
Chapter 11

Basic Texturing

“Without drawing, I feel myself but
half invested with language.”

S. T. Coleridge: Notebooks, 1803

11.1 Overview

With lighting, we saw how we could create an appearance for our models by
specifying lighting and material properties to compute a color for each vertex.
With vertex shaders, we were able to extend the fixed-function lighting and
create per-vertex color components from arbitrary computations. With either
method, we computed color components for vertices which were interpolated
across the primitive by rasterization. If a very detailed appareance to an object
was desired, each detail must be modelled with geometry and lighting parame-
ters.

With texturing we can provide complex visual detail using an image instead
of complex geometry. When low resolution geometry is combined with textures,
we can create visually interesting elements for a scene that render very quickly.

Texturing allows us to compute the diffuse color of each pixel by table lookup.
The indices to the table are computed from the texture coordinates associated
with each vertex which are interpolated across the primitive. The texture co-
ordinates can be included directly as vertex components or can be generated
with vertex processing. The table is defined by a texture resource, organized
as a regular grid of texel values. A texel is similar to a pixel, but is a more
generalized idea of a sample, not necessarily just a sample of a color used in a
picture.

The texture coordinates are scalar, two-dimensional, three-dimensional or
four-dimensional floating-point values. The texture can be rectangular, cubic,
or volumetric in organization, while the texels themselves can be almost any
enumerant of D3DFORMAT, including vendor-specific four character code formats.

403

404 CHAPTER 11. BASIC TEXTURING

With a single texture, the result of the table lookup can be combined with
other color inputs from rasterization to produce the diffuse color sent to the
frame buffer. With multiple textures, the results of one texture are used as
input to the next stage of texture processing, with the final stage producing the
diffuse color.

Fixed-function pixel processing provides a number of inputs that can be
combined through one or more texture stages to create very complex coloring,
lighting and shading effects for primitives. Programmable pixel processing ex-
tends the range of achievable effects tremendously. This chapter will introduce
the multitexturing architecture provided by Direct3D and cover the details of
the application of a single texture. In the next chapter, we will discuss ad-
vanced texturing techniques using multiple stages. In chapter 13 we will cover
the details of programmable pixel processing and show how it corresponds to
fixed-function pixel processing.

We start by discussing the general architecture of multitexturing in Direct-
3D. Texturing is organized as a series of stages, with each successive stage fed
by the result of the previous stage. The operation of each stage is controlled
by the texture stage states associated with the stage. Each stage is bound to a
texture resource containing the table.

Next we examine the texturing resources we can create with the device: rect-
angular textures, cube textures and volume textures. We describe the interfaces
for texture resources and their management.

With the groundwork out of the way, we’ll next look at the texture coordinate
processing in detail. Texture coordinates can be provided in the vertex data
or can be generated by Direct3D. Each coordinate can be transformed by a
transformation matrix before being presented to the stage.

Once a texture coordinate is associated with a source pixel and a textures is
bound to a stage, we will show how the texture is sampled by the coordinates
to produce a texel value. We show how textures can be sampled using different
methods to avoid aliasing artifacts in producing the final texel.

Next we show how the sampled texel is combined with the vertex color
components to produce the diffuse color sent to the frame buffer. Each stage
allows for independent processing of the RGB color channels and the alpha
channel. We will show how each of these can be controlled independently.

Finally, we close the chapter with a sample program that demonstrates how
to create, fill and use a single texture. The program lets you explore the op-
tions for the minification, magnification and mipmap filters supported by the
device. Texture addressing modes can be independently selected for each tex-
ture coordinate and scenes with one-, two- and three-dimensional textures can
be selected.

11.2 Direct3D Multitexture Architecture

The architecture of Direct3D multitexturing is shown in figure 11.1. Interpo-
lated vertex lighting components from the rasterizer are fed into the texture

11.2. DIRECT3D MULTITEXTURE ARCHITECTURE 405

?

?

?

?

?

?

?

?

?

Rasterization

Stage 0

Stage 1

Stage 2

Stage 3

Stage 4

Stage 5

Stage 6

Stage 7

Frame Buffer

RGB Unit Alpha Unit
? ?

? ?

?

?

Inputs

Output

Stage

Texture
Coordinate

?

Texture
Transform

?

Texture
Addressing

?

Texture
Sampling

?
Texels

Figure 11.1: The multitexture cascade, consisting of up to eight texture stages,
with the output of each stage fed as an input to the successive stage. Each stage
consists of an RGB unit that computes the color for the stage and an alpha unit
that computes the transparency for the stage.

cascade. Each stage of the cascade computes some output from the inputs to
the stage using a color processing unit and an alpha processing unit. Process-
ing continues through each successive enabled texture stage, with the last stage
producing the output sent to the frame buffer. The alpha and color process-
ing units can be controlled independently, but cannot be enabled or disabled
separately.

The operation of each stage is controlled through a series of state variables,
identified by the D3DTEXTURESTAGESTATETYPE enumerated type, listed on page
97. The state variables select the inputs and output of each stage, the compu-
tation performed in the RGB and alpha processing units, as well as how the
associated texture is addressed by the texture coordinates used by each stage.

HRESULT GetTextureStageState(DWORD stage,
D3DTEXTURESTAGESTATETYPE kind,
DWORD *value);

HRESULT SetTextureStageState(DWORD stage,
D3DTEXTURESTAGESTATETYPE kind,

406 CHAPTER 11. BASIC TEXTURING

DWORD value);

Each stage can be bound to a texture resource with the SetTexture and
GetTexture methods on the device. The MaxTextureBlendStages member of
D3DCAPS9 gives the maximum number of texture stages supported by the device,
while the MaxSimultaneousTextures member gives the maximum number of
stages that can be bound to a texture at a time. The difference is that some
devices expose additional stages that can be used to provide processing, but they
don’t have associated texture units and therefore cannot address and sample a
texture.

HRESULT GetTexture(DWORD index,
IDirect3DBaseTexture9 **value);

HRESULT SetTexture(DWORD index,
IDirect3DBaseTexture9 *value);

The type of this device property is IDirect3DBaseTexture9, the base inter-
face for all texture resources as shown in figure 3.1 on page 82. The interfaces
for textures are described in the next section.

After calling GetTexture, you can determine the type of texture by exam-
ining its resource type with the GetType method on the IDirect3DResource9
interface as described in section 3.5 on page 82. Once the resource type is known,
QueryInterface can be used to obtain the appropriate interface pointer. This
is one of the few places where you might need to call QueryInterface from a
Direct3D application; you cannot use a C++ style cast to obtain the appropriate
interface pointer. The following code calls GetTexture and then obtains an
IDirect3DTexture9 interface pointer.

IDirect3DTexture9 *texture = 0;
IDirect3DBaseTexture9 *base = 0;
THR(device->GetTexture(0, &base));
THR(base->QueryInterface(IID_IDirect3DTexture9,

reinterpret_cast<void **>(&texture)));
base->Release();
// use texture pointer for something...
texture->Release();

With the CComPtr<> smart pointer class provided by ATL in <atlbase.h>,
we can eliminate the use of reinterpret cast and the manual management of
reference counts.

CComPtr<IDirect3DTexture9> texture;
CComPtr<IDirect3DBaseTexture9> base;
THR(device->GetTexture(0, &base));
THR(base->QueryInterface(IID_IDirect3DTexture9, &texture));
// use texture pointer for something...
// IUnknown::Release called in ~CComPtr

11.3. TEXTURE RESOURCES 407

ATL provides another smart pointer class, CComQIPtr<>, designed specifi-
cally for this usage of QueryInterface. QueryInterface will be called in the
constructor for CComQIPtr<>; if the interface could not be obtained, then the
interface pointer will be zero. The obvious way to use it is as follows:

CComPtr<IDirect3DBaseTexture9> base;
THR(device->GetTexture(0, &base));
CComQIPtr<IDirect3DTexture9> texture = base;
if (!texture) THR(E_NOINTERFACE);
// use texture pointer for something...
// IUnknown::Release called in ~CComPtr and ~CComQIPtr

However, this will result in a compile error even though there are no syntac-
tical errors in this usage. The problem stems from the exact mechanism used by
CComQIPtr<> to determine the interface GUID IID IDirect3DTexture9. CCom-
QIPtr<> uses a Microsoft extension to C++ that associates the COM interface
GUID with the C++ interface structure via the uuid() declaration specifica-
tion. While many standard Win32 header files associate the COM interface
GUIDs with the corresponding C++ interface structures, the Direct3D header
files do not. Fortunately, we can associate the COM interface GUID, defined in
<d3d9.h>, with the C++ struct using the following code.

struct
__declspec(uuid("{85C31227-3DE5-4f00-9B3A-F11AC38C18B5}"))
IDirect3DTexture9;

The header file <rt/iid.h> in the sample code associates the appropriate
COM interface GUIDs with their corresponding Direct3D interfaces.

11.3 Texture Resources

Before we delve into the specifics of how textures are addressed with coordinates,
let’s take a look at the textures themselves. Textures are described to the device
through a collection of resource interfaces that derive from IDirect3DBase-
Texture9. The texture interfaces allow expose the Texture resources are COM
objects exposing the texel samples within a texture. Each texture resource
contains a regular grid of texel samples that are used in pixel processing.

As we saw in chapter 1, sampling can introduce aliasing. With texturing,
there are two possible sources of aliasing. First, the process of producing the
texels themselves may introduce aliasing. Second, the texels themselves are used
to reconstruct a continuous function which is sampled during pixel processing.
The sampling of the reconstructed function can also introduce aliasing.

Direct3D provides no direct means for eliminating the first source of alias-
ing. Usually texture resources are created by artists in a paint program, or by
scanning a photographic original. In both cases, the effects of aliasing can be

408 CHAPTER 11. BASIC TEXTURING

Level 0 Level 1 2 3 4 5
32× 32 16× 16 8× 8 4× 4 2× 2 1× 1

Figure 11.2: Organization of mipmapped textures. Each successive level in a
mipmap reduces the dimensions of the previous level by one half. Rectangu-
lar mipmap level dimensions decrease as with square textures, with the smaller
dimension decreasing to 1 until the larger dimension is also 1. An 16×4 rectan-
gular texture would have mipmap levels of dimension 16× 4, 8× 2, 4× 1, 2× 1
and 1× 1.

minimized by creating the texture resources from supsersampled original im-
ages, which are possibly filtered to fit the size of the texture resource. For the
second source of aliasing, Direct3D provides mipmapping and texture filtering
to minimize the effect of aliasing.

In the mapping from texture coordinates to screen space, a texture’s pixels
can be compressed to be smaller than a screen-space pixel, or may be enlarged
to be larger than a screen-space pixel. With perspective foreshortening, both
of these effects may take place within a single primitive. When a texture is
compressed, it is said to be minified and when it is enlarged, it is said to be
magnified.

During minification, the fine details of a texture may be lost due to aliasing.
We could minimize this aliasing, if we knew how many texels were covered by
a screen-space pixel. A weighted average of the texels covered by the pixel can
be computed as the texel to be used for that pixel. However, computing this
weighted average could be very costly as we could compress an entire 2048×2048
sized texture into less than a screen pixel with a suitable choice of geometry and
texture coordinates.

Mipmaps

Mipmapping is a preprocessing technique that allows us to compute an approx-mip: multum in parvo,
Latin for “many things in
a small place”.

imation to the exact weighted average quickly. The idea behind mipmapping is
to create filtered versions of the most detailed texture image. Each application
of the filter to an image results in a new image half as large as the original image
in each dimension. The filter is chosen to eliminate the higher frequency com-
ponents in the source image to produce a smaller image with lower frequency

11.3. TEXTURE RESOURCES 409

components. This process starts with the most detailed texture image and is
repeated on successive filtered images until, for a square texture, a single pixel
image is obtained. This single pixel will represent the average sample value over
the entire original texture. The mipmap itself is a collection of images, each
stored in a level of the mipmap. Level 0 of the mipmap is the highest resolution
image in the mipmap and generally contains the original image from which the
other levels were generated through filtering. Level 1 of the mipmap is half the
size of level 0, and so-on, down to the smallest level in the mipmap, as shown
in figure 11.2.

With a mipmap, we can compute the weighted average of the texels covered
by a screen-space pixel by selecting the appropriate mipmap level, and selecting
a texel from the mipmap level. Because each successive mipmap level, starting
from 2, is half the size of the previous mipmap level, each texel covers twice as
much area in screen-space than the previous mipmap level. We’ll see the exact
formula for selecting mipmap levels and texels in the following sections.

Textures are not required to be mipmaps and may consist of only a single
level. However, textures that are likely to be minified should probably be in
mipmap form. Mipmaps trade off the storage space of the map for the speed in
computing the filtered texel. The space penalty for a mipmap is 1

3 the size of
level 0. On some architectures, use of mipmaps may have a positive effect on
performance, see chapter 23.

Texture Resource Management

As you might imagine, textures can consume quite a bit of memory. Imagine
an application with 10 textures, each 512 texels square, with 32-bit texels. As
a single level texture, each texture will occupy at least 1 MB of memory, for a
total of 10 MB of texture memory. An additional 3 1

3 MB of memory will be
required if all the textures are mipmapped.

The resource manager described in section 3.5 can be used with texture
resources to allow a virtually unlimited amount of texture resources to be used
with a device. The statistics returned by the resource manager are helpful in
tuning your application’s use of texture resources, see pg. 90.

Several bits in D3DCAPS9::DevCaps give information about the character-
istics of the device’s texture memory. If the D3DDEVCAPS SEPARATETEXTURE-
MEMORIES bit is set, the device can use textures from different memory pools. If
the D3DDEVCAPS TEXTURENONLOCALVIDMEM bit is set, the device can use textures
in non-local video memory, such as AGP memory. If the D3DDEVCAPS TEXTURE-
SYSTEMMEMORY bit is set, the device can use textures in system memory. If
the D3DDEVCAPS TEXTUREVIDEOMEMORY bit is set, the device can use textures in
video memory.

11.3.1 IDirect3DBaseTexture9

As shown in figure 3.1 on page 82, all texture resources derive from IDirect3D-
BaseTexture9. This interface consists only of two properties: a read-only

410 CHAPTER 11. BASIC TEXTURING

mipmap level count, determined at resource creation time, and a level of detail.

Interface 11.1: Summary of the IDirect3DBaseTexture9 interface.

IDirect3DBaseTexture9

Read-Only Properties
GetLevelCount The number of mipmap levels in the texture.

Properties
GetAutoGen-
FilterType
SetAutoGen-
FilterType

Mipmap generation filter.

GetLOD
SetLOD

Most detailed mipmap level stored in the device.

Methods
GenerateMip-
SubLevels

Filter a level to generate mipmap sublevels.

interface IDirect3DBaseTexture9 : IDirect3DResource9
{

// read-only properties
DWORD GetLevelCount();

// read-write properties
DWORD GetLOD();
DWORD SetLOD(DWORD value);

};

Only managed textures support the level of detail property. For nonmanaged
texture resources, the property has a value of 0. We can think of each successive
level of a mipmap as a reduced level of detail when compared to the previous
level.

The level of detail property is the highest mipmap level that will be streamed
into the device for a managed texture. Dropping one level of detail from a
texture will reduce its size to 1

4 of its previous size.

Dirty Regions

Textures maintain a “dirty region list” to obtain more efficient streaming of
modified texels into device memory. The basic idea is to maintain two versions
of the texture, one residing in the system memory pool and another residing in
the default memory pool. The application makes modifications to the system

11.3. TEXTURE RESOURCES 411

memory pool version, updating the dirty region list to reflect the modified re-
gion. The dirty regions are then copied to the default pool version and the dirty
region list is cleared. The dirty region list is maintained for the most detailed
mipmap level in the source texture and corresponding regions in the successive
mipmap levels are also considered dirty.

For a rectangular texture, the dirty region is a list of rectangles, while for
a volumetric texture the dirty region is a list of rectangular parallelpipeds, or
“boxes”. When the texture is created, the dirty region list initially covers the
entire texture. Locking a region on a texture adds that region to the dirty
list, as described in the following sections. Using a texture as the target of a
StretchRect operation marks the entire texture as dirty. Each texture resource
also provides a method to explicitly add regions to the dirty list.

The UpdateTexture method on the device copies the dirty regions from the
system memory texture to device memory texture and then clears the dirty
region list.

HRESULT UpdateTexture(IDirect3DBaseTexture9 *source,
IDirect3DBaseTexture9 *destination);

The source texture must be in the system memory pool and the destination
texture must be in the default memory pool, or an error results. The two tex-
tures must match in most respects: they must be textures of the same resource
type, they must have the same format and must have equal dimensions for cor-
responding mipmap levels or an error results. The destination texture may have
fewer mipmap levels than the source texture, in which case only the matching
mipmap levels are copied.

11.3.2 IDirect3DTexture9

The IDirect3DTexture9 interface exposes a single collection of mipmap levels
for a rectangular texture. The CreateTexture method on the device is used to
create a texture resource.

HRESULT CreateTexture(UINT width,
UINT height,
UINT levels,
DWORD usage,
D3DFORMAT format,
D3DPOOL pool,
IDirect3DTexture9 **result);

Unlike image surfaces, which can be created in almost any size and format,
textures typically have more restrictions in terms of size and format. As with
other resources, the format and pool constraints for a texture can be checked
with the IDirect3D9 method CheckDeviceFormat. A device indicates the size
requirements through the D3DCAPS9 structure.

412 CHAPTER 11. BASIC TEXTURING

The levels parameter indicates the number of mipmap levels in the texture,
with zero and one being the most common values. A value of one creates a non-
mipmapped texture of a single level. A value of zero creates a full set of mipmap
levels down to a level with dimensions 1 × 1. Values greater than one create a
partial set of mipmap levels, provided the number of levels is consistent with
the size of the texture. A partial set of mipmap levels can be used when you
know the range of minification that will be used on textured primitives will not
exceed the number of levels created. A device supports mipmapped rectangular
textures if the D3DPTEXTURECAPS MIPMAP bit of D3DCAPS9::TextureCaps is set.

Texture hardware often imposes constraints on the dimensions of textures
to obtain efficient rendering of textured primitives. The maximum supported
dimensions for a texture are given by the MaxTextureWidth and MaxTexture-
Height members of D3DCAPS9. For rectangular textures, the maximum sup-
ported aspect ratio (width divided by height) is given by the MaxTexture-
AspectRatio member. Beyond these maximum dimensions, a texture may be
required to have dimensions that are powers of two or equal dimensions for the
width and height. The former is required if the D3DPTEXTURECAPS POW2 bit of
TextureCaps is set. The latter is required if the D3DPTEXTURECAPS SQUAREONLY
bit of TextureCaps is set.

Textures whose dimensions are not powers of two may be used if the D3DP-
TEXTURECAPS NONPOW2CONDITIONAL bit of TextureCaps is set and the texture
meets these additional constraints:

1. The texture is used with the clamp addressing mode.

2. Texture coordinate wrapping is not used.

3. The texture is not mipmapped.

4. The texture is not stored in a compressed format.

As you can see, the size constraints for textures are a little involved. The
easiest way to deal with the constraints is to create square textures with di-
mensions that are powers of two. This is most easily handled by adjusting your
artwork generation process so that the textures meet these constraints from the
beginning. Alternatively, an application can pack multiple images into a single
texture resource and adjust the texture coordinates to address the proper region
for each image. Images from external sources can also be resampled to fit the
size of the texture resource with texture coordinates addressing the full size of
the resource, or the external image source can be placed into the next largest
size texture resource with the texture coordinates adjusted to address the range
of the image within the texture. D3DX provides functions for creating textures
from image files and functions for adjusting the dimensions of texture resources
to comply with device requirements, see chapter 15.

The usage parameter to CreateTexture can include zero or more of the
following flags:

#define D3DUSAGE_DEPTHSTENCIL 0x00000002L

11.3. TEXTURE RESOURCES 413

#define D3DUSAGE_DYNAMIC 0x00000200L
#define D3DUSAGE_RENDERTARGET 0x00000001L

Textures created with a render target usage can be used as the render target
for rendering by obtaining the appropriate surface interface pointer for a texture
mipmap level and calling SetRenderTarget. Textures with a depth/stencil
usage can be used to create shadow maps and are discussed in the next chapter.

Textures can be created with the dynamic usage flag if the D3DCAPS2 -
DYNAMICTEXTURES bit of D3DCAPS9::Caps2 is set. Dynamic textures are de-
signed for situations where the contents of the texture are changed frequently,
such as once per frame. This is often the case with procedural textures where
the contents of the texture are generated from an algorithm instead of read from
an image file. Dynamic textures cannot be created in the managed memory pool
or an error will result.

IDirect3DTexture9 exposes a mipmap chain as a collection of surfaces with
GetLevelDesc and GetSurfaceLevel. GetLevelDesc obtains the surface de-
scription for a texture level and is identical in semantics to the GetDesc method
for surfaces, described on page 113. GetSurfaceLevel returns a surface in-
terface pointer for the given mipmap level of the texture. The AddDirtyRect
method allows an application to explicitly add a rectangle to the dirty list for
the texture. The LockRect and UnlockRect methods provide for direct access
to the texels within a mipmap level.

Interface 11.2: Summary of the IDirect3DTexture9 interface.

IDirect3DTexture9

Read-Only Properties
GetLevelDesc A description of the texel data for a mipmap level.
GetSurfaceLevel The surface interface for a mipmap level.

Methods
AddDirtyRect Adds a rectangle to the dirty region list.
LockRect Obtains direct access to the contained texel data.
UnlockRect Releases direct access to the contained texel data.

interface IDirect3DTexture9 : IDirect3DBaseTexture9
{

// read-only properties
HRESULT GetLevelDesc(UINT level,

D3DSURFACE_DESC *value);
HRESULT GetSurfaceLevel(UINT level,

IDirect3DSurface9 **value);

// methods

414 CHAPTER 11. BASIC TEXTURING

HRESULT AddDirtyRect(const RECT *rect);
HRESULT LockRect(UINT level,

D3DLOCKED_RECT *data,
const RECT *rect,
DWORD flags);

HRESULT UnlockRect(UINT Level);
};

The flags argument to LockRect is a bitwise combination of zero or more
of the following flags:

#define D3DLOCK_DISCARD 0x00002000L
#define D3DLOCK_NO_DIRTY_UPDATE 0x00008000L
#define D3DLOCK_NOOVERWRITE 0x00001000L
#define D3DLOCK_NOSYSLOCK 0x00000800L
#define D3DLOCK_READONLY 0x00000010L

The discard, no overwrite, read only and system lock flags have the same
meaning as they do for the LockRect method on a surface, described on page 114.
The no dirty update flag specifies that the locked region is not to be added to
the dirty region list for this texture. Each call to LockRect must be matched
by a corresponding call to UnlockRect.

As we did for surfaces in section 4.3, we can create a locking helper class
for locking rectangles on a texture mipmap level. The file <rt/texture.h>
in the sample code includes such a helper class that locks a rectangle on a
mipmap level in its constructor and unlocks the rectangle in its destructor. Its
implementation is similar to the surface lock class, with the addition of the
mipmap level argument to the constructor of the lock.

11.3.3 IDirect3DCubeTexture9

A cube texture resource is used in advanced texturing techniques such as envi-
ronment mapping, which we will discuss in the next chapter. A cube texture
models a square texture applied to each surface of a cube centered on the origin,
as shown in figure 11.3. A cube texture is created with the CreateCubeTexture
method on the device.

HRESULT CreateCubeTexture(UINT edge_length,
UINT levels,
DWORD usage,
D3DFORMAT format,
D3DPOOL pool,
IDirect3DCubeTexture9 **result);

The levels, usage, format and pool parameters to CreateCubeTexture
have the same semantics as for CreateTexture. A device supports cube tex-
tures if the D3DPTEXTURECAPS CUBEMAP bit of D3DCAPS9::TextureCaps is set. A

11.3. TEXTURE RESOURCES 415

Top
+y

Left
−x

Bottom
−y

Right
+x

Front
−z

Back
+z

Figure 11.3: Cube texture organization. When a cube, centered on the origin
in a left-handed coordinate system and aligned with the coordinate axes, is
unfolded onto the plane the result is six squares in the plane. Each face of the
cube is labelled by the coordinate axis that intersects the center of the face.
Each label corresponds to an enumerant of D3DCUBEMAP FACES.

device supports mipmapped cube textures if the D3DPTEXTURECAPS MIPCUBEMAP
bit of TextureCaps is set.

Unlike a rectangular texture, a cube texture always has a width equal to its
height, with the edge length parameter defining the size of each face of the
cube in texels. If the D3DPTEXTURECAPS CUBEMAP POW2 bit of TextureCaps is
set, then the device requires the edge length parameter to be a power of two.

Interface 11.3: Summary of the IDirect3DCubeTexture9 interface.

IDirect3DCubeTexture9

Read-Only Properties
GetCubeMapSurface The surface interface for a cube face.
GetLevelDesc A description of the texel data for a cube face.

Methods
AddDirtyRect Adds a rectangle to the dirty region list.
LockRect Obtains direct access to the contained texel data.
UnlockRect Releases direct access to the contained texel data.

interface IDirect3DCubeTexture9 : IDirect3DBaseTexture9
{

// read-only properties
HRESULT GetCubeMapSurface(D3DCUBEMAP_FACES which,

UINT level,
IDirect3DSurface9 **value);

HRESULT GetLevelDesc(UINT level,
D3DSURFACE_DESC *value);

// methods
HRESULT AddDirtyRect(D3DCUBEMAP_FACES which,

CONST RECT *rect);
HRESULT LockRect(D3DCUBEMAP_FACES which,

UINT level,
D3DLOCKED_RECT *data,
const RECT *rect,
DWORD flags);

HRESULT UnlockRect(D3DCUBEMAP_FACES which,
UINT level);

};

The GetLevelDesc method returns a description of the texel data for a
mipmap level in the cube texture. There is no need to specify the face of the
cube within the cube texture, as all faces have the same dimensions.

416 CHAPTER 11. BASIC TEXTURING

The GetCubeMapSurface method returns a surface interface pointer for a
mipmap level of one of the cube faces. The cube faces are identified by the
values of the D3DCUBEMAP FACES enumeration.

typedef enum _D3DCUBEMAP_FACES
{

D3DCUBEMAP_FACE_POSITIVE_X = 0,
D3DCUBEMAP_FACE_NEGATIVE_X = 1,
D3DCUBEMAP_FACE_POSITIVE_Y = 2,
D3DCUBEMAP_FACE_NEGATIVE_Y = 3,
D3DCUBEMAP_FACE_POSITIVE_Z = 4,
D3DCUBEMAP_FACE_NEGATIVE_Z = 5

} D3DCUBEMAP_FACES;

AddDirtyRect adds a rectangle on a face of the cube texture to its dirty
region list. The LockRect and UnlockRect methods provide direct access to
the texel data for a mipmap level of a cube face. Each call to LockRect
must be matched by a corresponding call to UnlockRect. The header file
<rt/texture.h> in the sample code includes a helper class that calls Lock-
Rect in its constructor and UnlockRect in its destructor, similar to the helper
class for rectangular textures.

11.3.4 IDirect3DVolume9

While a rectangular texture contains mipmap levels that are described by sur-
faces, a volume texture contains mipmap levels that are described by volumes.
A volume is a three-dimensional regular grid of texel samples, as shown in fig-
ure 11.4, and has an interface similar to that of a surface. Unlike surfaces,
volumes cannot be created directly; they can only be created as the levels of
a volume texture. Before we describe a volume texture, we will look at the
interface for volumes.

11.3. TEXTURE RESOURCES 417

¡
¡

¡¡
¡

¡¡
¡

¡¡
¡

¡¡
¡

¡

¡
¡

¡

¡
¡

¡

¡
¡

¡

¡
¡

¡

¡
¡

¡

-¾
Width

?

6

Height

¡¡ª
¡¡µDepth

Figure 11.4: Volume organization. A volume arranges texels in a regular three-
dimensional grid. The volume can be considered as a stack of “slices” in depth,
with each slice containing Width ×Height texels.

Interface 11.4: Summary of the IDirect3DVolume9 interface.

IDirect3DVolume9

Read-Only Properties
GetContainer The containing resource or device.
GetDesc A description of the contained texel data.
GetDevice The containing device.

Properties
GetPrivateData
SetPrivateData

Association of the volume with private data.

Methods
FreePrivateData Removes the association with private data.
LockBox Obtains direct access to the contained texel data.
UnlockBox Releases direct access to the contained texel data.

interface IDirect3DVolume9 : IUnknown
{

// read-only properties
HRESULT GetContainer(REFIID iid,

void **container);
HRESULT GetDesc(D3DVOLUME_DESC *pDesc);
HRESULT GetDevice(IDirect3DDevice9 **value);

418 CHAPTER 11. BASIC TEXTURING

// read/write properties
HRESULT GetPrivateData(REFGUID key,

void *data,
DWORD *size);

HRESULT SetPrivateData(REFGUID key,
const void *data,
DWORD size,
DWORD flags);

// methods
HRESULT FreePrivateData(REFGUID key);
HRESULT LockBox(D3DLOCKED_BOX *data,

const D3DBOX *volume,
DWORD flags);

HRESULT UnlockBox();
};

The volume interface derives directly from IUnknown and contains proper-
ties similar to those of a surface interface. The GetContainer, GetDevice,
GetPrivateData, SetPrivateData, and FreePrivateData methods behave ex-
actly as the corresponding methods on the IDirect3DSurface9 or IDirect3D-
Resource9 interfaces.

The GetDesc method returns a description of the volume in a D3DVOLUME -
DESC structure.

typedef struct _D3DVOLUME_DESC
{

D3DFORMAT Format;
D3DRESOURCETYPE Type;
DWORD Usage;
D3DPOOL Pool;
UINT Size;
UINT Width;
UINT Height;
UINT Depth;

} D3DVOLUME_DESC;

This structure is similar to the D3DSURFACE DESC structure, with the addition
of the Depth member. The Depth member describes the extent of the volume
in the third dimension, as shown in figure 11.4. The remaining members are
identical in their semantics to the corresponding members of the D3DSURFACE -
DESC structure.

The LockBox and UnlockBox methods provide direct access to the contained
texel data. Each call to LockBox must be matched by a call to UnlockBox. Just
as with surfaces or textures, we can specify a portion of the entire resource to
be locked. With a volume the portion to be locked is specified by a D3DBOX
structure. When the volume argument is NULL, the entire volume is locked.

11.3. TEXTURE RESOURCES 419

typedef struct _D3DBOX
{

UINT Left;
UINT Top;
UINT Right;
UINT Bottom;
UINT Front;
UINT Back;

} D3DBOX;

The Left, Top, Right, and Bottom members correspond to the members of
the same name in a RECT structure, while the Front and Back members describe
the extent of the volume to be locked in the third dimension. When the volume
is successfully locked, a pointer to the texel data is returned in a D3DLOCKED BOX
structure.

typedef struct _D3DLOCKED_BOX
{

INT RowPitch;
INT SlicePitch;
void *pBits;

} D3DLOCKED_BOX;

Just as the pitch between scanlines must be observed when locking surfaces
or textures, for locked volumes both the pitch between scanlines and the pitch
between slices at different depths must be observed. The RowPitch member
gives the pitch between scanlines within a slice, while the SlicePitch member
gives the pitch between successive slices in the volume. You can think of each
slice of the volume as an image.

The following code snippet locks a volume and fills it with opaque white.

D3DVOLUME_DESC desc;
THR(volume->GetDesc(&desc));
D3DLOCKED_BOX lb = { 0 };
THR(volume->LockBox(&lb, NULL, 0));
for (UINT z = 0; z < desc.Depth; z++)
{

BYTE *plane = static_cast<BYTE *>(lb.pBits) +
z*lb.SlicePitch;

for (UINT y = 0; y < desc.Height; y++)
{

D3DCOLOR *scanline = reinterpret_cast<D3DCOLOR *>
(plane + y*lb.RowPitch);

for (UINT x = 0; x < desc.Width; x++)
{

scanline[x] = D3DCOLOR_XRGB(255, 255, 255);
}

420 CHAPTER 11. BASIC TEXTURING

}
}
THR(volume->UnlockBox());

As with other resources, we can create a helper class that ensures matched
calls to LockBox and UnlockBox. The include file <rt/texture.h> in the sample
code contains a helper class for locking volumes.

11.3.5 IDirect3DVolumeTexture9

The IDirect3DVolumeTexture9 interface exposes a collection of mipmap lev-
els for a volume texture, as shown in figure 11.5. The CreateVolumeTexture
method on the device is used to create a volume texture resource.

HRESULT CreateVolumeTexture(UINT width,
UINT height,
UINT depth,
UINT levels,
DWORD usage,
D3DFORMAT format,
D3DPOOL pool,
IDirect3DVolumeTexture9 **result);

A device supports volume textures if the D3DPTEXTURECAPS VOLUMEMAP bit
of D3DCAPS9::TextureCaps is set. The usage parameter must be zero. The
levels, format, and pool parameters have the same semantics as the corre-
sponding arguments to CreateTexture. A mipmapped volume can be created
if the D3DPTEXTURECAPS MIPVOLUMEMAP bit of TextureCaps is set. The width,
height and depth parameters give the dimensions in texels of the most de-
tailed mipmap level for the volume texture. The maximum value for all three
dimensions of a volume texture is given by the MaxVolumeExtent member of
D3DCAPS9. If the D3DPTEXTURECAPS VOLUMEMAP POW2 bit of TextureCaps is set,
then all three dimension arguments must be powers of two.

Interface 11.5: Summary of the IDirect3DVolumeTexture9 interface.

IDirect3DVolumeTexture9

Read-Only Properties
GetLevelDesc A description of the texel data for a mipmap level.
GetVolumeLevel The volume interface for a mipmap level.

Methods
AddDirtyBox Adds a box to the dirty region list.
LockBox Obtains direct access to the contained texel data.
UnlockBox Releases direct access to the contained texel data.

11.3. TEXTURE RESOURCES 421

¡
¡

¡
¡¡

¡
¡

¡
¡¡

¡
¡

¡
¡¡

¡
¡

¡
¡¡

¡
¡

¡
¡¡

¡
¡

¡
¡¡

¡
¡

¡
¡¡

¡
¡

¡
¡¡

¡
¡

¡
¡¡

¡
¡

¡
¡¡

Level 0
4× 4× 4

¡
¡¡

¡
¡¡

¡
¡¡

¡
¡¡

¡
¡¡

¡
¡¡

Level 1
2× 2× 2

¡¡

¡¡¡¡

Level 2
1× 1× 1

Figure 11.5: Organization of mipmapped volume textures. Each successive
volume in the mipmap reduces the dimensions of the previous level by one half,
stopping at a value of 1. Rectangular parallelpiped mipmap volume dimensions
decrease as with cube volumes, with the smaller dimension decreasing to 1 until
the larger dimension is also 1. A volume texture with dimensions 16× 8× 4 for
level zero would have mipmap levels of dimension 16×8×4, 8×4×2, 4×2×1,
2× 1× 1, and 1× 1× 1.

interface IDirect3DVolumeTexture9 : IDirect3DBaseTexture9
{

// read-only properties
HRESULT GetLevelDesc(UINT level,

D3DVOLUME_DESC *value);
HRESULT GetVolumeLevel(UINT level,

IDirect3DVolume9 **value);

// methods
HRESULT AddDirtyBox(const D3DBOX *volume);
HRESULT LockBox(UINT level,

D3DLOCKED_BOX *data,
const D3DBOX *volume,
DWORD flags);

HRESULT UnlockBox(UINT level);
};

The methods in the IDirect3DVolumeTexture9 interface mirror those in the
IDirect3DVolume9 interface, with the addition of a mipmap level parameter.
As with other resources, we can define a helper class that ensures matched calls
to LockBox and UnlockBox. The include file <rt/texture.h> in the sample
code contains such a helper class for locking volume textures.

422 CHAPTER 11. BASIC TEXTURING

11.4 Texture Formats

As we mentioned in section 2.7, the D3DFORMAT enumeration describes the format
of resource data, including texture resources. Textures are usually created using
one of the RGB format types, but other format types apply equally well to
textures. If the D3DPTEXTURECAPS ALPHA bit of D3DCAPS9::TextureCaps is set,
then the device supports textures containing an alpha channel.

The luminance formats, D3DFMT A4L4, D3DFMT L8, and D3DFMT A8L8, defineluminance: A scalar
value indicating an overall
brightness.

a luminance value with an optional alpha channel. The luminance value is
replicated to all three color channels before any texture processing occurs. If
a luminance texture has no associated alpha channel, Direct3D supplies an
alpha value of 1.0. The D3DFMT P8 and D3DFMT A8P8 formats are pallette based
formats, with the P channel containing indices into a pallete associated with
the texture. The D3DFMT DXTn formats are used to define texture resources
whose texel data is stored in a compressed representation. The formats D3D-
FMT L6V5U5, D3DFMT V8U8, D3DFMT A2W10V10U10, D3DFMT Q8W8V8U8, D3DFMT -
V16U16, D3DFMT W11V11U10, and D3DFMT X8L8V8U8 are used in bump-mapping
techqniques described in the next chapter.

11.4.1 Palette Based Textures

Direct3D does not support indexed display modes, but it does support an in-
dexed color format for texture resources. The formats D3DFMT P8 and D3D-
FMT A8P8 may be supported by the device for texture resources, as reported by
CheckDeviceFormat. Devices expose an array of 16,384 palettes, with only one
of the palettes being active at any one time. The palette is used only by the
texturing units. The active palette is changed with the GetCurrentTexture-
Palette and SetCurrentTexturePalette methods. As with light numbers, an
application should choose palette numbers beginning with zero and increasing
sequentially to minimize the amount of memory used by the device.

HRESULT GetCurrentTexturePalette(UINT *value);
HRESULT SetCurrentTexturePalette(UINT value);

Each palette is an array of 256 PALETTEENTRY structures and is manipulated
with the GetPaletteEntries and SetPaletteEntries methods. As discussed
in chapter 1, PALETTEENTRY structures do not have a bit layout that corresponds
to D3DCOLOR, so take care when assigning between the two color representations.

HRESULT GetPaletteEntries(UINT index,
PALETTEENTRY *value);

HRESULT SetPaletteEntries(UINT index,
const PALETTEENTRY *value);

Direct3D uses the peFlags member of the PALETTEENTRY structure to store
the alpha value for the color. A device supports alpha in the palette colors
if the D3DPTEXTURECAPS ALPHAPALETTE bit of D3DCAPS9::TextureCaps is set.

11.4. TEXTURE FORMATS 423

0, 0 1, 0 2, 0 3, 0

0, 1 1, 1 2, 1 3, 1

0, 2 1, 2 2, 2 3, 2

0, 3 1, 3 2, 3 3, 3

Figure 11.6: Texel organization within a block for compressed textures. Shown
are the coordinates of each texel within a block, encoded into WORDs as indicated
in the text.

A palette-based texture format can reduce the amount of storage required for
textures with a limited number of colors and allow an application to update the
contents of a texture quickly, provided the update can be performed as a simple
palette change. If the device does not support alpha values in the palette entries
and the texture format does not contain an alpha channel, then an alpha value
of 1.0 is supplied, producing completely opaque colors.

11.4.2 Compressed Texture Formats

One way to reduce the memory footprint of a texture is to use a texture with
smaller dimensions, but that may adversely impact the image quality of the
rendered scene. Another way to reduce the memory footprint of a texture is
to store the texture in a compressed format. Direct3D provides the D3DFMT -
DXTn formats for storing textures in a compressed format. Most applications
needn’t be aware of the internal storage representation of a compressed texture
and can use the functions in the D3DX library to convert between format repre-
sentations. However, knowledge of the compression format is useful for writing
off-line tools for producing compressed textures for later use by the application.

The formats can be roughly categorized into four groups: opaque textures
(DXT1), textures with a single bit transparency mask per texel (DXT1), tex-
tures with explicit transparency for each texel (DXT2, DXT3) and textures with
interpolated transparency for each texel (DXT4, DXT5).

All compressed texture formats encode data in 4 × 4 blocks of texels and
all dimensions of compressed textures must be powers of two. When locking
any resource in a compressed texture format, the Pitch member will reflect the
pitch of 4 scanlines, i.e. a scanline of blocks. When locking a RECT of a resource
in a compressed format, the coordinates of the RECT must be aligned to a 4× 4
block boundary or an error will result.

424 CHAPTER 11. BASIC TEXTURING

White White Black Black
Black White Black Black
White Black Black Black
Black Black Black Black

Figure 11.7: Sample block of texels to be stored in a compressed texture format.
The block encodes the numbers 0, . . . , 3 as a binary sequence, increasing from
bottom to top. The binary sequence is left-justified within each scanline of the
block.

DXT1

The D3DFMT DXT1 format encodes opaque textures and textures with a single
bit transparency mask. Each 4 × 4 block of texels is encoded in a chunk of 64
bits resulting in 4 bits per texel. Each chunk contains two colors stored in 16
bits each and a value for each texel stored in 2 bits. Each texel in the block
can be one of four values: either of the two colors stored explicitly in the chunk
or a color interpolated between the two colors. The layout of the chunk is four
WORDs as follows, with the most significant bit of each word on the left.

Word Bits Contents
0 rrrrr gggggg bbbbb C0: Color 0
1 rrrrr gggggg bbbbb C1: Color 1
2 31 21 11 01 30 20 10 00 Scanlines 1, 0
3 33 23 13 03 32 22 12 02 Scanlines 3, 2

Each color is stored as a pixel in D3DFMT R5G6B5 format. For the scanline data,
the table shows the texel coordinates from figure 11.6 for each pixel within the
word. Each texel is represented by a two bit code within the scanline data. The
interpretation of the texel code depends on the relative magnitude of the two
colors and is made on a block-by-block basis within the texture. If the first
WORD is greater than the second WORD in the chunk, then the code designates
4 opaque texel colors; otherwise the code designates 3 opaque texel colors and
transparent black.

C0 > C1 C0 ≤ C1

Code Color
0 C0

1 C1

2 2
3C0 + 1

3C1

3 1
3C0 + 2

3C2

Code Color
0 C0

1 C1

2 1
2C0 + 1

2C1

3 〈0, 0, 0, 0〉

As an example, consider the block of texels shown in figure 11.7 containing
the colors opaque white and opaque black. This block would be encoded as an
opaque chunk with the following WORDs:

11.4. TEXTURE FORMATS 425

Word Value Contents
0 0xffff C0: opaque white
1 0x0000 C1: opaque black
2 0x5455 Scanlines 3, 2
3 0x5051 Scanlines 1, 0

If the opaque black pixels were made transparent, the encoded WORDs would be
as follows:

Word Value Contents
0 0x0000 C0: opaque black
1 0xffff C1: opaque white
2 0xfdff Scanlines 3, 2
3 0xf5f7 Scanlines 1, 0

DXT2 and DXT3

The compressed texture formats D3DFMT DXT2 and D3DFMT DXT3 extend the con-
cepts in D3DFMT DXT1 to include a per-texel alpha value. They are identical in
all respects except for the interpretation of the alpha channel. In the DXT2
format, the texels are interpreted as having associated, or premultiplied, alpha
while in DXT3 the texels are interpreted as having unassociated alpha. Recall
from chapter 1 that an unassociated alpha color 〈α, r, g, b〉 can have any of r,
g, or b values larger than the α value. Associated alpha colors all have r, g, and
b values less than or equal to the α channel value. Different formats are used
to represent these two cases as the associativity of the alpha cannot be inferred
directly from the data values.

Each 4×4 block of texels is encoded in two 64-bit chunks: first a 64-bit chunk
describing the transparency of the pixels, followed by a 64-bit chunk encoding
the color of the pixels. The color chunk is exactly the same as the 64-bit DXT1
chunk that encodes a 4 × 4 block of opaque pixels. The 64-bit alpha chunk
encodes the transparency of each texel directly using 4 bits of alpha per texel,
or four texels per WORD, with the pixels filled across the scanline from the least-
significant bits first. Note that the scanline order for the alpha data is different
from that of the colors in a DXT1 chunk.

Word Bits Contents
0 3333 2222 1111 0000 α Scanline 0
1 3333 2222 1111 0000 α Scanline 1
2 3333 2222 1111 0000 α Scanline 2
3 3333 2222 1111 0000 α Scanline 3

The 4×4 block of texels in figure 11.7 would be encoded in two 64-bit chunks
as the following WORDs:

426 CHAPTER 11. BASIC TEXTURING

Word Value Contents
0 0x000f Alpha Scanline 0
1 0x00f0 Alpha Scanline 1
2 0x0f00 Alpha Scanline 2
3 0xf000 Alpha Scanline 3
4 0xffff C0: opaque white
5 0x0000 C1: opaque black
6 0x5455 Color Scanlines 3, 2
7 0x5051 Color Scanlines 1, 0

DXT4 and DXT5

The compressed texture formats D3DFMT DXT4 and D3DFMT DXT5 extend the con-
cepts in D3DFMT DXT1 to include two alpha values and a per-texel code that
interpolates between the two alpha values. They are identical in all respects
except for the interpretation of the alpha channel: in DXT4 the texels are inter-
preted as having associated, or premultiplied, alpha while in DXT5 the texels
are interpreted as having unassociated alpha.

Each 4×4 block of texels is encoded in two 64-bit chunks: first a 64-bit chunk
describing the transparency of the pixels, followed by a 64-bit chunk encoding
the color of the pixels. The color chunk is exactly the same as the 64-bit DXT1
chunk that encodes a 4×4 block of opaque pixels. The 64-bit alpha chunk gives
two explicit 8-bit BYTE alpha values and encodes each texel’s alpha value by
a 3-bit code. As three bits are used for each texel, the texel codes span BYTE
boundaries within the chunk.

Byte Bits Contents
0 aaaaaaaa α0

1 aaaaaaaa α1

2 333 222 11 Scanline 0
3 1 000 333 2 Scanlines 0, 1
4 22 111 000 Scanline 1
5 333 222 11 Scanline 2
6 1 000 333 2 Scanlines 2, 3
7 22 111 000 Scanline 3

The interpretation of the 3-bit alpha code depends on the relative magnitude
of the two alpha vlaues. If the first BYTE is greater than the second BYTE in the
chunk, then the alpha codes identify eight distinct alpha values interpolated
evenly between the two explicit values. Otherwise, the alpha codes identify
six distinct alpha values interpolated evenly between the two explicit values
and the additional values 0.0 and 1.0, for fully transparent and fully opaque α,
respectively.

11.5. TEXTURE COORDINATE PROCESSING 427

α0 > α1 α0 ≤ α1

Code Alpha
0 α0

1 α1

2 6
7α0 + 1

7α1

3 5
7α0 + 2

7α1

4 4
7α0 + 3

7α1

5 3
7α0 + 4

7α1

6 2
7α0 + 5

7α1

7 1
7α0 + 6

7α1

Code Alpha
0 α0

1 α1

2 4
5α0 + 1

5α1

3 3
5α0 + 2

5α1

4 2
5α0 + 3

5α1

5 1
5α0 + 4

5α1

6 0.0

7 1.0

As an example, consider the block of texels in figure 11.7, with the black
texels as transparent. The block would be encoded as the following sequence of
WORDs in the DXT4 format:

Word Value Contents
0 0x00ff α0, α1

1 0x8249 Alpha Scanlines 0, 1
2 0x4124 Alpha Scanlines 1, 2
3 0x2402 Alpha Scanlines 2, 3
4 0xffff C0: white
5 0x0000 C1: black
6 0x5455 Color Scanlines 1, 0
7 0x5051 Color Scanlines 3, 2

11.5 Texture Coordinate Processing

Now that we’ve become acquainted with the different texture resources, let’s
take a look at how texture coordinates are processed to address texels within
those resources. As we saw in section 5.6, texture coordinates can be included
with a vertex, either through FVF flags or a vertex shader declaration. Concep-
tually a texture is addressed by coordinates in the unit interval [0, 1], as shown in
figure 11.8. A “linear” texture, addressed by a single texture coordinate value,
is not exposed as an explicit resource type: it is just a rectangular texture with
a height of one. A cube texture is slightly different — it is addressed by coor-
dinates in the range [−1, 1], with the coordinate having the largest magnitude
selecting the face of the cube and the remaining two coordinates addressing
within the selected face.

After a primitive has been projected into screen space through vertex pro-
cessing, rasterization interpolates the texture coordinates across the primitive.
At this point, for a texture coordinate u Direct3D knows the change in the tex-
ture coordinate, ∆u, across each pixel from rasterization. If we scale the change
in texture coordinates by the appropriate dimension of the texture we will know
how many texels correspond to this source pixel. Using that information we can
select an appropriate mipmap level to use for texturing this source pixel.

428 CHAPTER 11. BASIC TEXTURING

0 - 1

0 - 1
0

6
1

¡
¡

¡

¡
¡

¡

¡
¡

¡

¡
¡

¡

0 - 1
0

6
1

0

1
¡¡µ

Figure 11.8: Texture address space for linear, rectangular and volume textures.
Each texture is conceptually addressed by coordinates in the unit interval [0, 1].
A cube texture is addressed slightly differently: the largest coordinate is used
to select a face of the cube and the remaining two texture coordinates address
texels within the face, as in a rectangular texture.

As an example, suppose we have a square texture with mipmap levels 16×16,
8× 8, 4× 4, 2× 2 and 1× 1 addressed by two-dimensional texture coordinates
u and v. If the change in texture coordinates across a source pixel were ∆u =
0.0625, ∆v = 0.0625, then this source pixel corresponds to a 1 × 1 texel area
in the texture (0.0625 × 16 = 1). Consequently Direct3D takes texels from
level 0 of the mipmap to produce a texel value for this source pixel. If ∆u =
0.125, ∆v = 0.125, then the source pixel would correspond to a 2× 2 texel area
in the texture and Direct3D would take texels from level 1 of the mipmap to
produce a texel value.

At times we may want to map texels directly to screen pixels, such as when
drawing user interface elements with textured primitives. To achieve a one-to-
one mapping between texels and source pixels, the primitive coordinates should
be offset by 1

2 relative to the screen space location. This is due to the ras-
terization rules for triangles discussed in chapter 10, where integer coordinates
address the center of a screen space pixel. The offset to the triangle’s coordinate
aligns a texel with a screen space pixel. The effect is most easily obtained by
using transformed vertices whose position is already in screen space. The fol-
lowing excerpt from app.cpp in the rt FrameBuffer sample application from
chapter 14 computes vertices to tile the back buffer with a texture.

// build s_screen_vertex structures for stippling the window
m_stipple_verts = 0;
m_num_stipple_quads = (width + STIPPLE_SIZE - 1)/STIPPLE_SIZE*

(height + STIPPLE_SIZE - 1)/STIPPLE_SIZE;

11.5. TEXTURE COORDINATE PROCESSING 429

THR(m_pd3dDevice->CreateVertexBuffer(m_num_stipple_quads*
6*sizeof(s_screen_vertex), D3DUSAGE_WRITEONLY,
s_screen_vertex::FVF, D3DPOOL_MANAGED, &m_stipple_verts));

rt::vertex_lock<s_screen_vertex> verts(m_stipple_verts);
s_screen_vertex *quad = verts.data();
for (y = 0; y < height; y += STIPPLE_SIZE)
{

for (UINT x = 0; x < width; x += STIPPLE_SIZE)
{

const float right = min(x + STIPPLE_SIZE, width);
const float bottom = min(y + STIPPLE_SIZE, height);

quad[0].x = x + 0.5f; quad[0].y = y + 0.5f;
quad[0].z = 0.99f; quad[0].rhw = 0.99f;
quad[0].u = 0; quad[0].v = 1;

quad[1].x = right + 0.5f; quad[1].y = y + 0.5f;
quad[1].z = 0.99f; quad[1].rhw = 0.99f;
quad[1].u = 1; quad[1].v = 1;

quad[2].x = x + 0.5f; quad[2].y = bottom + 0.5f;
quad[2].z = 0.99f; quad[2].rhw = 0.99f;
quad[2].u = 0; quad[2].v = 0;

quad[3].x = x + 0.5f; quad[3].y = bottom + 0.5f;
quad[3].z = 0.99f; quad[3].rhw = 0.99f;
quad[3].u = 0; quad[3].v = 0;

quad[4].x = right + 0.5f; quad[4].y = y + 0.5f;
quad[4].z = 0.99f; quad[4].rhw = 0.99f;
quad[4].u = 1; quad[4].v = 1;

quad[5].x = right + 0.5f; quad[5].y = bottom + 0.5f;
quad[5].z = 0.99f; quad[5].rhw = 0.99f;
quad[5].u = 1; quad[5].v = 0;

quad += 6;
}

}

Multiple sets of texture coordinates can be included with a vertex. By default
the first set of texture coordinates is used for the first texture stage, the second
set is used for the second stage and so-on. This mapping of texture coordinate
sets to texture stages can be changed with TSS Tex Coord Index. This allows
multiple texture stages to use the same texture coordinate set. TSS Tex Coord
Index for a stage is set to the zero-based index of the texture coordinate to be

430 CHAPTER 11. BASIC TEXTURING

P
r

r C

#»v

¡
¡

¡
¡

¡
¡µ #»n

HHHHHHj

#»r

A
A

A
A

A
AK

Figure 11.9: Illustration of the reflection vector for a vertex. The vector #»v is
from the vertex position P to the camera position C, the origin of camera space.
The reflection vector #»r makes an angle to the surface normal #»n equal to that
made by #»v , but reflected about #»n .

used for that stage.

11.5.1 Texture Coordinate Generation

In addition to specifying texture coordinates as a vertex component, Direct3D
can generate texture coordinates from the vertex directly. A device supports
the generation of texture coordinates from the vertex if the D3DVTXPCAPS TEX-
GEN bit of D3DCAPS9::VertexProcessingCaps is set. The coordinates can be
generated from the vertex position, the vertex normal, or the reflection vector
of the vertex, all in camera space. Recall that camera space is the coordinate
system resulting from the application of the world and view matrices. The
reflection vector is the reflection about the vertex normal of the vector from the
vertex position to the camera, as shown in figure 11.9.

To generate texture coordinates, set TSS Tex Coord Index to one of the
following values. The D3DTSS TCI PASSTHRU value is shown for completeness
and corresponds to the situation where a texture coordinate set index is used.

#define D3DTSS_TCI_PASSTHRU 0x00000000
#define D3DTSS_TCI_CAMERASPACENORMAL 0x00010000
#define D3DTSS_TCI_CAMERASPACEPOSITION 0x00020000
#define D3DTSS_TCI_CAMERASPACEREFLECTIONVECTOR 0x00030000

11.5.2 Texture Coordinate Transformation

Just as a transformation matrix allowed us to reposition and reorient primitives
without editing the vertices, texture coordinates can also be transformed by a
matrix during vertex processing. Each stage has its own transformation matrix
identified by the D3DTS TEXTUREn enumerants of D3DTRANSFORMSTATETYPE. The
GetTransform, SetTransform, and MultiplyTransform methods are used to
manipulate the matrix.

Texture transformation matrices are slightly different from other transfor-
mation matrices on the device. For a one-dimensional texture coordinate, 2× 2

11.5. TEXTURE COORDINATE PROCESSING 431

submatrix in the upper-left of the matrix is used for the transformation. Simi-
larly, for two-dimensional texture coordinates, the 3×3 submatrix in the upper-
left is used for the transformation. The exact elements of the matrix used for
transforming the texture coordinate are determined by the dimensionality of
the texture coordinate set and the value of TSS Texture Transform Flags. This
texture stage state has one of the values from the D3DTEXTURETRANSFORMFLAGS
enumeration.

typedef enum _D3DTEXTURETRANSFORMFLAGS {
D3DTTFF_DISABLE = 0,
D3DTTFF_COUNT1 = 1,
D3DTTFF_COUNT2 = 2,
D3DTTFF_COUNT3 = 3,
D3DTTFF_COUNT4 = 4,
D3DTTFF_PROJECTED = 256

} D3DTEXTURETRANSFORMFLAGS;

D3DTTFF DISABLE disables texture coordinate transformation and the tex-
ture matrix for the stage is ignored. The D3DTTFF COUNTn values instruct the
rasterizer that n-dimensional texture coordinates result from the transforma-
tion.

The count can be bitwise ored with the D3DTTFF PROJECTED value to indicate
that the resulting coordinates are homogeneous coordinates and not cartesian
coordinates. Homogeneous texture coordinates are converted to cartesian coor-
dinates before the texture is addressed with the coordinate set. A device sup-
ports projective texture coordinates by performing the divide per-pixel when
the D3DPTEXTURECAPS PROJECTED bit of TextureCaps is set. Otherwise, the
Direct3D runtime performs the divide per-vertex.

As an example, consider a vertex with two-dimensional texture coordinates.
With TSS Texture Transform Flags set to D3DTTFF COUNT2, the upper 2 × 2
submatrix of the texture transformation matrix will be used. With three-
dimensional texture coordinates, such as those resulting from automatic texture
coordinate generation, and TSS Texture Transform Flags set to D3DTTFF COUNT2,
the upper left 2× 3 submatrix will be used.

We can use regular 4×4 matrix functions to generate any necessary matrices
and then shuffle the matrix elements to suit the dimensionality of the texture
coordinate set and the value of TSS Texture Transform Flags. We can use a
custom class to construct the matrix in the appropriate form. For example,
here is a class that constructs the appropriate 2× 2 submatrix from a standard
4 × 4 transformation matrix. It works by extending the D3DX matrix class to
construct the appropriate matrix.

432 CHAPTER 11. BASIC TEXTURING

(a) Wrap (b) Clamp (c) Border

(-2,-2) (2,-2)

(-2,2) (2,2)

(d) Mirror (e) Mirror Once (f) Texture
Coordinates

Figure 11.10: Texture coordinate addressing modes values for the SS Address U,
SS Address V and SS Address W texture stage states. A black and white texture
with texture coordinates spanning the interval [−2, 2] in both u and v is shown.
The border color is white.

class mat_tex1d : public D3DXMATRIX
{
public:

mat_tex1d(const D3DXMATRIX &rhs)
: D3DXMATRIX(rhs._11, rhs._14, 0, 0,

rhs._41, rhs._44, 0, 0,
0, 0, 1, 0,
0, 0, 0, 1)

{}
};

Similar classes can be used to construct other special forms of texture trans-
formation matrices. The include file <rt/mat.h> in the sample code contains
several classes for constructing texture coordinate transformation matrices in
this manner.

11.5.3 Texture Addressing

So far we have discussed texture coordinates drawn from the unit interval [0, 1].
You can use texture coordinates outside the unit interval as well. The range
of coordinates outside the unit interval accepted by a device is given by the
MaxTextureRepeat member of D3DCAPS9. If this value is m, then the device

11.5. TEXTURE COORDINATE PROCESSING 433

supports texture coordinates in the interval [−m,m]. If the D3DPTEXTURECAPS -
TEXREPEATNOTSCALEDBYSIZE bit of TextureCaps is not set, then the device
scales texture coordinates to the size of the texture before interpolation and the
MaxTextureRepeat value indicates the range accepted by the device after this
scaling takes place.

Texture coordinates outside the unit interval are processed based on the
texture addressing mode set for the stage. SS Address U, SS Address V, and SS
Address W control the addressing modes for the first, second and third texture
coordinate values, respectively, for a texture stage. There is no addressing mode
specified for the fourth coordinate, which is used only for projective texturing
of three-dimensional textures. Each of these texture stage states can be one of
the values in the D3DTEXTUREADDRESS enumeration.

typedef enum _D3DTEXTUREADDRESS {
D3DTADDRESS_WRAP = 1,
D3DTADDRESS_MIRROR = 2,
D3DTADDRESS_CLAMP = 3,
D3DTADDRESS_BORDER = 4,
D3DTADDRESS_MIRRORONCE = 5

} D3DTEXTUREADDRESS;

The default texture addressing mode for all coordinates is D3DTADDRESS -
WRAP, where a coordinate outside [0, 1] is mapped to the unit interval by modulo
arithmetic. With the wrap address mode, a texture coordinate of 1.75, −0.25 or
0.75 address the same position within a texture. Mathematically, the original
coordinate u is transformed into the coordinate u′ before addressing the texture
as follows:

u′ =





u + due, u < 0
u, 0 ≤ u ≤ 1
u− buc, 1 < u

The ceiling function due returns the smallest integer k larger than the argument
u. Similarly, the floor function buc returns the largest integer k smaller than
the argument u. The clamp addressing mode clamps a texture coordinate to
the interval [0, 1]:

u′ =





0, u < 0
u, 0 ≤ u ≤ 1
1, 1 < u

The border addressing mode is similar to clamp, but the texture color itself
is substituted with the D3DCOLOR value of SS Border Color when the texture
coordinate is outside the unit interval.

The mirror address mode is similar to the wrap address mode, but at each
repetition of the texture space it is mirrored. The mirror once address mode

434 CHAPTER 11. BASIC TEXTURING

mirrors the texture only once, about the zero point of the unit interval. The
different addressing modes are illustrated in figure 11.10. Mathematically, for
the mirror addressing mode the texture coordinate u is transformed into the
coordinate u′ before addressing the texture as follows:

u′ =
{

u− buc, k ≤ buc ≤ k + 1, k even
1− u + due, k ≤ due ≤ k + 1, k odd

The mirror once addressing mode transforms the texture coordinate value u into
the value u′ as follows:

u′ =





1, u < −1
−u, −1 ≤ u ≤ 0
u, 0 < u ≤ 1
1, 1 < u

The TextureAddressCaps and VolumeTextureAddressCaps members of D3D-
CAPS9 give the addressing mode support for the device. TextureAddressCaps
applies to rectangular and cubemap textures, while VolumeTextureAddress-
Caps applies only to volume textures. Both members are a combination of one
or more flags indicating the texture addressing modes supported. The device
supports independent addressing modes for the texture coordinates if the D3D-
TADDRESSCAPS INDEPENDENTUV bit is set, otherwise the device supports only a
single addressing mode for all texture coordinates, given by SS Address U.

#define D3DPTADDRESSCAPS_WRAP 0x00000001L
#define D3DPTADDRESSCAPS_MIRROR 0x00000002L
#define D3DPTADDRESSCAPS_CLAMP 0x00000004L
#define D3DPTADDRESSCAPS_BORDER 0x00000008L
#define D3DPTADDRESSCAPS_INDEPENDENTUV 0x00000010L
#define D3DPTADDRESSCAPS_MIRRORONCE 0x00000020L

11.5.4 Texture Wrapping

Texture wrapping changes how the rasterizer interpolates the texture coordi-
nates across a primitive. Be careful not to confuse texture wrapping with the
wrap texture addressing mode. Texture wrapping is controlled for each tex-
ture stage by the render states RS Wrap 0, . . . , RS Wrap 15. When wrapping
is enabled for a texture coordinate, the rasterizer interpolates the coordinate
across a primitive with the shortest possible path between the two coordinate
values, treating the texture space as an infinitely repeating grid, as illustrated
in figure 11.11.

For example, suppose a line segment had texture coordinates of 0.1 and 0.9 at
its two endpoints. With wrapping disabled, the rasterizer would interpolate the
coordinate u in the range [0.1, 0.9], spanning a distance of 0.8 in texture space.
However, with coordinate wrapping enabled, the rasterizer would interpolate

11.6. TEXTURE SAMPLING 435

0 - 1¾ 0 - 1¾

0 - 1¾ 0 - 1¾

0

6

?

1

0

6

?

1

r

r

r

´
´

´
´́

¥
¥
¥
¥
¥
¥
¥¥J

J
J

JJbaaaaaaaa

©©©©©©©©©

A

B

CC ′

Figure 11.11: Texture coordinate wrapping with the RS Wrap 0, . . . , RS Wrap
15 render states. A triangle with the texture coordinates A = (0.75, 0.25),
B = (0.875, 0.875) and C = (0.125, 0.5) is shown with wrapping enabled for the
horizontal coordinate. The triangle 4ABC spans the portion of texture space
drawn when wrapping is enabled, while the triangle 4ABC ′ spans the portion
of texture space drawn when wrapping is disabled.

the coordinate u in the range [0.1, 0] followed by the range [1, 0.9], spanning a
distance of 0.2 in texture space.

The RS Wrap 0, . . . , RS Wrap 15 render states are set to a combination of
zero or more flags to enable wrapping for a particular coordinate on a texture
stage. To disable texture coordinate wrapping completely for a given stage, set
the appropriate render state to zero. The D3DWRAPCOORD 0, D3DWRAPCOORD 1,
and D3DWRAPCOORD 2 values are synonyms for the values D3DWRAP U, D3DWRAP V
and D3DWRAP W, respectively.

#define D3DWRAP_U 0x00000001L
#define D3DWRAP_V 0x00000002L
#define D3DWRAP_W 0x00000004L

#define D3DWRAPCOORD_0 0x00000001L
#define D3DWRAPCOORD_1 0x00000002L
#define D3DWRAPCOORD_2 0x00000004L
#define D3DWRAPCOORD_3 0x00000008L

11.6 Texture Sampling

In section 11.3, we mentioned that there were two sources of aliasing with tex-
turing: the creation of texture samples and the sampling of the reconstructed
function represented by the texture samples. In section 11.5, we saw how texels
can be selected from a mipmap level based on the change in texture coordi-
nates across a source pixel. The selection of a texel value for a source pixel is a

436 CHAPTER 11. BASIC TEXTURING

sampling operation on the texture.
If the amount of texture space spanned by a source pixel is exactly a power of

two in all dimensions of the texture and we have a mipmapped texture level cor-
responding to that power of two, then the sampling can select a value from the
mipmap directly. Most of the time, a source pixel will span some other amount
of texture space. Direct3D provides three texture stage states to control the
sampling of the texture to produce a texel value used in texture processing: SS
Min Filter when the texture is minified, SS Mag Filter when the texture is mag-
nified, and SS Mip Filter when the texture is mipmapped. Each of these render
states can be one of the values of the D3DTEXTUREFILTERTYPE enumeration.

typedef enum _D3DTEXTUREFILTERTYPE
{

D3DTEXF_NONE = 0,
D3DTEXF_POINT = 1,
D3DTEXF_LINEAR = 2,
D3DTEXF_ANISOTROPIC = 3,
D3DTEXF_FLATCUBIC = 4,
D3DTEXF_GAUSSIANCUBIC = 5

} D3DTEXTUREFILTERTYPE;

During minification, SS Min Filter specifies how multiple texel samples should
be combined to produce a single texel value. You will recall that we can create
a partial mipmap, so it is possible that the texture will be compressed more
than the smallest mipmap level available for the texture. During magnification,
SS Mag Filter specifies how to interpolate between texel samples. Again, we
can magnify a texture beyond the most detailed level available for the texture.
Instead of selecting texel samples from only a single mipmap level, we can per-
form the appropriate minified or magnified filtering on two adjacent mipmap
levels and combine them with the filter specified by SS Mip Filter. Combining
texels from two mipmaps provides a smooth change in appearance as a primi-
tive moves in a scene and the amount of texture minification or magnification
changes.

Not all of the enumerants of D3DTEXTUREFILTERTYPE apply to all the fil-
tering texture stage states. D3DTEXF POINT and D3DTEXF LINEAR can be used
for minification, magnification and mipmap filtering. D3DTEXF NONE is used to
disable mipmap filtering. D3DTEXF ANISOTROPIC can be used for minification or
magnification filtering, while the filters D3DTEXF PYRAMIDALQUAD and D3DTEX-
F GAUSSIANQUAD can only be used for magnification filtering.

Filter Minification Magnification Mipmap
None No No Yes
Point Yes Yes Yes
Linear Yes Yes Yes
Anisotropic Yes Yes No
Flat Cubic No Yes No
Gaussian Cubic No Yes No

11.6. TEXTURE SAMPLING 437

r(u, v)

⊗×

× ×

r(u, v)

©©©©©©©©©

×

×

×

× ×

×

×

×

(a) Point, Linear (b) Anisotropic

Figure 11.12: Texture minification filtering with the SS Min Filter texture stage
state. (a) The point addressed by the texture coordinates (u, v) selects the texel
marked ⊗ with point filtering to produce the sampled texel. When linear filter-
ing is selected the 2× 2 region (texels marked ⊗ and ×) around the addressed
point is combined by linear interpolation to produce the sampled texel. (b) With
anisotropic filtering, the line of anisotropy for the source pixel is projected into
texture space. The texels nearest the line of anisotropy are combined by inter-
polation along the line of anisotropy. In this figure, the anisotropy has a value
of approximately 2. The more the anisotropy, the more texels are combined by
linear interpolation to produce the sampled texel.

A point filter selects the nearest texel or mipmap level corresponding to
the texture coordinate for the source pixel. The linear filter, when used for
minification or magnification, takes a 2 × 2 neighbourhood of texels and uses
the texture coordinate to interpolate between the four pixels. Point and linear
filtering for minification are shown in figure 11.12. Linear mipmap filtering
takes samples from the two nearest mipmap levels and interpolates between
them. In linear mipmap filtering, the minification and magnification filters are
first applied to obtain the two texel values taken from the two mipmap levels.
The cubic filters provide for a more accurate interpolation between texel values
during magnification, using a 3 × 3 texel neighbourhood from the magnified
mipmap level.

Anisotropic filtering samples a non-square area of the texture, based on the
change in texture coordinates across the source pixel. This allows for more
accurate filtering when the texture is compressed more along one coordinate
than another, such as when a plane tilted relative to the view plane is viewed
in perspective. A device supports anisotropic filtering if the D3DPRASTERCAPS -
ANISOTROPY bit of RasterCaps is set. SS Max Anisotropy controls the maximum
amount aspect ratio of the anisotropic filtering region. The larger the value in
this texture stage state, the more rectangular an area will be filtered to produce a
texel value when D3DTEXF ANISOTROPIC is selected. The maximum value for SS
Max Anisotropy that is supported by the device is given by the MaxAnisotropy
member of D3DCAPS9.

438 CHAPTER 11. BASIC TEXTURING

The supported texture filters vary with the type of texture resource and the
filtering texture stage stage. The TextureFilterCaps, CubeTextureFilter-
Caps and VolumeTextureFilterCaps members of D3DCAPS9 describe the filters
supported for the corresponding type of texture resource. They can be zero or
more of the following flags.

#define D3DPTFILTERCAPS_MINFPOINT 0x00000100L
#define D3DPTFILTERCAPS_MINFLINEAR 0x00000200L
#define D3DPTFILTERCAPS_MINFANISOTROPIC 0x00000400L
#define D3DPTFILTERCAPS_MIPFPOINT 0x00010000L
#define D3DPTFILTERCAPS_MIPFLINEAR 0x00020000L
#define D3DPTFILTERCAPS_MAGFPOINT 0x01000000L
#define D3DPTFILTERCAPS_MAGFLINEAR 0x02000000L
#define D3DPTFILTERCAPS_MAGFANISOTROPIC 0x04000000L
#define D3DPTFILTERCAPS_MAGFAFLATCUBIC 0x08000000L
#define D3DPTFILTERCAPS_MAGFGAUSSIANCUBIC 0x10000000L

Mipmap filtering is also influenced by the level of detail set on a texture via
the SetLOD method on IDirect3DBaseTexture9 and the values of the texture
stage states SS Max Mip Level and SS Mip Map LOD Bias. SS Max Mip Level
specifies the highest mipmap level number that will be used during texture
sampling. When this value is zero, all mipmap levels are available for use. This
texture stage state can be set for textures in all resource pools, while SetLOD is
only available for managed textures. SS Max Mip Level is bounded from above
by the number of mipmap levels in the texture resource.

SS Mip Map LOD Bias allows an application to shift the mipmap level selec-
tion towards higher mipmap levels to artifically “blur” the texture, or towards
lower mipmap levels to artficially “sharpen” the texture. In reality, these are
not true blur or sharpen operations as performed in image processing, they
only bias the texturing units towards mipmap levels with smaller or larger di-
mensions, respectively. The value is a float, with a value of 1.0 shifting the
mipmap selection to the next smaller level of detail, and a value of −1.0 shifting
the mipmap selection to the next larger level of detail. A device supports SS
Mip Map LOD Bias if the D3DPRASTERCAPS MIPMAPLODBIAS bit of RasterCaps
is set.

There is no one set of texture sampling state that works best for all applica-
tions, or even for all textures within a single application. The sample program
for this chapter allows you to interactively explore the affects of texture sampling
state on the appearance of a texture. In general, linear filtering for minifica-
tion, magnification and mipmap filtering provides high quality results at the
cost of additional processing. Point sampling is quick, but results in aliasing.
Anisotropic filtering may be required to acceptably render fine details in prim-
itives not parallel to the viewing plane. For textures that are often magnified,
the cubic magnification filters can provide superior quality.

11.7. TEXTURE STAGE PROCESSING 439

Diffuse
Specular
Texture
TFactor
Current

Temp r
r

r
r

r
r

? ?? ?? ?? ?? ?? ?

RGB Unit Alpha Unit

? ?
Result

Multiplexor

? ?
Current Temp

Figure 11.13: Texture stage processing.

11.7 Texture Stage Processing

After a texture has been addressed and sampled, a texel value is produced. This
texel value can be combined with other inputs to the texture stage to produce a
diffuse color value for the source pixel. The diffuse color value can also be passed
on to subsequent stages for further processing, as discussed in the next chapter.
Each texture stage contains an RGB processing unit that produces the color
output and an alpha processing unit that produces the alpha output. While
the API exposes the two units independently, they must always be controlled
in tandem. You should always set the RGB and alpha unit state together for a
stage. A common mistake is to set the state for one and forget to set the state
for the other unit.

Each unit can select up to three arguments from any of six inputs that are
combined through an operation to produce an output. The result of the RGB
and alpha units for the stage can then be sent to one of two possible destinations
for further processing. The flow of data from one stage to the next is illustrated
in figure 11.13.

The six available inputs are: the interpolated diffuse color from the raster-
izer, the interpolated specular color from the rasterizer, the texel sampled from
the texture, the value of RS Texture Factor, the result of the previous texture
stage, or the contents of the temporary register texture stage output. Each of
these inputs is identified by one of the following values. RS Texture Factor is a
D3DCOLOR value. D3DTA SELECTMASK is a mask giving the bits used to select an
input.

440 CHAPTER 11. BASIC TEXTURING

#define D3DTA_SELECTMASK 0x0000000f
#define D3DTA_DIFFUSE 0x00000000
#define D3DTA_CURRENT 0x00000001
#define D3DTA_TEXTURE 0x00000002
#define D3DTA_TFACTOR 0x00000003
#define D3DTA_SPECULAR 0x00000004
#define D3DTA_TEMP 0x00000005

Each of the input arguments to a processing unit can be combined with zero
or more of the following modifier flags. D3DTA COMPLEMENT inverts the argument
C to supply 1 − C as the input. D3DTA ALPHAREPLICATE takes the argument
〈a, r, g, b〉 and supplies 〈a, a, a, a〉 as the input.

#define D3DTA_COMPLEMENT 0x00000010
#define D3DTA_ALPHAREPLICATE 0x00000020

The RGB and alpha units each can compute functions of up to three argu-
ments. Each argument is bound to one of the six inputs with a texture stage
state: TSS Color Arg 0, TSS Color Arg 1, TSS Color Arg 2, TSS Alpha Arg 0,
TSS Alpha Arg 1, and TSS Alpha Arg 2. The functions to be computed for the
RGB and alpha units are designated by the TSS Color Op and TSS Alpha Op
states. The operations that can be performed are given by the D3DTEXTUREOP
enumeration.

typedef enum _D3DTEXTUREOP
{

D3DTOP_DISABLE = 1,
D3DTOP_SELECTARG1 = 2,
D3DTOP_SELECTARG2 = 3,
D3DTOP_MODULATE = 4,
D3DTOP_MODULATE2X = 5,
D3DTOP_MODULATE4X = 6,
D3DTOP_ADD = 7,
D3DTOP_ADDSIGNED = 8,
D3DTOP_ADDSIGNED2X = 9,
D3DTOP_SUBTRACT = 10,
D3DTOP_ADDSMOOTH = 11,
D3DTOP_BLENDDIFFUSEALPHA = 12,
D3DTOP_BLENDTEXTUREALPHA = 13,
D3DTOP_BLENDFACTORALPHA = 14,
D3DTOP_BLENDTEXTUREALPHAPM = 15,
D3DTOP_BLENDCURRENTALPHA = 16,
D3DTOP_PREMODULATE = 17,
D3DTOP_MODULATEALPHA_ADDCOLOR = 18,
D3DTOP_MODULATECOLOR_ADDALPHA = 19,
D3DTOP_MODULATEINVALPHA_ADDCOLOR = 20,
D3DTOP_MODULATEINVCOLOR_ADDALPHA = 21,

11.7. TEXTURE STAGE PROCESSING 441

D3DTOP_BUMPENVMAP = 22,
D3DTOP_BUMPENVMAPLUMINANCE = 23,
D3DTOP_DOTPRODUCT3 = 24,
D3DTOP_MULTIPLYADD = 25,
D3DTOP_LERP = 26

} D3DTEXTUREOP;

The mathematical function computed by most of these operators is sum-
marized in table 11.1. The bump mapping operators are discussed in the next
chapter. D3DTOP DISABLE disables processing on a texture stage and must be set
on both the RGB and alpha units of a stage or an error will result. The modulat-
ing operators D3DTOP MODULATEALPHA ADDCOLOR, D3DTOP MODULATECOLOR ADD-
ALPHA, D3DTOP MODULATEINVALPHA ADDCOLOR and D3DTOP MODULATEINVCOLOR -
ADDALPHA can only be specified for the RGB unit with TSS Color Op. An error
results if an attempt is made to specify these operations on the alpha unit.

The select operators are handy for quickly selecting an input as the result-
ing color. For instance, the following settings use the texture color and alpha
directly as the resulting diffuse color and alpha:

TSS Color Arg 1 = D3DTA TEXTURE
TSS Color Op = D3DTOP SELECTARG1

TSS Alpha Arg 1 = D3DTA TEXTURE
TSS Alpha Op = D3DTOP SELECTARG1

Most of the texture operations are functions of two arguments as given by
TSS Color Arg 1, TSS Color Arg 2, TSS Alpha Arg 1 and TSS Alpha Arg 2. The
two triadic operations D3DTOP MULTIPLYADD and D3DTOP LERP take the third
argument from TSS Color Arg 0 and TSS Alpha Arg 0. A device indicates basic
support for the various texture operations through the TextureOpCaps member
of D3DCAPS9. Each supported operation corresponds to a set bit in Texture-
OpCaps. A device always supports D3DTOP DISABLE so that texturing can be
disabled if necessary.

#define D3DTEXOPCAPS_DISABLE 0x00000001L
#define D3DTEXOPCAPS_SELECTARG1 0x00000002L
#define D3DTEXOPCAPS_SELECTARG2 0x00000004L
#define D3DTEXOPCAPS_MODULATE 0x00000008L
#define D3DTEXOPCAPS_MODULATE2X 0x00000010L
#define D3DTEXOPCAPS_MODULATE4X 0x00000020L
#define D3DTEXOPCAPS_ADD 0x00000040L
#define D3DTEXOPCAPS_ADDSIGNED 0x00000080L
#define D3DTEXOPCAPS_ADDSIGNED2X 0x00000100L
#define D3DTEXOPCAPS_SUBTRACT 0x00000200L
#define D3DTEXOPCAPS_ADDSMOOTH 0x00000400L
#define D3DTEXOPCAPS_BLENDDIFFUSEALPHA 0x00000800L
#define D3DTEXOPCAPS_BLENDTEXTUREALPHA 0x00001000L
#define D3DTEXOPCAPS_BLENDFACTORALPHA 0x00002000L

442 CHAPTER 11. BASIC TEXTURING

Operation Formula f(A, B,C)
Select Arg 1 A
Select Arg 2 B
Modulate AB

Modulate 2X 2AB
Modulate 4X 4AB

Add A + B
Add Signed A + B − 0.5

Add Signed 2X 2(A + B − 0.5)
Subtract A−B

Add Smooth A + (1−A)B
Blend Current Alpha Aαc + B(1− αc)
Blend Diffuse Alpha Aαd + B(1− αd)
Blend Factor Alpha Aαf + B(1− αf)
Blend Texture Alpha Aαt + B(1− αt)

Blend Texture Alpha PM A + B(1− αt)
Modulate Alpha Add Color 〈ra + αarb, ga + αagb, ba + αabb〉
Modulate Color Add Alpha 〈rarb + αa, gagb + αa, babb + αa〉

Modulate Inverse Alpha
Add Color

〈ra + frb, ga + fgb, ba + fbb〉,
f = 1− αa

Modulate Inverse Color
Add Alpha

〈rfrb + αa, gfgb + αa, bfbb + αa〉,
〈rf , gf , bf 〉 = 〈1− ra, 1− ga, 1− ba〉

Dot Product 3 〈f, f, f〉, f = rarb + gagb + babb

Multiply Add AB + C
Lerp AB + (1−A)C

Table 11.1: Summary of operations computed in the RGB and alpha units of a
texture stage. A = 〈αa, ra, ga, ba〉 is the argument selected by TSS Color Arg
1 or TSS Alpha Arg 1. B = 〈αb, rb, gb, bb〉 is the argument selected by TSS
Color Arg 2 or TSS Alpha Arg 2. C is the argument selected by TSS Color Arg
0 or TSS Alpha Arg 0. AB represents 〈rarb, gagb, babb〉 or 〈αaαb〉, the color
or alpha resulting from the component-wise product of the two colors A and
B. αc, αd, αf and αt represent the alpha component of the D3DTA CURRENT,
D3DTA DIFFUSE, D3DTA FACTOR, D3DTA TEXTURE inputs, respectively. Not all
operations apply to both the RGB and alpha units; see the text for the details.
D3DTOP PREMODULATE, D3DTOP BUMPENVMAP, and D3DTOP BUMPENVMAPLUMINANCE
are bump mapping operations discussed in chapter 12.

11.7. TEXTURE STAGE PROCESSING 443

#define D3DTEXOPCAPS_BLENDTEXTUREALPHAPM 0x00004000L
#define D3DTEXOPCAPS_BLENDCURRENTALPHA 0x00008000L
#define D3DTEXOPCAPS_PREMODULATE 0x00010000L
#define D3DTEXOPCAPS_MODULATEALPHA_ADDCOLOR 0x00020000L
#define D3DTEXOPCAPS_MODULATECOLOR_ADDALPHA 0x00040000L
#define D3DTEXOPCAPS_MODULATEINVALPHA_ADDCOLOR 0x00080000L
#define D3DTEXOPCAPS_MODULATEINVCOLOR_ADDALPHA 0x00100000L
#define D3DTEXOPCAPS_BUMPENVMAP 0x00200000L
#define D3DTEXOPCAPS_BUMPENVMAPLUMINANCE 0x00400000L
#define D3DTEXOPCAPS_DOTPRODUCT3 0x00800000L
#define D3DTEXOPCAPS_MULTIPLYADD 0x01000000L
#define D3DTEXOPCAPS_LERP 0x02000000L

The inputs D3DTA CURRENT and D3DTA TEMP represent two distinct data paths
that flow through the texture cascade: the current input value and a temporary
input value. For stage zero, the current input is initialized to the interpo-
lated diffuse color for the source pixel and the temporary input is initialized
to transparent black (〈0, 0, 0, 0〉). The temporary input allows a multistage
computation where two of the input values to a successive stage are computed
by previous stages. One stage computes its value to the current data path and
a different stage computes its value to the temporary data path, while a third
stage combines the results of the two previous stages. The temporary input is
supported by a device if the D3DPMISCCAPS TSSARGTEMP bit of PrimitiveMisc-
Caps is set, otherwise D3DTA TEMP cannot be used.

Each stage can send the result of its computation to either the current data
path or the temporary data path for use by successive stages. TSS Result Arg
can be either D3DTA CURRENT or D3DTA TEMP to specify the destination for the
stage’s computed value.

While Direct3D does provide information about the supported texturing ca-
pabilities in the D3DCAPS9 structure, it would be prohibitive to enumerate every
allowed combination of arguments and texture operation in the capabilities. In-
stead, Direct3D provides the ValidateDevice method to validate the existing
state of the device. Most often this is used for validating a combination of tex-
ture stage states, but ValidateDevice checks all device state for validity, not
just the state of the texture stages.

HRESULT ValidateDevice(DWORD *passes);

The passes argument returns the number of rendering passes required to
perform the texturing operation currently set in the device. If this value is
larger than one, it usually indicates that the requested operation is using more
simultaneous textures than the device supports and the operation must be de-
composed into multiple passes to achieve the end result. For instance, alpha
blending can be used to add the source pixels from rendering with the des-
tination pixels in the frame buffer. So a two stage texturing operation that
performed an addition of two terms could be achieved as a two-pass single stage

444 CHAPTER 11. BASIC TEXTURING

rendering operation by using the frame buffer to add the two values together.
Alpha blending operations are discussed in chapter 14.

If ValidateDevice fails, the return value can be one of the following errors
indicating the lack of support for the requested operation. These are not the
only failure codes that could be reported by ValidateDevice. When checking
HRESULTs, always check for general failure in addition to any specific failure
codes.

D3DERR CONFLICTINGTEXTUREFILTER The selected texture filters (minification,
magnification, mipmap) cannot be used together.

D3DERR CONFLICTINGTEXTUREPALETTE The current textures cannot be used si-
multaneously. Some devices that support palette based textures require
that only a single palette based texture be used at any one time.

D3DERR TOOMANYOPERATIONS The device has a limited amount of texture filter-
ing capacity and the requested combination of minification, magnification
and mipmap filtering exceeds the capacity of the device.

D3DERR UNSUPPORTEDALPHAARG One of the values for TSS Alpha Arg 0, TSS
Alpha Arg 1, or TSS Alpha Arg 2 is unsupported.

D3DERR UNSUPPORTEDALPHAOPERATION The value of TSS Alpha Op is unsup-
ported.

D3DERR UNSUPPORTEDCOLORARG One of the values for TSS Color Arg 0, TSS Color
Arg 1, or TSS Color Arg 2 is unsupported.

D3DERR UNSUPPORTEDCOLOROPERATION The value of TSS Color Op is unsup-
ported.

D3DERR UNSUPPORTEDFACTORVALUE The device does not support the value spec-
ified for RS Texture Factor.

D3DERR UNSUPPORTEDTEXTUREFILTER One of the values specified for SS Min Fil-
ter, SS Mag Filter or SS Mip Filter is unsupported.

D3DERR WRONGTEXTUREFORMAT One of the textures set on a stage is an unsup-
ported format.

Unfortunately there are no definite rules of which texture stage configura-
tions will always work. Many hardware vendors use the texturing capabilities
of their hardware to differentiate themselves within the marketplace and within
their own product line. However, there are some guidelines that will increase
the likelihood that your texture stage configuration will pass ValidateDevice.

1. Select the diffuse input as Arg2 (color or alpha).

2. Select the texture input as Arg1 (color or alpha).

11.8. EXAMPLES 445

3. Use the diffuse input in only the first or last texture stage of a multistage
operation.

4. Use similar operations for the color and alpha units in a stage.

When ValidateDevice does fail because of a limitation of the hardware, the
best way to deal with the situation is to fall back to a simpler rendering strategy.
This may involve switching from a multistage single pass rendering to single
stage multipass rendering. It may mean that some of your sophisticated effects
achieved with texturing are simply disabled on less capable hardware. The exact
solution varies from application to application, with the general advice of falling
back to simpler renderings when possible. A simpler rendering is generally
preferable to a user than a dialog box complaining that the application requires
fancier hardware.

11.8 Examples

Because the arguments and operation for the RGB and alpha units in a texture
stage are typically set all at once we can define inline functions to set these three
texture stage states in tandem.

inline HRESULT
set_color_op(IDirect3DDevice9 *device, UINT stage,

DWORD arg1, D3DTEXTUREOP op, DWORD arg2)
{

HRESULT hr = device->SetTextureStageState(stage,
D3DTSS_COLORARG1, arg1);

if (FAILED(hr)) return hr;
hr = device->SetTextureStageState(stage,

D3DTSS_COLORARG2, arg2);
if (FAILED(hr)) return hr;
return device->SetTextureStageState(stage,

D3DTSS_COLOROP, op);
}

inline HRESULT
set_alpha_op(IDirect3DDevice9 *device, UINT stage,

DWORD arg1, D3DTEXTUREOP op, DWORD arg2)
{

HRESULT hr = device->SetTextureStageState(stage,
D3DTSS_ALPHAARG1, arg1);

if (FAILED(hr)) return hr;
hr = device->SetTextureStageState(stage,

D3DTSS_ALPHAARG2, arg2);
if (FAILED(hr)) return hr;
return device->SetTextureStageState(stage,

446 CHAPTER 11. BASIC TEXTURING

D3DTSS_ALPHAOP, op);
}

Using these functions, we can set the RGB and alpha units in a couple of
lines of code. The following snippet modulates the diffuse color by the texture’s
color as the resulting color and selects the diffuse alpha as the resulting alpha.

set_color_op(device, 0,
D3DTA_TEXTURE, D3DTOP_MODULATE, D3DTA_DIFFUSE);

set_alpha_op(device, 0,
D3DTA_TEXTURE, D3DTOP_SELECTARG2, D3DTA_DIFFUSE);

There is quite a bit of state that can be set on each texture stage resulting in
many different possibilities. How do you determine the right settings to achieve
a particular effect? Start by writing down a formula that represents what you
want to compute at each pixel. Write down separate equations that compute
the color and the alpha values for the effect. Next, identify the computations
in your formula and how they could be expressed as texture stage operations.
There is a limited amount of work you can do in a single texture stage; more
sophisticated techniques require the use of multiple stages and are discussed in
the next chapter.

In each of the following examples, we show the formula for each of the texture
configurations and then the code that sets the configuration. The equations in
each example use D = 〈αd, rd, gd, bd〉 as the diffuse color and T = 〈αt, rt, gt, bt〉
as the texture color and C ′ as the color resulting from the texture stage pro-
cessing.

11.8.1 Single Stage Light Maps

In chapter 8, we saw how the diffuse and specular colors for an object were
computed from the light in the environment. Looking back at those formulas
you can see that the total reflected light is a sum of components, where each
component models some affect of light from the environment on the object. In-
stead of computing the reflection information dynamically from light structures
and vertex positions, we can precompute this information and store it in a tex-
ture. Such a texture is called a “light map” and can provide very sophisticated
lighting effects on low resolution geometry. Direct3D computes the lighting only
at vertices, so if we wanted detailed lighting effects we needed a dense mesh of
vertices to sufficiently sample the lighting.

With the lighting computed directly into the texture, we simply replace the
diffuse color with the texture contents. Since we’re computing the light from
the texture, we turn off lighting to avoid unnecessary work.

11.8. EXAMPLES 447

C ′ = Ct = 〈αt, rt, gt, bt〉

device->SetRenderState(D3DRS_LIGHTING, FALSE);
set_color_op(device, 0,

D3DTA_TEXTURE, D3DTOP_SELECTARG1, D3DTA_DIFFUSE);
set_color_op(device, 0,

D3DTA_TEXTURE, D3DTOP_SELECTARG1, D3DTA_DIFFUSE);

However, because we’ve encoded the object’s diffuse color directly into the
texture map, we’d have to recompute the contents of the texture map if we want
to change the color of the object. The light map doesn’t really need the object’s
color in it – all we really need is the amount of the diffuse color reflected by the
object. If we encode the object’s reflectance into an eight bit alpha channel of the
texture map, where 0 indicates no reflectance and 255 indicates full reflectance,
we can use this to modulate the interpolated diffuse color. We’ll also change
our example slightly to use the alpha from the diffuse color so that we can
have transparent objects illuminated by our light map. We’ve used the alpha
replicate modifier so that each color channel in the diffuse color is modulated
by the alpha value from the texture.

C ′ = 〈αd, αtrd, αtgd, αtbd〉

set_color_op(device, 0, D3DTA_TEXTURE | D3DTA_ALPHAREPLICATE,
D3DTOP_MODULATE, D3DTA_DIFFUSE);

set_alpha_op(device, 0,
D3DTA_TEXTURE, D3DTOP_SELECTARG2, D3DTA_DIFFUSE);

This monochrome light map modulates all the color channels equally, which
is fine for a white light, but we may have colored lights in our scene that will
modulate the different channels in the diffuse color by varying amounts. If we
modulate the diffuse color by the texture color in the RGB unit, we can achieve
this effect.

C ′ = 〈αd, rtrd, gtgd, btbd〉

set_color_op(device, 0,
D3DTA_TEXTURE, D3DTOP_MODULATE, D3DTA_DIFFUSE);

set_alpha_op(device, 0,
D3DTA_TEXTURE, D3DTOP_SELECTARG2, D3DTA_DIFFUSE);

11.8.2 Decals

Sometimes you want to render an object with its lighting and material properties
and “paste” an image onto the surface of the object, as if the image were a
decal applied to the object. One way to achieve this in a single pass is to use

448 CHAPTER 11. BASIC TEXTURING

the texture border color as the color for outside the decal and draw the object
with the appropriate texture coordinates so that the border color appears on the
object everywhere except where the texture is defined. This works well when
only a simple color is desired for the portion of the object outside the texture;
the border color won’t be used in any lighting computations by Direct3D as
texturing occurs in the pipeline after lighting.

Another approach is to use a two-pass rendering technique. The first pass
draws the object with its lighting and material properties but no texturing. A
second pass is then drawn with only the texture and the appropriate texture
coordinates on the object to position the decal properly on the model. The Z
buffer is disabled for writing and the test changed from D3DCMP LESS to D3D-
CMP LESSEQUAL during the second pass to prevent “Z fighting” artifacts between
the pixels of the first and second pass. However, the Z test is still enabled so
that occluded decal pixels will still be rejected by the Z buffer. The details of
the operation of the Z buffer are described in chapter 14.

A single pass approach can be used when D3DTOP BLENDTEXTUREALPHA is
supported. We can use the alpha from the texture to blend the texture color
over top of the diffuse color, preserving the computed lighting in the diffuse
component while still rendering in a single pass.

C ′ = 〈αd, rd(1− αt) + rtαt, gd(1− αt) + gtαt, bd(1− αt) + btαt〉
set_color_op(device, 0,

D3DTA_TEXTURE, D3DTOP_BLENDTEXTUREALPHA, D3DTA_DIFFUSE);
set_alpha_op(device, 0,

D3DTA_TEXTURE, D3DTOP_SELECTARG2, D3DTA_DIFFUSE);

If the colors in the texture represent colors with associated alpha we can use
D3DTOP BLENDTEXTUREALPHAPM.

C ′ = 〈αd, rd(1− αt) + rt, gd(1− αt) + gt, bd(1− αt) + bt〉
set_color_op(device, 0,

D3DTA_TEXTURE, D3DTOP_BLENDTEXTUREALPHAPM, D3DTA_DIFFUSE);
set_alpha_op(device, 0,

D3DTA_TEXTURE, D3DTOP_SELECTARG2, D3DTA_DIFFUSE);

11.9 Specular Addition

After any texture processing has been performed, the diffuse color produced by
the result of the multitexture cascade can be combined with the interpolated
specular color component. RS Specular Enable controls not only the generation
specular lighting and its interpolation, it also controls the combination of the
diffuse and specular colors by addition. When this render state is set to TRUE,
the specular color is added to the result of the multitexture cascade. This can
eliminate the use of a texture stage that is used only to perform the addition of
the specular component.

11.10. TEXTURED PRIMITIVES 449

11.10 Textured Primitives

Textured triangles and quadrilaterals are often used to emulate other kinds of
“primitives” that are not provided directly by Direct3D. Here we briefly discuss
some of the primitives that can be constructed in this manner.

Sprites

There are several different ways that an application can draw a sprite. In sprite: A small textured
rectangle parallel to the
view plane.

chapter 5, we mentioned that point sprites were textured squares. Point sprites
are affected by the texture stage states during rendering and require a texture to
be set on the device in order to render properly. Point sprites are demonstrated
by the PointSprite sample in the SDK.

Point sprites may not be supported by the hardware, or the range of texture
coordinates used by point sprites – effectively dedicating an entire texture to a
single sprite – may be too limiting for your application. In that situation, you
can draw sprites as two textured triangles arranged to form a quadrilateral – or
any other shape necessary for your sprite.

Another alternative to the point sprite primitive is to use the ID3DXSprite
interface provided by D3DX. This interface provides a sprite as commonly found
in two-dimensional applications and is described in section 17.4.

Billboards

A billboard is very similar to a point sprite, but instead of having Direct3D
align the primitive parallel to the viewing plane, the application arranges for
this directly by appropriately orienting the primitive during rendering. The
Billboard sample in the SDK demonstrates the technique.

Impostors

When we draw a complex piece of geometry that is projected to a small screen-
space area, most of the geometric detail isn’t discernible. When such a piece
of geometry is repeated many times in a scene, we are doing lots of geometric
processing for little visual benefit. We can achieve the same discernible level of
detail by rendering the geometry into a texture render target and substituting
a textured quadrilateral with the rendered image for the geometry in the scene.
The textured quadrilateral is referred to as an “imposter” for the real geometry.

Text

Direct3D doesn’t contain a text primitive, so how do we draw text in a scene?
Text can be drawn with a vector font as a line list or line strip, but this results in
poor quality text. Another approach is to rasterize the character glyphs in a font
into a texture image and then draw each character as a textured quadrilateral
or triangle with the appropriate texture coordinates and texture stage state.

450 CHAPTER 11. BASIC TEXTURING

This approach works well for 8 bit fonts of moderate size where the memory
requirement for the texture is reasonable. A more sophisticated “glyph caching”
approach may be needed for large fonts, or Asian fonts with many glyphs where
the memory requirement is prohibitive. The CD3DFont class in the SDK sample
framework uses this approach.

Another alternative is to use GDI to render text into a bitmap, copy the
bitmap contents to a texture and then render a textured quad. As this approach
uses GDI, it correctly handles the issue of Asian and other 16 bit fonts as well
as properly handling kerning between characters within a text string. The
ID3DXFont interface provided by D3DX operates in this manner. However, the
additional quality of rendering comes at the cost of calling GDI and transferring
the bitmap contents to a texture every time the text is drawn.

A third alternative does not use texturing at all, but uses the parametric
glyph outline of a character in a TrueType font to create an extruded triangle
mesh directly from the glyph outline data. This results in true three-dimensional
text that can be oriented and shaded with Direct3D. The D3DX function D3DX-
CreateText creates such a mesh from a TrueType font and a text string. An
application can also extract the glyph data directly using the GDI function
::GetGlyphOutline to construct other variations, such as a text outline with
line primitives.

The rt Text sample draws text in all three styles for comparison. The
Text3D sample in the SDK demonstrates the use of CD3DFont to draw text as
a texture on a quadrilateral that is not aligned with the viewing plane.

Wide Lines

While Direct3D provides a line primitive, it does not provide a way to draw lines
wider than a single pixel. Using a combination of billboarding and texturing,
we can draw lines with arbitrary widths. The idea is to render each line segment
as a quadrilateral parallel to the view plane of the appropriate width in screen
space.

Textured Clipping

A texture can also be used to clip arbitrary portions of primitives. The idea
here is to use a texture as a mask that modulates the diffuse color of the primi-
tive. The mask is oriented on the primitive by the texture coordinates used by
the texture stage – automatically generated texture coordinates and the texture
transformation matrix are particularly useful here. The mask texture is opaque
white where the primitive should show and transparent black where the primi-
tive should be masked. The texture operation modulates the diffuse color with
the texture, leaving the original diffuse color unchanged in the white portions
and replacing the original diffuse with transparent black in the black portions.
The alpha test, as described in chapter 14, can then be used to reject the trans-
parent pixels, giving the appearance of clipped geometry. This technique is
particularly useful when user clip planes are not supported by the device.

11.11. FURTHER READING 451

11.11 Further Reading

A significant amount of the progress towards real-time photorealistic render-
ing is being achieved through the use of texturing. New uses and ideas for
texturing are constantly being published at conferences such as the Game De-
veloper’s Conference (GDC), or the Association for Computing Machinery’s
Special Interest Group on Computer Graphics (SIGGRAPH). Proceedings for
these conferences are published every year and contain many of the newest ideas
in computer graphics.

The book series Graphics Gems and its sucessor, the Journal of Graphic
Tools provide an ongoing forum for the dissemination of useful techniques. The
Game Programming Gems series is similar, but contains other techniques be-
sides those dealing with rendering for use in game applications.

GDC Conference Proceedings. Available through the GDC web site.
〈http://www.gdconf.com/〉

SIGGRAPH Conference Proceedings. Available through the SIGGRAPH web
site. 〈http://www.siggraph.org/〉

Pyramidal Parametrics, Williams, Lance. Computer Graphics, Vol. 7, No. 3,
July 1983, pp. 1-11. This is the paper that introduced mipmaps and it
discusses the details of mipmapping and the necessary filtering to avoid
aliasing.

High Performance Rendering Using the Talisman Architecture, Barkans, An-
thony C., Proceedings of the 1997 SIGGRAPH/Eurographics Workshop
on Graphics Hardware, pp. 79-88, August 1997. This paper describes the
details of anisotropic filtering.

Textured Lines In D3D, Terdiman, Pierre. Gives a code snippet for drawing
wide, textured lines. 〈http://www.flipcode.com/cgi-bin/msg.cgi?
showThread=COTD-TexturedLinesInD3D&forum=cotd&id=-1〉

Texture Based Clipping Demo, Dunlop, Robert. Demonstrates the use of a
texture to clip geometry. 〈http://www.mvps.org/directx/articles/
clipcube.htm〉

11.12 Sample Applications

Texturing is such a basic technique and so widely available on modern graphics
hardware that it appears in almost every graphics program. The following
subsections briefly describe the use of texturing in the samples for this book
and the SDK before describing the sample application for the chapter.

452 CHAPTER 11. BASIC TEXTURING

11.12.1 Book Samples

Many of the samples accompanying this book utilize textures. The main sample
for this chapter is rt Texture described later in this section. A brief description
of other samples that use textures is given here.

rt D3DXSprite Demonstrates sprite drawing with the ID3DXSprite interface.

rt FrameBuffer Uses a texture to create a stipple pattern in the stencil planes.

rt GingerBread Demonstrates automatic texture coordinate generation with
point primitives.

rt IFS Visualizes a three-dimensional iterated function system (IFS) fractal,
using a stack of planes with three-dimensional texture coordinates and a
volume texture. The planes are drawn parallel to the viewer and the IFS
fractal is stored in the volume texture. The fractal is oriented by applying
transformations to the texture coordinates while keeping the orientation
of the planes fixed.

rt Text Similar to the Text3D sample in the SDK, this sample also demon-
strates rendering text with the ID3DXFont interface.

11.12.2 SDK Samples

Almost every sample in the SDK utilizes texturing. The following is a brief
summary of the SDK samples that use basic texturing.

Billboard Renders a scene containing a textured terrain populated with tex-
tured trees. Each tree is drawn as a billboard.

DxTex A texture format conversion tool. This tool is useful for examining the
contents of .dds files, which can contain any of the texture formats or
resource types defined by Direct3D.

MFCTex An MFC application that allows you to interactively explore the
combinations of TSS Color Arg 1, TSS Color Arg 2, TSS Color Op, TSS
Alpha Arg 1, TSS Alpha Arg 2 and TSS Alpha Op for up to three texture
stages. It can also produce a code snippet that sets the currently selected
items on a texture stage.

PointSprite Draws a simple scene containing some fireworks, where the fire-
work effect is achieved using point sprites.

Text3D Demonstrates two-dimensional and three-dimensional text via CD3D-
Font as well as text drawn as a mesh.

VolumeTexture Demonstrates a simple use of a volume texture.

11.12. SAMPLE APPLICATIONS 453

11.12.3 rt Texture Sample Application

Finally, we close the chapter with a sample program that demonstrates how
to create, fill and use a single texture. The program lets you explore the op-
tions for the minification, magnification and mipmap filters supported by the
device. Texture addressing modes can be independently selected for each tex-
ture coordinate and scenes with one-, two- and three-dimensional textures can
be selected.

The scene consists of a textured quadrilateral that can be oriented with the
use of the arrow keys on the keyboard. Changing the orientation allows you
to see the effect of mipmapping and filtering as the texture distortion changes
across the quadrilateral. The maximum level of detail for the texture set with
SetLOD can be interactively changed as well as the value of SS Max Mip Level and
SS Mip Map LOD Bias. The level of anisotropy can also be changed interactively.

This sample offers a “split-screen” mode for visualizing the effect of texture
filtering and sampling state on the resulting quality of the rendering. The left
side of the screen is drawn with the selected filtering, while the right side is
drawn with point sampling only.

Shown here is the “interesting” portion of the program, with the remainder
of the code in the sample source accompanying this book. A number of helper
classes, also included in the sample code, are used to make common tasks easier.
Each helper class or function is in the rt namespace and prefixed with the
namespace to make their origin clear in the code. The C++ standard library is
used along with D3DX to handle some of the low-level details.

Listing 11.1: rt Texture.cpp: Demonstration of texturing.

1 //
2 // rt_Texture.cpp
3 //
4 // Demonstrates the following texture related pipeline
5 // features: texture filtering, texture addressing,
6 // automatic mipmap generation, texture formats, texture
7 // stage states, filling textures with HLSL functions
8 //
9

10 // C++ includes
11 #include <algorithm>
12 #include <cmath>
13 #include <sstream>
14 #include <vector>
15

16 // Win32 includes
17 #define STRICT
18 #include <windows.h>
19 #include <commctrl.h>
20 #include <commdlg.h>

454 CHAPTER 11. BASIC TEXTURING

21 #include <basetsd.h>
22 #include <tchar.h>
23

24 // ATL includes
25 #include <atlbase.h>
26

27 // Direct3D includes
28 #include <d3dx9.h>
29

30 // D3DFrame includes
31 #include "DXUtil.h"
32 #include "D3DEnumeration.h"
33 #include "D3DSettings.h"
34 #include "D3DApp.h"
35 #include "D3DFont.h"
36 #include "D3DUtil.h"
37

38 // RT includes
39 #include "rt/app.h"
40 #include "rt/hr.h"
41 #include "rt/mat.h"
42 #include "rt/media.h"
43 #include "rt/mesh.h"
44 #include "rt/misc.h"
45 #include "rt/states.h"
46 #include "rt/surface.h"
47 #include "rt/texture.h"
48 #include "rt/tint.h"
49 #include "rt/tstring.h"
50

51 // sample includes
52 #include "resource.h"
53 #include "rt_Texture.h"
54

55 // vertex with 1D texture coordinate
56 struct s_vertex_1d
57 {
58 float m_pos[3];
59 float m_tex;
60

61 static const DWORD FVF;
62 };
63

64 // vertex with 2D texture coordinate
65 struct s_vertex_2d
66 {

11.12. SAMPLE APPLICATIONS 455

67 float m_pos[3];
68 float m_tex[2];
69

70 static const DWORD FVF;
71 };
72

73 // vertex with 3D texture coordinate
74 struct s_vertex_3d
75 {
76 float m_pos[3];
77 float m_tex[3];
78

79 static const DWORD FVF;
80 };
81

82 // functor object used with std::transform
83 // to set z & w values in a 3D vertex
84 class fn_set_z_w
85 {
86 public:
87 fn_set_z_w(float z = 0.f, float w = 0.f)
88 : m_z(z), m_w(w)
89 {}
90 ~fn_set_z_w()
91 {}
92

93 s_vertex_3d operator()(const s_vertex_3d &vtx)
94 {
95 s_vertex_3d result = vtx;
96 result.m_pos[2] = m_z;
97 result.m_tex[2] = m_w;
98 return result;
99 }

100

101 private:
102 float m_z;
103 float m_w;
104 };
105

106 // functor object used with std::generate
107 // to generate a sequence of increasing integers
108 // as vertex indices fed to D3DXCreateMeshFVF
109 class gen_integers
110 {
111 public:
112 gen_integers(int start = 0)

456 CHAPTER 11. BASIC TEXTURING

113 : m_pos(start)
114 {}
115 ~gen_integers()
116 {}
117

118 int operator()()
119 {
120 return m_pos++;
121 }
122

123 private:
124 int m_pos;
125 };
126

127 // 1D coords: mesh is a square
128 static const s_vertex_1d g_verts_1d[6] =
129 {
130 -1.5, -1.5, 0, -2,
131 1.5, 1.5, 0, 2,
132 1.5, -1.5, 0, 2,
133

134 -1.5, -1.5, 0, -2,
135 -1.5, 1.5, 0, -2,
136 1.5, 1.5, 0, 2
137 };
138

139 // 2D coords: mesh is a square
140 static const s_vertex_2d g_verts_2d[6] =
141 {
142 -1.5, -1.5, 0, -2, 2,
143 1.5, 1.5, 0, 2, -2,
144 1.5, -1.5, 0, 2, 2,
145

146 -1.5, -1.5, 0, -2, 2,
147 -1.5, 1.5, 0, -2, -2,
148 1.5, 1.5, 0, 2, -2
149 };
150

151 // 3D coords: mesh is a stack of planes,
152 // with the bottom-most plane defined here
153 // and other planes generated with code.
154 static const s_vertex_3d g_verts_3d[] =
155 {
156 // bottom-most plane
157 -1.5, -1.5, 1, -2, 2, -2,
158 1.5, 1.5, 1, 2, -2, -2,

11.12. SAMPLE APPLICATIONS 457

159 1.5, -1.5, 1, 2, 2, -2,
160

161 -1.5, -1.5, 1, -2, 2, -2,
162 -1.5, 1.5, 1, -2, -2, -2,
163 1.5, 1.5, 1, 2, -2, -2
164 };
165

166 // FVF initializers for the vertex types.
167 const DWORD s_vertex_1d::FVF =
168 D3DFVF_XYZ | D3DFVF_TEX1 | D3DFVF_TEXCOORDSIZE1(0);
169 const DWORD s_vertex_2d::FVF =
170 D3DFVF_XYZ | D3DFVF_TEX1 | D3DFVF_TEXCOORDSIZE2(0);
171 const DWORD s_vertex_3d::FVF =
172 D3DFVF_XYZ | D3DFVF_TEX1 | D3DFVF_TEXCOORDSIZE3(0);
173

174 //
175 // CMyD3DApplicatoin::texture_usage
176 //
177 // Return the appropriate D3DUSAGE based on the setting of
178 // automatic mipmap generation and support for mipmap
179 // generation in the current texture format.
180 //
181 DWORD
182 CMyD3DApplication::texture_usage(D3DRESOURCETYPE kind)
183 {
184 const DWORD usage = m_autogen_mipmaps ? D3DUSAGE_AUTOGENMIPMAP : 0;
185 return SUCCEEDED(m_pD3D->CheckDeviceFormat(
186 m_d3dSettings.AdapterOrdinal(),
187 m_d3dSettings.DevType(),
188 m_d3dSettings.DisplayMode().Format,
189 usage, kind, m_scenes[m_scene].m_format)) ? usage : 0;
190 }
191

192 //
193 // CMyD3DApplication::init_1d_texture
194 //
195 // Create a 1D texture consisting of a hue ramp
196 //
197 void
198 CMyD3DApplication::init_1d_texture()
199 {
200 CComPtr<IDirect3DTexture9> texture;
201 if (TS_FILE == m_scenes[0].m_source)
202 {
203 // get texture width from file info
204 D3DXIMAGE_INFO info;

458 CHAPTER 11. BASIC TEXTURING

205 THR(::D3DXGetImageInfoFromFile(
206 m_scenes[0].m_filename.c_str(), &info));
207 THR(::D3DXCreateTexture(m_pd3dDevice, info.Width,
208 1, 0, texture_usage(D3DRTYPE_TEXTURE),
209 m_scenes[0].m_format, D3DPOOL_MANAGED,
210 &texture));
211 CComPtr<IDirect3DSurface9> surf;
212 THR(texture->GetSurfaceLevel(0, &surf));
213 THR(::D3DXLoadSurfaceFromFile(surf, NULL, NULL,
214 m_scenes[0].m_filename.c_str(), NULL,
215 D3DX_DEFAULT, 0, NULL));
216 if (m_autogen_mipmaps)
217 {
218 THR(texture->SetAutoGenFilterType(m_autogen_filter));
219 }
220 else
221 {
222 THR(::D3DXFilterTexture(texture, NULL, 0, D3DX_DEFAULT));
223 }
224 }
225 else
226 {
227 // create the texture
228 THR(::D3DXCreateTexture(m_pd3dDevice, 256, 1, 0,
229 texture_usage(D3DRTYPE_TEXTURE),
230 m_scenes[0].m_format, D3DPOOL_MANAGED,
231 &texture));
232 if (m_autogen_mipmaps)
233 {
234 CComPtr<IDirect3DTexture9> single;
235 THR(::D3DXCreateTexture(m_pd3dDevice, 256, 1, 1,
236 0, m_scenes[0].m_format, D3DPOOL_SCRATCH,
237 &single));
238 THR(::D3DXFillTextureTX(single,
239 m_scenes[0].m_texture_shader));
240 CComPtr<IDirect3DSurface9> source, dest;
241 THR(single->GetSurfaceLevel(0, &source));
242 THR(texture->GetSurfaceLevel(0, &dest));
243 THR(::D3DXLoadSurfaceFromSurface(dest, NULL, NULL,
244 source, NULL, NULL, D3DX_FILTER_NONE, 0));
245 THR(texture->SetAutoGenFilterType(m_autogen_filter));
246 }
247 else
248 {
249 THR(::D3DXFillTextureTX(texture,
250 m_scenes[0].m_texture_shader));

11.12. SAMPLE APPLICATIONS 459

251 }
252 }
253

254 if (m_tint_mipmaps)
255 {
256 rt::tint_mipmaps(texture);
257 }
258 m_scenes[0].m_texture =
259 static_cast<IDirect3DBaseTexture9 *>(texture);
260 }
261

262 //
263 // CMyD3DApplication::init_2d_texture
264 //
265 // Load an image of a textured mandelbrot fractal as the 2D
266 // texture.
267 //
268 void
269 CMyD3DApplication::init_2d_texture()
270 {
271 CComPtr<IDirect3DTexture9> texture;
272 if (TS_FILE == m_scenes[1].m_source)
273 {
274 D3DXIMAGE_INFO info;
275 THR(::D3DXGetImageInfoFromFile(m_scenes[1].m_filename.c_str(),
276 &info));
277 THR(::D3DXCreateTexture(m_pd3dDevice, info.Width, info.Height, 0,
278 texture_usage(D3DRTYPE_TEXTURE), m_scenes[1].m_format,
279 D3DPOOL_MANAGED, &texture));
280 CComPtr<IDirect3DSurface9> surface;
281 THR(texture->GetSurfaceLevel(0, &surface));
282 THR(::D3DXLoadSurfaceFromFile(surface, NULL, NULL,
283 m_scenes[1].m_filename.c_str(), NULL, D3DX_DEFAULT,
284 0, NULL));
285 if (m_autogen_mipmaps)
286 {
287 THR(texture->SetAutoGenFilterType(m_autogen_filter));
288 }
289 else if (texture->GetLevelCount() > 1)
290 {
291 THR(::D3DXFilterTexture(texture, NULL, 0, D3DX_DEFAULT));
292 }
293 }
294 else
295 {
296 THR(::D3DXCreateTexture(m_pd3dDevice, 256, 256, 0,

460 CHAPTER 11. BASIC TEXTURING

297 texture_usage(D3DRTYPE_TEXTURE),
298 m_scenes[1].m_format, D3DPOOL_MANAGED,
299 &texture));
300 if (m_autogen_mipmaps)
301 {
302 CComPtr<IDirect3DTexture9> single;
303 THR(::D3DXCreateTexture(m_pd3dDevice, 256, 256, 1,
304 0, m_scenes[1].m_format, D3DPOOL_SCRATCH,
305 &single));
306 THR(::D3DXFillTextureTX(single, m_scenes[1].m_texture_shader));
307 CComPtr<IDirect3DSurface9> source, dest;
308 THR(single->GetSurfaceLevel(0, &source));
309 THR(texture->GetSurfaceLevel(0, &dest));
310 THR(::D3DXLoadSurfaceFromSurface(dest, NULL, NULL,
311 source, NULL, NULL, D3DX_FILTER_NONE, 0));
312 THR(texture->SetAutoGenFilterType(m_autogen_filter));
313 }
314 else
315 {
316 THR(::D3DXFillTextureTX(texture, m_scenes[1].m_texture_shader));
317 }
318 }
319

320 if (m_tint_mipmaps && (texture->GetLevelCount() > 1))
321 {
322 rt::tint_mipmaps(texture);
323 }
324 m_scenes[1].m_texture =
325 static_cast<IDirect3DBaseTexture9 *>(texture);
326 }
327

328 //
329 // CMyD3DApplication::init_3d_texture
330 //
331 // Create a volume texture that is a grayscale alpha blended
332 // ramp based on the distance from one corner of the texture.
333 // This will create a 1/8th sphere that will appear as one or
334 // more spheres when mirrored around all texture coordinate
335 // axes.
336 //
337 void
338 CMyD3DApplication::init_3d_texture()
339 {
340 CComPtr<IDirect3DVolumeTexture9> texture;
341 if (TS_FILE == m_scenes[2].m_source)
342 {

11.12. SAMPLE APPLICATIONS 461

343 THR(::D3DXCreateVolumeTextureFromFileEx(m_pd3dDevice,
344 m_scenes[2].m_filename.c_str(),
345 D3DX_DEFAULT, D3DX_DEFAULT, D3DX_DEFAULT,
346 D3DX_DEFAULT,
347 texture_usage(D3DRTYPE_VOLUMETEXTURE),
348 m_scenes[2].m_format, D3DPOOL_MANAGED,
349 D3DX_DEFAULT, D3DX_DEFAULT, 0, NULL, NULL,
350 &texture));
351 }
352 else
353 {
354 // create volume texture
355 const DWORD usage =
356 texture_usage(D3DRTYPE_VOLUMETEXTURE);
357 const UINT levels = (m_d3dCaps.TextureCaps &
358 D3DPTEXTURECAPS_MIPVOLUMEMAP) ? 0 : 1;
359 THR(::D3DXCreateVolumeTexture(m_pd3dDevice, 64, 64,
360 64, levels, usage, m_scenes[2].m_format,
361 D3DPOOL_MANAGED, &texture));
362

363 THR(::D3DXFillVolumeTextureTX(texture,
364 m_scenes[2].m_texture_shader));
365 }
366 if (m_tint_mipmaps)
367 {
368 rt::tint_mipmaps(texture);
369 }
370 m_scenes[2].m_texture =
371 static_cast<IDirect3DBaseTexture9 *>(texture);
372 }
373

374 //
375 // CMyD3DApplication::InitDeviceObjects()
376 //
377 // Initialize the scenes used by the application: meshes
378 // textures and the font.
379 //
380 HRESULT CMyD3DApplication::InitDeviceObjects()
381 {
382 m_can_volume_texture = 0 !=
383 (m_d3dCaps.TextureCaps & D3DPTEXTURECAPS_VOLUMEMAP);
384 init_textures();
385 if (!m_can_volume_texture && 2 == m_scene)
386 {
387 m_scene = 1;
388 }

462 CHAPTER 11. BASIC TEXTURING

389 HMENU menu = ::GetMenu(m_hWnd);
390 rt::enable_menu(menu, IDM_DIMENSIONALITY_VOLUMETRIC,
391 m_can_volume_texture);
392

393 m_max_detail = m_scenes[m_scene].m_texture->GetLevelCount()-1;
394 m_detail = min(m_max_detail, m_detail);
395 inc_detail(0);
396

397 // create meshes
398 THR(::D3DXCreateMeshFVF(NUM_OF(g_verts_1d)/3,
399 NUM_OF(g_verts_1d), D3DXMESH_MANAGED |
400 D3DXMESH_WRITEONLY, s_vertex_1d::FVF, m_pd3dDevice,
401 &m_scenes[0].m_mesh));
402 THR(::D3DXCreateMeshFVF(NUM_OF(g_verts_2d)/3,
403 NUM_OF(g_verts_2d), D3DXMESH_MANAGED |
404 D3DXMESH_WRITEONLY, s_vertex_2d::FVF, m_pd3dDevice,
405 &m_scenes[1].m_mesh));
406 const UINT NUM_PLANES = 11;
407 THR(::D3DXCreateMeshFVF(NUM_PLANES*NUM_OF(g_verts_3d)/3,
408 NUM_PLANES*NUM_OF(g_verts_3d), D3DXMESH_MANAGED |
409 D3DXMESH_WRITEONLY, s_vertex_3d::FVF, m_pd3dDevice,
410 &m_scenes[2].m_mesh));
411

412 // copy vertices: 1D/2D texture meshes are copied
413 // from static arrays
414 std::copy(g_verts_1d, g_verts_1d+NUM_OF(g_verts_1d),
415 rt::mesh_vertex_lock<s_vertex_1d>(m_scenes[0].m_mesh).
416 data());
417 std::copy(g_verts_2d, g_verts_2d+NUM_OF(g_verts_2d),
418 rt::mesh_vertex_lock<s_vertex_2d>(m_scenes[1].m_mesh).
419 data());
420

421 // 3D mesh is a stack of planes parallel to camera
422 {
423 rt::mesh_vertex_lock<s_vertex_3d> lock(m_scenes[2].m_mesh);
424

425 const s_vertex_3d *begin = g_verts_3d;
426 const s_vertex_3d *end = begin + NUM_OF(g_verts_3d);
427

428 std::copy(begin, end, lock.data());
429 for (UINT i = 1; i < NUM_PLANES; i++)
430 {
431 std::transform(begin, end,
432 lock.data() + i*NUM_OF(g_verts_3d),
433 fn_set_z_w(1.f - i/float(NUM_PLANES-1),
434 -2 + 4.f*i/float(NUM_PLANES-1)));

11.12. SAMPLE APPLICATIONS 463

435 }
436 }
437

438 // build indices; assume independent triangles I[i] = i
439 const UINT max_vertices =
440 max(m_scenes[0].m_mesh->GetNumVertices(),
441 max(m_scenes[1].m_mesh->GetNumVertices(),
442 m_scenes[2].m_mesh->GetNumVertices()));
443 std::vector<WORD> indices(max_vertices);
444 std::generate(indices.begin(), indices.end(),
445 gen_integers());
446 for (UINT i = 0; i < 3; i++)
447 {
448 std::copy(&indices[0],
449 &indices[m_scenes[i].m_mesh->GetNumVertices()],
450 rt::mesh_index_lock<WORD>(m_scenes[i].m_mesh).data());
451 }
452

453 // Init the font
454 m_font.InitDeviceObjects(m_pd3dDevice);
455

456 return S_OK;
457 }
458

459 //
460 // CMyD3DApplication::RestoreDeviceObjects()
461 //
462 // Restore device state and adjust UI elements to conform
463 // to device capabilities.
464 //
465 HRESULT CMyD3DApplication::RestoreDeviceObjects()
466 {
467 enable_lod_bias();
468 m_rhs.x1 = m_d3dsdBackBuffer.Width/2;
469 m_rhs.x2 = m_d3dsdBackBuffer.Width;
470 m_rhs.y1 = 0;
471 m_rhs.y2 = m_d3dsdBackBuffer.Height;
472

473 m_anisotropic = (m_d3dCaps.RasterCaps &
474 D3DPRASTERCAPS_ANISOTROPY) != 0;
475 update_filter_menu();
476 update_address_menu();
477 update_format_menu();
478

479 // Set miscellaneous render states
480 const rt::s_rs states[] =

464 CHAPTER 11. BASIC TEXTURING

481 {
482 D3DRS_CULLMODE, D3DCULL_NONE,
483 D3DRS_DITHERENABLE, FALSE,
484 D3DRS_SPECULARENABLE, FALSE,
485 D3DRS_ZENABLE, D3DZB_TRUE,
486 D3DRS_CLIPPING, TRUE,
487 D3DRS_LIGHTING, FALSE,
488 D3DRS_ZFUNC, D3DCMP_LESS
489 };
490 rt::set_states(m_pd3dDevice, states, NUM_OF(states));
491

492 // Set the world matrix
493 D3DXMATRIX ident(1, 0, 0, 0,
494 0, 1, 0, 0,
495 0, 0, 1, 0,
496 0, 0, 0, 1);
497 THR(m_pd3dDevice->SetTransform(D3DTS_WORLD, &ident));
498 THR(m_pd3dDevice->SetTransform(D3DTS_TEXTURE0, &ident));
499

500 // Set up our view matrix with an eye position and
501 // default look at position of the origin and view
502 // up vector of the y-axis.
503 THR(m_pd3dDevice->SetTransform(D3DTS_VIEW,
504 rt::anon(rt::mat_look_at(D3DXVECTOR3(0, 0, -2.5f)))));
505

506 // Set the projection matrix
507 const float aspect = float(m_d3dsdBackBuffer.Width) /
508 float(m_d3dsdBackBuffer.Height);
509 D3DXMATRIX proj;
510 ::D3DXMatrixPerspectiveFovLH(&proj, D3DX_PI/4.f, aspect,
511 0.25f, 5.0f);
512 THR(m_pd3dDevice->SetTransform(D3DTS_PROJECTION, &proj));
513

514 // Restore the font
515 m_font.RestoreDeviceObjects();
516

517 return S_OK;
518 }
519

520 //
521 // CMyD3DApplication::FrameMove()
522 //
523 // Update the movement parameters based on the current
524 // keyboard input. Construct a matrix from the movement
525 // parameters. Apply the matrix to either the world
526 // transform or the texture transform, depending on the

11.12. SAMPLE APPLICATIONS 465

527 // scene.
528 //
529 HRESULT CMyD3DApplication::FrameMove()
530 {
531 // Update user input state
532 UpdateInput();
533

534 // Update the world state according to user input
535 if (m_animate_view)
536 {
537 m_fWorldRotY += m_fElapsedTime;
538 }
539 else
540 {
541 if (m_input.m_left && !m_input.m_right)
542 {
543 m_fWorldRotY += m_fElapsedTime;
544 }
545 else if (m_input.m_right && !m_input.m_left)
546 {
547 m_fWorldRotY -= m_fElapsedTime;
548 }
549 }
550 if (m_input.m_up && !m_input.m_down)
551 {
552 m_fWorldRotX += m_fElapsedTime;
553 }
554 else if (m_input.m_down && !m_input.m_up)
555 {
556 m_fWorldRotX -= m_fElapsedTime;
557 }
558

559 if (m_fWorldRotX > 2.f*D3DX_PI)
560 {
561 m_fWorldRotX = fmodf(m_fWorldRotX, 2.f*D3DX_PI);
562 }
563 if (m_fWorldRotY > 2.f*D3DX_PI)
564 {
565 m_fWorldRotY = fmodf(m_fWorldRotY, 2*D3DX_PI);
566 }
567

568 const D3DXMATRIX orient = rt::mat_rot_x(m_fWorldRotX)*
569 rt::mat_rot_y(m_fWorldRotY);
570 const D3DXMATRIX ident(1, 0, 0, 0,
571 0, 1, 0, 0,
572 0, 0, 1, 0,

466 CHAPTER 11. BASIC TEXTURING

573 0, 0, 0, 1);
574 // for 3D texture, rotate the texture coordinates and
575 // leave the planes parallel to the viewer
576 if (m_scene == 2)
577 {
578 THR(m_pd3dDevice->SetTransform(D3DTS_WORLD,
579 &ident));
580 THR(m_pd3dDevice->SetTransform(D3DTS_TEXTURE0,
581 &orient));
582 }
583 else
584 // for 1D/2D texture, rotate the plane and leave the texture
585 // coordinates alone.
586 {
587 THR(m_pd3dDevice->SetTransform(D3DTS_WORLD,
588 &orient));
589 THR(m_pd3dDevice->SetTransform(D3DTS_TEXTURE0,
590 &ident));
591 }
592

593 return S_OK;
594 }
595

596 //
597 // CMyD3DApplication::Render()
598 //
599 // Render the scene. If split screen is enabled, then
600 // use the Z buffer to occlude rendering of one half of the
601 // screen by initializing it to 0.0f to ensure that the Z
602 // test always fails for that half when rendering the
603 // filtered scene. Then clear it to 1.0f before rendering
604 // the unfiltered scene.
605 //
606 HRESULT CMyD3DApplication::Render()
607 {
608 // Clear the viewport
609 THR(m_pd3dDevice->Clear(0L, NULL, D3DCLEAR_TARGET |
610 D3DCLEAR_ZBUFFER, D3DCOLOR_ARGB(0, 0, 0, 255), 1.0f,
611 0L));
612 THR(m_pd3dDevice->BeginScene());
613

614 if (m_split_screen)
615 {
616 THR(m_pd3dDevice->Clear(1, &m_rhs, D3DCLEAR_ZBUFFER,
617 0, 0.f, 0L));
618 }

11.12. SAMPLE APPLICATIONS 467

619

620 {
621 const rt::s_rs set[] =
622 {
623 D3DRS_ALPHATESTENABLE, TRUE,
624 D3DRS_ALPHAREF, 0,
625 D3DRS_ALPHAFUNC, D3DCMP_GREATER,
626 D3DRS_ZENABLE, D3DZB_TRUE,
627 D3DRS_ZFUNC, D3DCMP_LESS,
628 D3DRS_ALPHABLENDENABLE, (m_scene == 2),
629 D3DRS_SRCBLEND, D3DBLEND_ONE,
630 D3DRS_DESTBLEND, D3DBLEND_INVSRCALPHA
631 };
632 rt::set_states(m_pd3dDevice, set, NUM_OF(set));
633 const rt::s_tss tset[] =
634 {
635 D3DTSS_COLORARG1, D3DTA_TEXTURE,
636 D3DTSS_COLOROP, D3DTOP_SELECTARG1,
637 D3DTSS_ALPHAARG1, D3DTA_TEXTURE,
638 D3DTSS_ALPHAOP, D3DTOP_SELECTARG1,
639 D3DTSS_TEXTURETRANSFORMFLAGS, m_scene+1,
640 };
641 rt::set_states(m_pd3dDevice, 0, tset, NUM_OF(tset));
642 const rt::s_ss sset[] =
643 {
644 D3DSAMP_ADDRESSU, m_address_u,
645 D3DSAMP_ADDRESSV, m_address_v,
646 D3DSAMP_ADDRESSW, m_address_w,
647 D3DSAMP_BORDERCOLOR, D3DCOLOR_XRGB(0,255,0),
648 D3DSAMP_MINFILTER, m_min_filter,
649 D3DSAMP_MAGFILTER, m_mag_filter,
650 D3DSAMP_MIPFILTER, m_mip_filter,
651 D3DSAMP_MAXANISOTROPY, m_anisotropy,
652 D3DSAMP_MAXMIPLEVEL, m_max_level,
653 D3DSAMP_MIPMAPLODBIAS,
654 rt::float_dword(m_lod_bias*0.1f)
655 };
656 rt::set_states(m_pd3dDevice, 0, sset, NUM_OF(sset));
657 }
658

659 THR(m_pd3dDevice->SetTexture(0, m_scenes[m_scene].m_texture));
660 THR(m_scenes[m_scene].m_mesh->DrawSubset(0));
661

662 if (m_split_screen)
663 {
664 THR(m_pd3dDevice->Clear(1, &m_rhs, D3DCLEAR_ZBUFFER,

468 CHAPTER 11. BASIC TEXTURING

665 0, 1.f, 0L));
666

667 const rt::s_ss sset[] =
668 {
669 D3DSAMP_MINFILTER, D3DTEXF_POINT,
670 D3DSAMP_MAGFILTER, D3DTEXF_POINT,
671 D3DSAMP_MIPFILTER, D3DTEXF_NONE
672 };
673 rt::set_states(m_pd3dDevice, 0, sset, NUM_OF(sset));
674

675 THR(m_scenes[m_scene].m_mesh->DrawSubset(0));
676

677 // draw dividing line down center of the screen
678 THR(m_pd3dDevice->SetFVF(D3DFVF_XYZRHW));
679 THR(m_pd3dDevice->SetRenderState(D3DRS_ZENABLE,
680 D3DZB_FALSE));
681 const rt::s_tss tset[] =
682 {
683 D3DTSS_COLOROP, D3DTOP_DISABLE,
684 D3DTSS_ALPHAOP, D3DTOP_DISABLE
685 };
686 rt::set_states(m_pd3dDevice, 0, tset, NUM_OF(tset));
687 const D3DVECTOR separator[2] =
688 {
689 float(m_rhs.x1), float(m_rhs.y1), 0,
690 float(m_rhs.x1), float(m_rhs.y2), 0
691 };
692 THR(m_pd3dDevice->DrawPrimitiveUP(D3DPT_LINELIST, 1,
693 &separator[0], sizeof(separator[0])));
694 }
695

696 // Render stats and help text
697 if (m_show_text)
698 {
699 RenderText();
700 }
701

702 THR(m_pd3dDevice->EndScene());
703

704 return S_OK;
705 }

