, -inf..1
sge r1.zw, r0.xxxx, c2.xyxy ; range check: -1..+inf, 1..+inf
mul r2.xyz, r1.xyw, r1.xzw ; && conditions
rcp r0.yz, r0.x ; argument’s reciprocal: (1/x, x, 1/x)
dp3 r0, r2.xyz, r0.yxz ; (t, t, t, t)
dst r0, r0, r0 ; (1, t^2, t, t)
mul r4, r0.xyyy, r0.xxzy ; (1, t^2, t^3, t^4)
mul r3, r4.xxyw, r0.xyyy ; (1, t^2, t^4, t^6)
mul r4, r3.xyzw, r0.zzzz ; (t, t^3, t^5, t^7)
dp4 r3, r3, c1 ; denominator: e + ft^2 + gt^4 + ht^6
dp4 r4, r4, c0 ; numerator: at + bt^3 + ct^5 + dt^7
rcp r3, r3
mul r3, r3, r4 ; arctan(t) between [-1, 1)
dp3 r0, r2, c2 ; selecting correct sign
dp3 r1, r2, c3 ; selecting correct offset
mad r0.x, r0, r3, r1 ; extending domain to (-inf, +inf)

9.17.15 Exponential and Logarithmic Functions

The simple intructions expp and logp compute a 10 bit precision result in a
single slot. The complex instructions exp and log compute a full 21 bits of
precision in 10 slots or less. If you need more precision than that provided by
the simple instructions, but less than that provided by the complex instructions,

5This shader snippet by Marco Salvi

9.17. COMMON COMPUTATIONS 345

you may be able to achieve a satisfactory result in less slots than the complex
instructions. As with the trigonometric functions, power series approximations
to the exponential and logarithm functions may be used in combination with
some space from the constant register file. (The complex instructions exp and
log do not require any constant registers.)

Exponential

The following snippet computes a full-precision base 2 exponential of its argu-
ment by a power-series approximation.

; power series coefficients
; (shown on multiple lines for space reasons)
def c0, 1.00000000, -6.93147182e-1,

2.40226462e-1, -5.55036440e-2
def c1, 9.61597636e-3, -1.32823968e-3,

1.47491097e-4, -1.08635004e-5

; compute scalar r0.z = exp2(r1.z)
expp r0.xy, r1.z
dst r1, r0.y, r0.y
mul r1, r1.xzyw, r1.xxxy ; 1,x,x^2,x^3
dp4 r0.z, r1, c0
dp4 r0.w, r1, c1
mul r1.y, r1.z, r1.z ; compute x^4
mad r0.w, r0.w, r1.y, r0.z ; add the first to the last 4 terms
rcp r0.w, r0.w
mul r0.z, r0.w, r0.x ; multiply by 2^I

Logarithm

The following snippet computes a full-precision base 2 logarithm of its argument
by a power-series approximation.

def c0, 1.44268966, -0.721165776, 0.478684813, -0.347305417
def c1, 0.241873696, -0.137531206, 5.20646796e-2, -9.31049418e-3
def c2, 1.0, 0.0, 0.0, 0.0

; scalar r0.x = log2(r1.x)
logp r0.x, r1.x
add r0.y, r0.x, -c2.x ; subtract 1.0
dst r1, r0.y, r0.y
mul r1, r1.xzyw, r1.xxxy ; 1, x, x^2, x^3
dp4 r0.z, r1, c0
dp4 r0.w, r1, c1
mul r1.y, r1.z, r1.z ; compute x^4
mad r0.w, r0.w, r1.y, r0.z ; add the first to the last 4 terms

346 CHAPTER 9. VERTEX SHADERS

r0 scratch
r1 scratch
r2 scratch
r3 (Rd) scratch, light vector
r4 (Rr, Rf, Rl) scratch, reflectance, eye or light vectors
r5 (Rs, Rv) scratch, sphere vector, eye vector
r6 (Rx) scratch, specular color
r7 (Rc) scratch, diffuse color
r8 (RH) scratch, half-angle vector
r9 (Rh) homogeneous eye space position
r10 (Re) cartesian eye space position
r11 (Rn) eye space normal

Table 9.11: Register layout for fixed-function emulation.

mad r0.x, r0.w, r0.y, r0.x ; exponent add

9.18 Fixed-Function Processing

This section presents the fixed-function vertex processing covered in the previous
chapters as vertex shader program elements6. You can create any combination
of fixed-function processing by joining these shader program elements together
and resolving the register references.

9.18.1 Register Layout

A layout of the temporary registers used in the fixed-function pipeline shader
elements is given in table 9.11. Most of the registers are used as temporary
scratch storage space for storing intermediate results. Alternate names for some
of the registers are used to aid understanding in the shader elements following
this subsection. The alternate names are shown in parenthesis.

The input register layout to the shader is arbitrary and depends on the
application’s organization of data. In the following shader elements, the in-
put position and normal data are designated by the symbols vPOSITION and
vNORMAL, respectively.

9.18.2 Constant Register Layout

The following table gives the layout of the constant registers used in the fixed-
function pipeline shader elements.

Register Meaning or Value

6This section is based on a presentation by Erik Lindholm of NVIDIA Corporation, used
with permission.

9.18. FIXED-FUNCTION PROCESSING 347

c[NORMAL0 MATRIX X] inverse transpose world × view matrix 0
c[NORMAL0 MATRIX Y]
c[NORMAL0 MATRIX Z]
c[NORMAL1 MATRIX X] inverse transpose world × view matrix 1
c[NORMAL1 MATRIX Y]
c[NORMAL1 MATRIX Z]
c[NORMAL2 MATRIX X] inverse transpose world × view matrix 2
c[NORMAL2 MATRIX Y]
c[NORMAL2 MATRIX Z]
c[NORMAL3 MATRIX X] inverse transpose world × view matrix 3
c[NORMAL3 MATRIX Y]
c[NORMAL3 MATRIX Z]

c[WORLDVIEW0 MATRIX X] world × view matrix 0
c[WORLDVIEW0 MATRIX Y]
c[WORLDVIEW0 MATRIX Z]
c[WORLDVIEW1 MATRIX X] world × view matrix 1
c[WORLDVIEW1 MATRIX Y]
c[WORLDVIEW1 MATRIX Z]
c[WORLDVIEW2 MATRIX X] world × view matrix 2
c[WORLDVIEW2 MATRIX Y]
c[WORLDVIEW2 MATRIX Z]
c[WORLDVIEW3 MATRIX X] world × view matrix 3
c[WORLDVIEW3 MATRIX Y]
c[WORLDVIEW3 MATRIX Z]
c[PROJECTION MATRIX X] projection matrix
c[PROJECTION MATRIX Y]
c[PROJECTION MATRIX Z]
c[PROJECTION MATRIX W]
c[COMPOSITE MATRIX X] world × view × projection matrix
c[COMPOSITE MATRIX Y]
c[COMPOSITE MATRIX Z
c[COMPOSITE MATRIX W]
c[TEXTURE MATRIX X] texture matrix
c[TEXTURE MATRIX Y]
c[TEXTURE MATRIX Z]
c[TEXTURE MATRIX W]

c[GLOBAL ILLUMINATION] RGBA, emission + global ambient
c[LIGHT POSITION] x, y, z
c[LIGHT HALF ANGLE] x, y, z, for infinite light w/local viewer
c[LIGHT AMBIENT] RGB, light × material
c[LIGHT DIFFUSE] RGB, light × material
c[LIGHT SPECULAR] RGB, light × material, specular power

c[LIGHT ATTENUATION] a0, a1, a2, spot power
c[LIGHT SPOT DIRECTION] x, y, z, cos(CUTOFF)

348 CHAPTER 9. VERTEX SHADERS

c[POINT PARAMETER] size, max, min
c[POINT ATTENUATION] a0, a1, a2

c[TEXTURE OBJECT PLANE X] x, y, z, w
c[TEXTURE OBJECT PLANE Y] x, y, z, w
c[TEXTURE OBJECT PLANE Z] x, y, z, w
c[TEXTURE OBJECT PLANE W] x, y, z, w
c[TEXTURE EYE PLANE X] x, y, z, w
c[TEXTURE EYE PLANE Y] x, y, z, w
c[TEXTURE EYE PLANE Z] x, y, z, w
c[TEXTURE EYE PLANE W] x, y, z, w

c[EYE POSITION] x, y, z, w
c[CONSTANT0] -1, 0, 1, 0.5

9.18.3 Coordinate Transformation

Vertex positions and normals are transformed by a concatenated world and view
matrix. If skinning is being used, the position and normal must be transformed
by each skinning matrix.

; position
m4x4 Rh, vPOSITION, c[MODELVIEW0_MATRIX_X]
m4x4 r3, vPOSITION, c[MODELVIEW1_MATRIX_X]
m4x4 r5, vPOSITION, c[MODELVIEW2_MATRIX_X]
m4x4 r7, vPOSITION, c[MODELVIEW3_MATRIX_X]
; normal
m3x3 Rn, vNORMAL, c[NORMAL0_MATRIX_X]
m3x3 r2, vNORMAL, c[NORMAL1_MATRIX_X]
m3x3 r4, vNORMAL, c[NORMAL2_MATRIX_X]
m3x3 r6, vNORMAL, c[NORMAL3_MATRIX_X]

9.18.4 Vertex Blending

If vertex blending is used, the transformed positions and normals must be com-
bined through the vertex blend weights to get the final position and normal.

; weight preparation
mov r0, c[WEIGHT]
mov r0.w, c[CONSTANT0].z ; if need new weight
dp4 r0.y, r0, c[CONSTANT0].xyyz ; or new 2nd weight
dp4 r0.z, r0, c[CONSTANT0].xxyz ; or new 3rd weight
dp4 r0.w, r0, c[CONSTANT0].xxxz ; or new 4th weight

; position/normal blend
mul Rh, r0.x, Rh ; 1st weight
mul Rn, r0.x, Rn

9.18. FIXED-FUNCTION PROCESSING 349

mad Rh, r0.y, r3, Rh ; 2nd weight
mad Rn, r0.y, r2, Rn
mad Rh, r0.z, r5, Rh ; 3rd weight
mad Rn, r0.z, r4, Rn
mad Rh, r0.w, r7, Rh ; 4th weight
mad Rn, r0.w, r6, Rn

9.18.5 Position Output

Finally, the blended vertex position must be transformed to homogeneous clip
space and output to the oPos register. The blended normal is used in further
lighting calculations but not output by the shader.

m4x4 oPos, Rh, c[PROJECTION_MATRIX_X]

If skinning is not being used, the shader can be simplified slightly by using
a composite matrix containing the world, view and projection transformations.
In this case, the oPos output can be computed directly from the vertex input.

m4x4 oPos, vPOSITION, c[COMPOSITE_MATRIX_X]

9.18.6 Normalize Eye Normal

If scaling transformations are present in the world or view matrices, then the
eye-space vertex normal may need renormalizing. To normalize a vector, we
need to divide the components of a vector by its magnitude. We can compute
the magnitude of the vector by computing a dot-product of the vector with
itself.

dp3 Rn.w, Rn, Rn
rsq Rn.w, Rn.w
mul Rn, Rn, Rn.w

9.18.7 Non-Homogeneous Eye Position

To compute the cartesian eye-space coordinate for the position, we need to
divide the homogeneous position by its w component.

rcp r0.w, Rh.w
mul Re, Rh, r0.w

9.18.8 Eye Space Vectors

The distance between the vertex and the eye position is calculated.

add r0, -Re, c[EYE_POSITION]
dp3 r0.w, r0, r0
rsq r1.w, r0.w
mul Rv, r0, r1.w
dst Rf, r0.w, r1.w

350 CHAPTER 9. VERTEX SHADERS

9.18.9 Fog Output

If you are using fog, you’ll need to compute a value for the oFog register. You
can compute the fog in any manner you wish. Shown here are two examples for
computing fog.

; radial fog
mov oFog.x, Rf.y

; linear Z fog
mov oFog.x, -Re.z

9.18.10 Point Parameters

For point sprite primitives, the vertex shader can compute the point size into
the oPts output register.

dp3 r0.w, Rf, c[POINT_PARAMETER_ATTENUATION]
rsq r0.w, r0.w
mul r0.w, r0.w, c[POINT_PARAMETER].x
mul r0.w, r0.w, c[POINT_PARAMETER].y
max oPts.x, r0.w, c[POINT_PARAMETER].z

9.18.11 Lighting

Computing the lighting for a vertex is probably where your vertex shaders will
most differ from each other. Recall that the fixed-function pipeline computes
the light for each vertex as a sum of all the light reflected at that vertex. Each
of these terms is represented in a vertex shader by a group of instructions that
computes the reflected light at the vertex for a given source of light within the
scene. All of these terms are accumulated to give the final diffuse and specular
color components for the vertex.

For instance, if there are 3 lights enabled in the scene, then the constant
register file is loaded with the corresponding data for the definition of the three
lights. The vertex shader includes three groups of instructions that computes
the reflected light for each enabled light and adds it to a running total. The
final total reflected light is output in the oD0 and oD1 registers for the total
diffuse and specular reflected light, respectively.

Initialization

; diffuse only
mov Rc, c[GLOBAL_ILLUMINATION]

; diffuse and specular
mov Rc, c[GLOBAL_ILLUMINATION]
mov Rx, c[CONSTANT0].y

9.18. FIXED-FUNCTION PROCESSING 351

Infinite Light or Infinite Viewer

dp3 r0.x, Rn, c[LIGHT_POSITION]
dp3 r0.y, Rn, c[LIGHT_HALF_ANGLE_VECTOR]
mov r0.w, c[LIGHT_SPECULAR].w
lit r0, r0
mad Rc.xyz, r0.x, c[LIGHT_AMBIENT], Rc
mad Rc.xyz, r0.y, c[LIGHT_DIFFUSE], Rc
; use Rc here for a single color
mad Rc.xyz, r0.z, c[LIGHT_SPECULAR], Rx

Spotlight, Local Viewer

; light direction/distance vectors
add r0, -Re, c[LIGHT_POSITION]
dp3 r0.w, r0, r0
rsq r1.w, r0.w
mul r1, r0, r1.w ; direction
dst Rd, r0.w, r1.w ; distance

; half-angle vector
add Rh, Rv, Rl
; normalize
dp3 Rh.w, Rh, Rh
rsq Rh.w, Rh.w
mul Rh, Rh, Rh.w

; distance attenuation
dp3 Rd.w, Rd, c[LIGHT_ATTENUATION]
rcp Rd.w, Rd.w

; spotlight cone attenuation
dp3 r0.y, Rl, -c[LIGHT_SPOT_DIRECTION]
add r0.x, r0.y, -c[LIGHT_SPOT_DIRECTION].w
mov r0.w, c[LIGHT_ATTENUATION].w
lit r0, r0
mul Rd, Rd.w, r0.z

dp3 r0.x, Rn, Rl
dp3 r0.y, Rn, RH
mov r0.w, c[LIGHT_SPECULAR].w
lit r0, r0
mul r0, r0, Rd.w
mad Rc.xyz, r0.x, c[LIGHT_AMBIENT], Rc
mad Rc.xyz, r0.y, c[LIGHT_DIFFUSE], Rc
; use Rc here for a single color

352 CHAPTER 9. VERTEX SHADERS

mad Rc.xyz, r0.z, c[LIGHT_SPECULAR], Rx

Lighting Output

; diffuse only
mov oD0, Rc

; diffuse and specular
mov oD0, Rc
mov oD1, Rx

9.18.12 Texture Coordinate Generation

Texture coordinates can be generated directly from the vertex data or can be
passed to the shader. Here we show shader instructions for generating texture
coordinates similar to the fixed-function pipeline.

; pass-thru
mov r0, v[TEX0]

Initialization

; reflection vector
mul r0, Rn, c[EYE_POSITION].w
dp3 Rr.w, Rn, Rv
mad Rr, Rr.w, R0, -Rv

; sphere map vector
add r0, c[CONSTANT0].yyzy, Rr
dp3 r0.w, r0, r0
rsq r0.w, r0.w
mul r0.xyz, r0, c[CONSTANT0].wwyy
mad Rs, r0.w, r0, c[CONSTANT0].wwyy

Texture Coordinate Generation

The texture coordinates can be generated from a sphere mapping, the vertex
normal

; object space plane
m4x4 r0, vPOSITION, c[TEXTURE_OBJECT_PLANE_X]

; eye space plane
m4x4 r0, Rh, c[TEXTURE_EYE_PLANE_X]

; sphere map
mov r0.xy, Rs

9.19. BEYOND FIXED-FUNCTION PROCESSING 353

; normal vector
mov r0.xyz, Rn

; reflection vector
mov r0.xyz, Rr

Texture Coordinate Transform

The texture coordinates can be transformed by a matrix before writing to the
appropriate output register.

m4x4 oT0, r0, c[TEXTURE_MATRIX_X]

9.19 Beyond Fixed-Function Processing

With a vertex shader program, we are not limited to the processing provided by
the fixed-function pipeline. We are only limited by the instruction set, the size
of the constant register file and the maximum size of a vertex shader program.

For instance, a vertex shader could provide for a large number of lights
compared to the fixed-function pipeline. Each light’s definition is stored in the
constant register file and the vertex shader computes each light’s contribution
to a vertex and adds it to a running total.

A vertex shader can provide for a much wider range of fog effects when
the fixed-function fog factor formulas are overly restrictive. Fog can be created
based on vertex height, or any other formula of the vertex data.

A vertex shader can implement vertex-based color keying. The transparency
of each vertex can be computed from its color, position or other vertex data.
Since the vertex shader also computes lighting, a color key effect can be applied
to the vertex based on the lit color or the unlit color.

A common approach in scientific visualization applications is to apply a false
color map to vertices based on their position. This can be achieved per-vertex
with a vertex shader that computes the color of a vertex from its position.

Although a vertex shader has access to only a single vertex, the constant reg-
ister file can be used to pass information about the current frame being rendered
as well as information about previous and future frames. For instance, the con-
stant registers can be loaded with the transformation matrix for the previous,
current, and subsequent frames. The vertex shader can use this information to
create special temporal effects on the vertex data.

Vertex shader programs are more powerful when used in conjunction with
pixel shader programs. In this scenario, the vertex shader program computes
parameters to the pixel shader on a per-vertex basis. Usually these rendering
parameters are passed through to the pixel shader through the texture registers.
The texture output registers have a wider dynamic range than the color registers,
which are clamped to the interval [0, 1] on output from the vertex shader. The
rasterizer will interpolate texture coordinates in a perspective correct manner,

354 CHAPTER 9. VERTEX SHADERS

reducing distortion in perspective projections. The pixel shader will then use the
interpolated texture coordinates either for direct texture lookup, or as additional
inputs to a computation for per-pixel effects.

Vertex shaders can also be used to compress the size of a vertex. Remember
that vertex declarations allow us to declare the data type of a vertex component.
While the fixed-function pipeline expects vertices in a particular format, vertex
shaders can use other representations for vertex components. For instance,
with the fixed-function pipeline vertex normals are always encoded as a triplet
of floats, while with a vertex shader you could use D3DDECLTYPE SHORT4 to
encode the normal as a signed short integer. This would reduce the size for a
surface normal vertex component from 12 bytes to 8 bytes at the expense of
some shader instructions for providing the appropriate scaling of the encoded
normal value. Similar tradeoffs can be made for other vertex components to
reduce the size of a vertex further.

9.20 rt VertexShader Sample Application

The sample code accompanying this book includes a program called rt Vertex-
Shader that allows you to interactively explore vertex shaders applied to a mesh.
With this program you can load a mesh from a .x file and interactively write
and assemble a vertex shader to be used with the mesh.

9.21 Vertex Shader SDK Samples

Several of the samples provided in the SDK use vertex shaders. In this section
we’ll briefly describe the vertex shaders used in the SDK samples. All of the
vertex shaders discussed here are listed after this section at the end of the
chapter. The vertex shaders in the SDK samples are not necessarily optimized,
they are only intended to demonstrate a particular technique or effect.

9.21.1 BumpSelfShadow

This advanced bump-mapping sample uses four different vertex shaders. The
sample also uses pixel shaders when they are supported by the device. For
reference while examining the vertex shaders, the constant registers used by
this sample are given in table 9.13.

The shaders in listing 9.1, listing 9.2 and listing 9.3 are used when no pixel
shaders are supported. The first shader is used to render the diffuse color into
a secondary render target and is stored in the member variable m dwShadow-
Shader in the source code. Lines 18–19 of this shader use the world matrix to
transform the normal and binormal (or tangent) of the vertex into the same
coordinate system as the light direction vector. Lines 23–24 compute a cross
product of the normal and binormal to create the third axis of a coordinate
system. This coordinate system is then used in lines 27–29 to transform the
light direction vector. These computations are typical of tangent space bump

9.21. VERTEX SHADER SDK SAMPLES 355

Register(s) Meaning
0, 1, 2, 3 World matrix
8, 9, 10, 11 Composite of World, View and Projection matrices.
12 Normalized light direction vector
16, 17, 18, 19 Composite of World and View matrices.
32 〈1, 1, 1, 1〉
33 〈0.5, 0.5, 0.5, 0.5〉

Table 9.13: BumpSelfShadow vertex shader constants.

mapping, which will be covered in more detail in chapter 12. The z component
of the transformed vector is then used as the diffuse color of the object on line
31, while the vector itself is used as the texture coordinate for stage 1.

The second shader is used to compute the dot product of the horizon textures
and the basis function textures into an additional render target and is stored in
the member variable m dwBasisShader in the source code. This shader is very
similar to the shadow shader. On lines 34–38 the transformed light vector is
biased and scaled before being used as the texture coordinates.

The third shader is used when pixel shaders are not supported as well as
when they are supported. It is stored in the member variable m dwBumpShader.
This shader is very similar to the basis shader except that the sense of the light
vector is reversed before it is transformed on lines 28–30. In other words, the
vector that is transformed is from the object to the light, and not from the light
to the object.

The fourth vertex shader in the BumpSelfShadow sample is used only when
pixel shaders are supported by the device and is shown in listing 9.4. It is stored
in the member variable m dwShadowShader in the sample code.

9.21.2 BumpWaves

In this sample, the vertex shader is used to compute the rippling water bump
mapping effect when this effect is not supported by the fixed-function pipeline.
The shader appears in listing 9.5. Here, the shader computes the texture coordi-
nates from a the vertex position. First, lines 6–8 transform the input position by
the composite World and View matrices. Then, lines 12–14 compute the (u, v)
texture coordinates by dividing the x and y components by the z component
and adding an offset.

9.21.3 DolphinVS

In the DolphinVS sample, vertex shaders are used to perform tweening anima-
tions between three poses of the dolphin. Note that this cannot be performed
directly with the fixed-function pipeline, which supports tweening between two
poses. The sample also provides caustic effects with a second rendering pass.
Four vertex shaders are used: two for rendering the dolphin and two for ren-
dering the sea floor. Each pair of shaders provides the effects for the two-pass

356 CHAPTER 9. VERTEX SHADERS

Register Usage
v0 Position for dolphin pose 1
v1 Position for dolphin pose 2
v2 Position for dolphin pose 3
v3 Normal for dolphin pose 1
v4 Normal for dolphin pose 2
v5 Normal for dolphin pose 3
v6 Texture coordinates for all poses

Table 9.14: Input registers used by the DolphinVS sample

rendering: one for normal appearance and a second for the caustic effect. We
will only discuss the shaders for the dolphin model; the sea floor shaders are
similar.

The dolphin is first tweened between the three poses and rendered normally
in listing 9.6. The input registers used by the shaders for both passes are given
in table 9.14. Lines 24–28 perform the tweening on the input position before it is
transformed into homogeneous clip space by line 31. Similarly, the three normals
are tweened in lines 41–45. Lines 48–52 perform a simple lighting calculation
between the tweened surface normal #»n and the light direction

#»

l by the formula
A+D #»n · #»

l , where D is the diffuse color and A is the global ambient color. The
input texture coordinates are copied directly to the output. The camera space
position computed on line 34 is used to compute the fog factor in lines 67–70.

The caustic effect shader is shown in listing 9.7. The only difference from
the first shader is that the texture coordinates for stage 0 are computed from
the x and z components of the camera space position on line 52.

9.21.4 SkinnedMesh

The SkinnedMesh sample can perform skinning in a variety of methods. When
using vertex shader based skinning with four blend matrix indices per vertex,
the shader shown in listing 9.8 is used. Three other vertex shaders are used by
the sample, corresponding to the case where 1, 2, or 3 blend matrix indices per
vertex are used. We will discuss the most complicated case of 4 blend matrix
indices per vertex, the other shaders are similar.

The blending of the vertex position and normal are similar to the Dolphin-
VS sample. Each vertex includes three blend weights and four blend matrix
indices. The fourth weight is computed by subtracting the sum of the other
three weights from 1 in lines 35–36. As mentioned in section 5.8, a card may not
support the UBYTE4 vertex component data type. This shader passes the blend
matrix indices as a color, which works on all cards. However, the components of
a color are expanded to floating-point values in the range [0, 1], while a UBYTE4
component would be expanded to integers in the range [0, 255]. Line 32 scales
the value from the [0, 1] range to the proper range for indexing an array of
matrices stored in the constant register file.

9.21. VERTEX SHADER SDK SAMPLES 357

The blending of the position and normal is computed in lines 39–72. For each
set of blend weight and index, computation is similar. First, the index is moved
into the address register and used to access the constant register file to obtain
the appropriate transformation matrix. In this sample, the matrices are stored
beginning at register c9, so the offset of 9 is added to the address register in each
case. The position and normal are transformed into temporary registers. The
values in the registers are weighted by the appropriate blend weight and added
to the running total. (The first set is simply stored to initialize the running
total.)

After the weighted sum of the position and normal has been computed, the
position is transformed into homogeneous clip space in line 76. Line 75 ensures
that the position has a valid w component before being transformed by the
4 × 4 projection matrix. Finally, the skinned normal is normalized and used
in a standard diffuse lighting model to compute the output colors. Texture
coordinates are copied through unchanged.

9.21.5 SphereMap

Sphere mapping is a common environment mapping technique, but it is not
supported directly by the fixed-function pipeline in Direct3D 8.1. However,
sphere mapping can be performed in a vertex shader as is demonstrated by this
sample. The details of sphere mapping are discussed in chapter 12, we will only
discuss the shader here. The shader appears in listing 9.9. After computing the
camera space reflection and view vector, the texture coordinates are computed
in lines 27–30.

9.21.6 VertexBlend

The VertexBlend sample in the SDK performs a very simple form of vertex skin-
ning, or blending. The vertex shader used by this sample appears in listing 9.10.
The position is transformed by two world matrices and a linear interpolation
between the two transformed positions is computed in lines 25–39. Lines 42–
45 transform the interpolated position into homogeneous clip space to produce
the output position. Similarly, the normals are transformed and interpolated in
lines 50–64. The normals are assumed to be normalized in the input data, so
they can be used directly in computing the diffuse lighting in lines 67–71. The
texture coordinates are copied directly to the output without modification.

9.21.7 VertexShader

The VertexShader sample uses a vertex shader to procedurally displace the
input geometry. This sample also demonstrates compressed vertex components
by declaring position component as a two floating-point values. Lines 17–20
“decompress” the position component by using the input values as the x and z
coordinate of the vertex, while the y and w coordinates of the vertex are taken
from a constant register.

358 CHAPTER 9. VERTEX SHADERS

Lines 23–35 calculate the value of θ used for the trigonometric functions used
to calculate the surface displacement. Lines 38–51 compute the value of cos θ
and sin θ. The diffuse color is computed from cos θ in lines 54–55 and the value
of sin θ is used to scale the height of the input vertex in line 58. Finally, the
position is transformed into homogeneous clip space as the output position.

9.21. VERTEX SHADER SDK SAMPLES 359

Listing 9.1: BumpShader.vsh: BumpSelfShadow shader 1.

1 vs.1.0
2

3 ; Constants
4 ;
5 ; c0-c3 Object
6 ; c4-c7 Projection
7 ; c8-c11 Total matrix
8 ; c12 - Light Direction (In World Space)
9 ;

10 ; Input
11 ;
12 ; V0 - Position
13 ; V7 - Texture
14 ; V3 - Normal
15 ; V8 - Tangnet
16

17 ; Take normal and binormal into texture space first
18 m3x3 r7, v8, c0
19 m3x3 r8, v3, c0
20

21 ; Cross product orientation flip
22 ; is content dependent
23 mul r0, r7.zxyw, -r8.yzxw
24 mad r5, r7.yzxw, -r8.zxyw, -r0
25

26 ; transform the light vector
27 dp3 r6.x, r7, c12
28 dp3 r6.y, r5, c12
29 dp3 r6.z, r8, c12
30

31 mov oD0.xyzw, -r6.z
32

33 ; this is also our texture coordinate
34 ; on our basis
35 mul oT1.xyz, -r6.xyz, c33
36 ; mov the z value into all the values of the color
37

38 ; mov oT1, c33
39

40 ; transform into projection space
41 m4x4 oPos, v0, c8
42 mov oT0.xy, v7

360 CHAPTER 9. VERTEX SHADERS

Listing 9.2: BumpShader2.vsh: BumpSelfShadow shader 2.

1 vs.1.0
2

3 ; Vertex Shader for DX7 class hardware
4 ; Constants
5 ;
6 ; c0-c3 Object
7 ; c4-c7 Projection
8 ; c8-c11 Total matrix
9 ; c12 - Light Direction (In World Space)

10 ; c33 - .5, .5, .5, .5
11 ;
12 ; Input
13 ;
14 ; V0 - Position
15 ; V7 - Texture
16 ; V3 - Normal
17 ; V8 - Tangnet
18

19 ; Take normal and binormal into worldspace first
20 m3x3 r7, v8, c0
21 m3x3 r8, v3, c0
22

23 ; Cross product, orientation flip here
24 ; content dependent
25 mul r0, r7.zxyw, -r8.yzxw
26 mad r5, r7.yzxw, -r8.zxyw, -r0
27

28 ; transform the light vector
29 dp3 r6.x, r7, c12
30 dp3 r6.y, r5, c12
31 dp3 r6.z, r8, c12
32

33 ; bias around 128
34 add r6.xyz, -r6.xyz, c32
35

36 ; this is also our texture coordinate
37 ; on our basis
38 mul oT1.xy, r6.xy, c33
39

40 ; transform into projection space
41 m4x4 oPos, v0, c8
42 mov oT0.xy, v7

9.21. VERTEX SHADER SDK SAMPLES 361

Listing 9.3: BumpShader3.vsh: BumpSelfShadow shader 3.

1 vs.1.0
2

3 ; Constants
4 ;
5 ; c0-c3 Object
6 ; c4-c7 Projection
7 ; c8-c11 Total matrix
8 ; c12 - Light Direction (In World Space)
9 ;

10 ; Input
11 ;
12 ; V0 - Position
13 ; V7 - Texture
14 ; V3 - Normal
15 ; V8 - Tangnet
16

17 ; Take normal and binormal into worldspace first
18 m3x3 r7, v8, c0
19 m3x3 r8, v3, c0
20

21 ; Cross product, flip orienation
22 ; may or may not be neccisary here
23 ; depending on the content
24 mul r0, r7.zxyw, -r8.yzxw
25 mad r5, r7.yzxw, -r8.zxyw, -r0
26

27 ; transform the light vector
28 dp3 r6.x, r7, -c12
29 dp3 r6.y, r5, -c12
30 dp3 r6.z, r8, -c12
31

32 ; bias around 128
33 add r6.xyz, r6.xyz, c32
34 mul oD0.xyz, r6.xyz, c33
35

36 ; transform into projection space
37 m4x4 oPos, v0, c8
38 mov oT0.xy, v7
39 mov oT1.xy, v7

362 CHAPTER 9. VERTEX SHADERS

Listing 9.4: BumpShader4.vsh: BumpSelfShadow shader 4.

1 vs.1.0
2

3 ; Constants
4 ;
5 ; c0-c3 Object
6 ; c4-c7 Projection
7 ; c8-c11 Total matrix
8 ; c12 - Light Direction (In World Space)
9 ;

10 ; Input
11 ;
12 ; V0 - Position
13 ; V7 - Texture
14 ; V3 - Normal
15 ; V8 - Tangnet
16

17 ; Take normal and tangnet into texture space first
18 m3x3 r7, v8, c0
19 m3x3 r8, v3, c0
20

21 ; Cross product
22 mul r0, r7.zxyw, -r8.yzxw
23 mad r5, r7.yzxw, -r8.zxyw, -r0
24

25 ; transform the light vector
26 dp3 r6.x, r7, c12
27 dp3 r6.y, r5, c12
28 dp3 r6.z, r8, c12
29

30 ; bias around 128
31 mad r6.xyz, -r6.xyz, c33, c33
32

33 ; this is also our texture coordinate
34 ; on our basis
35 mov oT1.xy, r6
36 mov oT3.xy, r6
37

38 mov oD0.xyzw, r6.z
39

40 ; transform into projection space
41 m4x4 oPos, v0, c8
42 mov oT0.xy, v7
43 mov oT2.xy, v7

9.21. VERTEX SHADER SDK SAMPLES 363

Listing 9.5: BumpWaves vertex shader.

1 vs.1.1
2 m4x4 oPos, v0, c3 ; transform position to the projection space
3

4 ; Compute vertex position in the camera space
5 ; - this is our texture coordinates
6 dp4 r0.x, v0, c0
7 dp4 r0.y, v0, c1
8 dp4 r0.z, v0, c2
9

10 ; Do the rest of texture transform (first part was combined
11 ; with the camera matrix)
12 rcp r0.z, r0.z
13 mad oT1.x, r0.x, r0.z, c8.x
14 mad oT1.y, r0.y, r0.z, c8.y
15

16 ; Copy input texture coordinates for the stage 0
17 mov oT0.xy, v1

364 CHAPTER 9. VERTEX SHADERS

Listing 9.6: DolphinTween.vsh: DolphinVS shader 1.

1 ;
2 ; Constants specified by the app
3 ; c0 = (0, 0, 0, 0)
4 ; c1 = (1, 0.5, 2, 4)
5 ; c2 = (fWeight1, fWeight2, fWeight3, 0)
6 ; c4-c7 = matWorldViewProjection
7 ; c8-c11 = matWorldView
8 ; c19 = light direction (in model space)
9 ; c21 = material diffuse color * light diffuse color

10 ; c22 = material ambient color
11 ;
12 ; Vertex components (as specified in the vertex DECL)
13 ; v0 = Position
14 ; v3 = Normal
15 ; v6 = Texcoords
16 ;
17 vs.1.1
18

19 ;
20 ; Vertex transformation
21 ;
22

23 ; Tween the 3 positions (v0, v1, v2) into one position
24 mul r0, v0, c2.x
25 mul r1, v1, c2.y
26 mul r2, v2, c2.z
27 add r3, r0, r1
28 add r3, r3, r2
29

30 ; Transform position to the clipping space
31 m4x4 oPos, r3, c4
32

33 ; Transform position to the camera space
34 m4x4 r9, r3, c8
35

36 ;
37 ; Lighting calculation
38 ;
39

40 ; Tween the 3 normals (v3, v4, v5) into one normal
41 mul r0, v3, c2.x
42 mul r1, v4, c2.y
43 mul r2, v5, c2.z
44 add r3, r0, r1

9.21. VERTEX SHADER SDK SAMPLES 365

45 add r3, r3, r2
46

47 ; Do the lighting calculation
48 dp3 r1.x, r3, c19 ; r1 = normal dot light
49 max r1.x, r1.x, c0.x ; if dot < 0 then dot = 0
50 mul r0, r1.x, c21 ; Multiply with diffuse
51 add r0, r0, c22 ; Add in ambient
52 min oD0, r0, c1.x ; clamp if > 1
53

54 ;
55 ; Texture coordinates
56 ;
57

58 ; Copy tex coords
59 mov oT0.xy, v6
60

61 ;
62 ; Fog calculation
63 ;
64

65 ; compute fog factor
66 ; f = (fog_end - dist)*(1/(fog_end-fog_start))
67 add r0.x, -r9.z, c23.y
68 mul r0.x, r0.x, c23.z
69 max r0.x, r0.x, c0.x ; clamp fog to > 0.0
70 min oFog.x, r0.x, c1.x ; clamp fog to < 1.0

366 CHAPTER 9. VERTEX SHADERS

Listing 9.7: DolphinTween2.vsh: DolphinVS shader 2.

1 ; Constants specified by the app
2 ; c0 = (0, 0, 0, 0)
3 ; c1 = (1, 0.5, 2, 4)
4 ; c2 = (fWeight1, fWeight2, fWeight3, 0)
5 ; c4-c7 = matWorldViewProjection
6 ; c8-c11 = matWorldView
7 ; c19 = light direction (in model space)
8 ; c21 = material diffuse color * light diffuse color
9 ; c22 = material ambient color

10 ;
11 ; Vertex components (as specified in the vertex DECL)
12 ; v0 = Position
13 ; v3 = Normal
14 ; v6 = Texcoords
15 ;
16 vs.1.1
17

18 ; Vertex transformation
19 ;
20 ; Tween the 3 positions (v0, v1, v2) into one position
21 mul r0, v0, c2.x
22 mul r1, v1, c2.y
23 mul r2, v2, c2.z
24 add r3, r0, r1
25 add r3, r3, r2
26

27 ; Transform position to the clipping space
28 m4x4 oPos, r3, c4
29

30 ; Transform position to the camera space
31 m4x4 r9, r3, c8
32

33 ; Lighting calculation
34 ;
35 ; Tween the 3 normals (v3, v4, v5) into one normal
36 mul r0, v3, c2.x
37 mul r1, v4, c2.y
38 mul r2, v5, c2.z
39 add r3, r0, r1
40 add r3, r3, r2
41

42 ; Do the lighting calculation
43 dp3 r1.x, r3, c19 ; r1 = normal dot light
44 max r1.x, r1.x, c0.x ; if dot < 0 then dot = 0

9.21. VERTEX SHADER SDK SAMPLES 367

45 mul r0, r1.x, c21 ; Multiply with diffuse
46 add r0, r0, c22 ; Add in ambient
47 min oD0, r0, c1.x ; clamp if > 1
48

49 ; Texture coordinates
50 ;
51 ; Gen tex coords from vertex xz position
52 mul oT0.xy, c1.y, r9.xz
53

54 ; Fog calculation
55 ;
56 ; compute fog factor
57 ; f = (fog_end - dist)*(1/(fog_end-fog_start))
58 add r0.x, -r9.z, c23.y
59 mul r0.x, r0.x, c23.z
60 max r0.x, r0.x, c0.x ; clamp fog to > 0.0
61 min oFog.x, r0.x, c1.x ; clamp fog to < 1.0

368 CHAPTER 9. VERTEX SHADERS

Listing 9.8: SkinnedMesh4.vsh: SkinnedMesh shader 4.

1 vs.1.1
2 ;
3 ; v0 = position
4 ; v1 = blend weights
5 ; v2 = blend indices
6 ; v3 = normal
7 ; v4 = texture coordinates
8 ;
9 ; r0.w = Last blend weight

10 ; r1 = Blend indices
11 ; r2 = Temp position
12 ; r3 = Temp normal
13 ; r4 = Blended position in camera space
14 ; r5 = Blended normal in camera space
15 ;
16 ; Constants specified by the app:
17 ;
18 ; c9-c95 = world-view matrix palette
19 ; c8 = diffuse * light.diffuse
20 ; c7 = ambient color
21 ; c2-c5 = projection matrix
22 ; c1 = light direction
23 ; c0 = {1, power, 0, 1020.01}
24 ;
25 ; oPos = Output position
26 ; oD0 = Diffuse
27 ; oD1 = Specular
28 ; oT0 = texture coordinates
29 ;
30

31 // Compensate for lack of UBYTE4 on Geforce3
32 mul r1, v2.zyxw, c0.wwww
33

34 // first compute the last blending weight
35 dp3 r0.w, v1.xyz, c0.xxx;
36 add r0.w, -r0.w, c0.x
37

38 // Set 1
39 mov a0.x, r1.x
40 m4x3 r4, v0, c[a0.x + 9]
41 m3x3 r5, v3, c[a0.x + 9];
42

43 // blend them
44 mul r4, r4, v1.xxxx

9.21. VERTEX SHADER SDK SAMPLES 369

45 mul r5, r5, v1.xxxx
46

47 // Set 2
48 mov a0.x, r1.y
49 m4x3 r2, v0, c[a0.x + 9]
50 m3x3 r3, v3, c[a0.x + 9]
51

52 // add them in
53 mad r4, r2, v1.yyyy, r4
54 mad r5, r3, v1.yyyy, r5
55

56 // Set 3
57 mov a0.x, r1.z
58 m4x3 r2, v0, c[a0.x + 9]
59 m3x3 r3, v3, c[a0.x + 9]
60

61 // add them in
62 mad r4, r2, v1.zzzz, r4
63 mad r5, r3, v1.zzzz, r5
64

65 // Set 4
66 mov a0.x, r1.w
67 m4x3 r2, v0, c[a0.x + 9]
68 m3x3 r3, v3, c[a0.x + 9]
69

70 // add them in
71 mad r4, r2, r0.wwww, r4
72 mad r5, r3, r0.wwww, r5
73

74 // compute position
75 mov r4.w, c0.x
76 m4x4 oPos, r4, c2
77

78 // normalize normals
79 dp3 r5.w, r5, r5
80 rsq r5.w, r5.w
81 mul r5, r5, r5.w
82

83 ; Do the lighting calculation
84 dp3 r1.x, r5, c1 ; normal dot light
85 lit r1, r1
86 mul r0, r1.y, c8 ; Multiply with diffuse
87 add r0, r0, c7 ; Add in ambient
88 min oD0, r0, c0.x ; clamp if > 1
89 mov oD1, c0.zzzz ; output specular
90

370 CHAPTER 9. VERTEX SHADERS

91 ; Copy texture coordinate
92 mov oT0, v4

9.21. VERTEX SHADER SDK SAMPLES 371

Listing 9.9: SphereMap shader

1 vs.1.0
2 def c64, 0.25f, 0.5f, 1.0f, -1.0f
3

4 // r0: camera-space position
5 // r1: camera-space normal
6 // r2: camera-space vertex-eye vector
7 // r3: camera-space reflection vector
8 // r4: texture coordinates
9

10 // Transform position and normal into camera-space
11 m4x4 r0, v0, c0
12 m3x3 r1, v1, c0
13

14 // Compute normalized view vector
15 mov r2, -r0
16 dp3 r3, r2, r2
17 rsq r3, r3
18 mul r2, r2, r3
19

20 // Compute camera-space reflection vector
21 dp3 r3, r1, r2
22 mul r1, r1, r3
23 add r1, r1, r1
24 add r3, r1, -r2
25

26 // Compute sphere-map texture coords
27 mad r4.w, -r3.z, c64.y, c64.y
28 rsq r4, r4
29 mul r4, r3, r4
30 mad r4, r4, c64.x, c64.y
31

32 // Project position
33 m4x4 oPos, r0, c4
34 mul oT0.xy, r4.xy, c64.zw
35 mov oT0.zw, c64.z

372 CHAPTER 9. VERTEX SHADERS

Listing 9.10: Blend.vsh: VertexBlend shader

1 vs_1_1
2 //
3 // Constants specified by the app
4 // c0 = (0, 0, 0, 0)
5 // c1 = (1, 1, 1, 1)
6 // c2 = (0, 1, 2, 3)
7 // c3 = (4, 5, 6, 7)
8 // c4-c7 = matWorld0
9 // c8-c11 = matWorld1

10 // c12-c15 = matViewProj
11 // c20 = light direction
12 // c21 = material diffuse color * light diffuse color
13 // c22 = material ambient color
14 //
15 // Vertex components (as specified in the vertex DECL)
16 // v0 = Position
17 // v1.x = Blend weight
18 // v3 = Normal
19 // v7 = Texcoords
20 //
21

22 dcl_position v0
23 dcl_blendweight v1
24 dcl_normal v3
25 dcl_texcoord v7
26

27 // Vertex blending
28 //
29 // Transform position for world0 matrix
30 dp4 r0.x, v0, c4
31 dp4 r0.y, v0, c5
32 dp4 r0.z, v0, c6
33 dp4 r0.w, v0, c7
34

35 // Transform position for world1 matrix
36 dp4 r1.x, v0, c8
37 dp4 r1.y, v0, c9
38 dp4 r1.z, v0, c10
39 dp4 r1.w, v0, c11
40

41 // Lerp the two positions r0 and r1 into r2
42 mul r0, r0, v1.x // v0 * weight
43 add r2, c1.x, -v1.x // r2 = 1 - weight
44 mad r2, r1, r2, r0 // pos = (1-weight)*v1 + v0*weight

9.21. VERTEX SHADER SDK SAMPLES 373

45

46 // Transform to projection space
47 dp4 oPos.x, r2, c12
48 dp4 oPos.y, r2, c13
49 dp4 oPos.z, r2, c14
50 dp4 oPos.w, r2, c15
51

52 // Lighting calculation
53 //
54 // Transform normal for world0 matrix
55 dp4 r0.x, v3, c4
56 dp4 r0.y, v3, c5
57 dp4 r0.z, v3, c6
58 dp4 r0.w, v3, c7
59

60 // Transform normal for world1 matrix
61 dp4 r1.x, v3, c8
62 dp4 r1.y, v3, c9
63 dp4 r1.z, v3, c10
64 dp4 r1.w, v3, c11
65

66 // Lerp the two normals r0 and r1 into r2
67 mul r0, r0, v1.x // v0 * weight
68 add r2, c1.x, -v1.x // r2 = 1 - weight
69 mad r2, r1, r2, r0 // normal = (1-weight)*v1 + v0*weight
70

71 // Do the lighting calculation
72 dp3 r1.x, r2, c20 // r1 = normal dot light
73 max r1, r1.x, c0 // if dot < 0 then dot = 0
74 mul r0, r1.x, c21 // Multiply with diffuse
75 add r0, r0, c22 // Add in ambient
76 min oD0, r0, c1.x // clamp if > 1
77

78 // Texture coordinates
79 //
80 // Just copy the texture coordinates
81 mov oT0, v7

374 CHAPTER 9. VERTEX SHADERS

Listing 9.11: Ripple.vsh: VertexShader shader

1 vs.1.0
2 ; Constants:
3 ;
4 ; c0-c3 - View+Projection matrix
5 ; c4.x - time
6 ; c4.y - 0
7 ; c4.z - 0.5
8 ; c4.w - 1.0
9 ; c7.x - pi

10 ; c7.y - 1/2pi
11 ; c7.z - 2pi
12 ; c7.w - 0.05
13 ; c10 - first 4 taylor coefficients for sin(x)
14 ; c11 - first 4 taylor coefficients for cos(x)
15

16 ; Decompress position
17 mov r0.x, v0.x
18 mov r0.y, c4.w ; 1
19 mov r0.z, v0.y
20 mov r0.w, c4.w ; 1
21

22 ; Compute theta from distance and time
23 mov r4.xz, r0 ; xz
24 mov r4.y, c4.y ; y = 0
25 dp3 r4.x, r4, r4 ; d2
26 rsq r4.x, r4.x
27 rcp r4.x, r4.x ; d
28 mul r4.xyz, r4, c4.x ; scale by time
29

30 ; Clamp theta to -pi..pi
31 add r4.x, r4.x, c7.x
32 mul r4.x, r4.x, c7.y
33 frc r4.xy, r4.x
34 mul r4.x, r4.x, c7.z
35 add r4.x, r4.x, -c7.x
36

37 ; Compute first 4 values in sin and cos series
38 mov r5.x, c4.w ; d^0
39 mov r4.x, r4.x ; d^1
40 mul r5.y, r4.x, r4.x ; d^2
41 mul r4.y, r4.x, r5.y ; d^3
42 mul r5.z, r5.y, r5.y ; d^4
43 mul r4.z, r4.x, r5.z ; d^5
44 mul r5.w, r5.y, r5.z ; d^6

9.21. VERTEX SHADER SDK SAMPLES 375

45 mul r4.w, r4.x, r5.w ; d^7
46

47 mul r4, r4, c10 ; sin
48 dp4 r4.x, r4, c4.w
49

50 mul r5, r5, c11 ; cos
51 dp4 r5.x, r5, c4.w
52

53 ; Set color
54 add r5.x, -r5.x, c4.w ; + 1.0
55 mul oD0, r5.x, c4.z ; * 0.5
56

57 ; Scale height
58 mul r0.y, r4.x, c7.w
59

60 ; Transform position
61 dp4 oPos.x, r0, c0
62 dp4 oPos.y, r0, c1
63 dp4 oPos.z, r0, c2
64 dp4 oPos.w, r0, c3

376 CHAPTER 9. VERTEX SHADERS

Listing 9.12: FogShader.vsh: VolumeFog shader 1

1 vs_1_1
2 def c40, 0.0f, 0.0f, 0.0f, 0.0f;
3

4 // transform into projection space
5 m4x4 r0, v0, c8
6 max r0.z, c40.z, r0.z //clamp to 0
7 max r0.w, c12.x, r0.w //clamp to near clip plane
8 mov oPos, r0
9 add r0.w, r0.w, -c12.x

10 mul r0.w, r0.w, c12.y
11

12 // Load into diffuse
13 mov oD0.xyzw, r0.w
14

15 // load into texture
16 mov oT0.x, r0.w
17 mov oT0.y, c12.x

