
Chapter 15

D3DX Utility Library

“Nothing is ever said that has not been said before.”
Terence: Eunuchus, prologue, c. 160 B.C.

15.1 Overview

D3DX is a static library designed for production use in shipping applications.
D3DX provides operations that are common in 3D graphics applications, but are
not necessarily tied directly to the graphics pipeline. D3DX is a static library,
so you do not have any runtime dependencies when you use it. D3DX consists of
several areas of related operations: abstract data types, helper objects, triangle
meshes, resource functions, and miscellaneous functions.

The concrete classes providing data types for colors, materials, vectors, ma-
trices, planes and quaternions. They are implemented as C++ classes and associ-
ated global functions operating on those classes. The data types are summarized
in section 15.3 and described in detail in chapter 16.

The helper objects implement matrix stacks, text rendering, sprites, multi-
pass rendering effects, and render target assistance. These objects are imple-
mented as COM objects. They are summarized in section 15.4 and described
in detail in chapter 17.

Most of the higher level operations in D3DX operate on triangle meshes.
Meshes come in several varieties, all implemented as COM objects. Mesh sim-
plification is exposed through several COM interfaces, providing dynamic level
of detail selection. Skinned meshes are also provided as a COM object. Func-
tions are provided for operating on meshes and streaming them to and from
permanent storage. Meshes are summarized in section 15.5 and described in
detail in chapter 19.

The resource functions in D3DX handle some of the details of creating,
initializing, and streaming resources to and from files within the requirements
of a device. The resource funcions are described in section 15.6.

575

576 CHAPTER 15. D3DX UTILITY LIBRARY

D3DX also provides a few bits and pieces not easily categorized with the
portions described so far. They are described in section 15.16

15.2 Headers and Libraries

D3DX is provided as a collection of header files and a library. The library
comes in both debug and release versions. For debugging, a DLL library is also
provided, but this cannot be used with shipping applications.

To compile against D3DX, you should include the header file <d3dx9.h>.
This header file includes the remaining D3DX headers: <d3dx9core.h>, <d3dx9effect.h>,
<d3dx9math.h>, <d3dx9mesh.h>, <d3dx9shape.h>, and <d3dx9tex.h>.

The declarations declared by these header files are defined in library files.
The library file d3dx9.lib is a static library to be used in release builds of
your application. It contains optimized versions of the D3DX library routines
and interfaces and is compiled without debug diagnostic information. The li-
brary file d3dx9dt.lib contains debug versions of the D3DX library routines
and interfaces and is compiled with additional debugging diagnostic informa-
tion. The library file d3dx9d.lib contains an import library for the debug DLL
d3dx9d.dll and should only be used for debugging builds. The DLL will only
be present on a machine where the DirectX SDK has been installed.

15.3 Data Types

D3DX provides some concrete datatypes and functions for manipulating
them. A concrete datatype exposes the programmer to the details of the type’s
members and implementation, while an abstract datatype insulates the pro-
grammer from the details of the implementation. D3DX exposes colors, vectors,
planes, quaternions and matrices as concrete datatypes.

The D3DXCOLOR class encapsulated four floating-point values representing
an RGBA color. Vector operations are provided through the D3DXVECTOR2,
D3DXVECTOR3, and D3DXVECTOR4 classes. The D3DXPLANE class provides a three-
dimensional plane datatype. The D3DXQUATERNION class provides a quaternion
datatype, useful for construction orienting transformations. The D3DXMATRIX
class encapsulates 4× 4 homogeneous transformation matrices.

The details of these concrete datatypes and their associated functions are
described in chapter 16.

15.4 Helper Objects

In contrast to the concrete datatypes that are exposed as C++ classes, D3DX
also provides some abstract datatypes implemented as COM objects. The usual
reference counting rules for COM objects must be observed when using these
helper objects, unlike the concrete data types.

15.5. MESHES 577

ID3DXMatrixStack provides a stack of transformation matrices for use in
scene graph traversal. ID3DXFont provides text rendering implemented using
GDI into a memory DC. ID3DXSprite provides simple 2D oriented sprites im-
plemented using textured quads. ID3DXRenderToSurface provides a simplified
interface for rendering to a target surface. Similarly, ID3DXRenderToEnvMap
provides a simplified interface for rendering to environment map textures.

ID3DXEffect encapsulates a rendering “effect”, which is implemented using
one or more rendering “techniques”. Each technique encapsulates a group of
associated rendering state and rendering passes necessary to achieve the desired
effect. Effects support parameters to the rendering techniques to encapsulate
variable state that may change with the portion of the scene to be rendered
with the effect.

The details of these COM helper objects and their associated functions are
described in chapter 17.

15.5 Meshes

D3DX provides several mesh objects that encapsulate indexed triangle lists.
Mesh simplification and progressive mesh support are provided. ID3DXMesh in-
terface encapsulates a shape as a triangle mesh. Progressive mesh refinement
is available in the ID3DXPMesh interface. ID3DXBaseMesh is a base interface
used by the ID3DXMesh and ID3DXPMesh objects. Arbitrary mesh simplification
is encapsulated by ID3DXSPMesh. Finally, skinned meshes – meshes using ver-
tex blending – are encapsulated by the ID3DXSkinInfo. D3DX also provides
support for reading and writing mesh objects to and from .x files.

The details of the mesh objects and their associated functions are described
in chapter 19.

15.6 Resources

Images and textures are resources that are used by almost every Direct3D ap-
plication. D3DX provides a wide variety of functions for creating and initializ-
ing surfaces and textures from files, Win32 resources, and raw memory blocks.
D3DX can read .bmp, .dds, .dib, .jpg, .png, .ppm, and .tga file formats
when reading resource data. D3DX can write resource data to DirectDraw
surface (.dds) files and Windows bitmap format (.bmp) files.

File data on disk is referenced by its file name. A file in memory is referenced
by a pointer to a block of memory containing the file data and the size of the
memory block. A file in a Win32 resource is referenced by a handle to the
module containing the resource and the name of the resource. Win32 resources
can be of type RT BITMAP for .bmp data or RT RCDATA for other file formats. Be
careful not to confuse Win32 resources, data stored in an executable file such as
a .dll or .exe file, with Direct3D resources, such as textures, image surfaces,
vertex buffers and index buffers.

578 CHAPTER 15. D3DX UTILITY LIBRARY

Many of the D3DX functions that manipulate resources take parameters
controlling behavior that accept a value of D3DX DEFAULT. D3DX DEFAULT is a
non-zero value indicating that a default behavior for the parameter should be
used instead of a specific behavior indicated by a specific parameter value. The
relevant default behavior is discussed where the parameter is discussed.

#define D3DX_DEFAULT ULONG_MAX

15.7 Resource Image Information

The simplest operation supported by D3DX is to read the dimension and format
information associated with an image file. The functions D3DXGetImageInfo-
FromFile, D3DXGetImageInfoFromFileInMemory, and D3DXGetImageInfoFrom-
Resource retrieve the image information from a file on disk, a file located in
memory, or a file stored as a Win32 resource.

HRESULT ::D3DXGetImageInfoFromFile(LPCTSTR filename,
D3DXIMAGE_INFO *result);

HRESULT ::D3DXGetImageInfoFromFileInMemory(const void *data,
UINT size,
D3DXIMAGE_INFO *result);

HRESULT ::D3DXGetImageInfoFromResource(HMODULE module,
LPCTSTR resource,
D3DXIMAGE_INFO *result);

typedef struct _D3DXIMAGE_INFO
{

UINT Width;
UINT Height;
UINT Depth;
UINT MipLevels;
D3DFORMAT Format;
D3DRESOURCETYPE ResourceType;
D3DXIMAGE_FILEFORMAT ImageFileFormat;

} D3DXIMAGE_INFO;

The file is described by a D3DXIMAGEINFO structure. The structure contains
the pixel dimensions of the image or volume. For images, the Depth member
is set to 1. Most images will have a value of 1 for the MipLevels member,
but .dds files can store entire mipmap chains. The ResourceType member
indicates if the file contains a texture, volume texture or cube texture. The
Format member gives the pixel format that most closely matches the data in
the file. The ImageFileFormat member gives the file format of the resource
data and is one of the values in the D3DXIMAGE FILEFORMAT enumeration.

15.8. RESOURCE REQUIREMENTS 579

typedef enum _D3DXIMAGE_FILEFORMAT
{

D3DXIFF_BMP = 0,
D3DXIFF_DDS = 4,
D3DXIFF_DIB = 6,
D3DXIFF_JPG = 1,
D3DXIFF_PNG = 3,
D3DXIFF_PPM = 5,
D3DXIFF_TGA = 2

} D3DXIMAGE_FILEFORMAT;

15.8 Resource Requirements

A common task in loading resources from files is to match the pixel dimen-
sions of the file to the requirements of the device. D3DX provides the func-
tions D3DXCheckTextureRequirements, D3DXCheckCubeTextureRequirements
and D3DXCheckVolumeTextureRequirements for adjusing resource dimensions,
number of mipmap levels, and pixel format to fit within the requirements of the
device.

CubeTexture—textbfVolumeTexture—textbf

HRESULT ::D3DXCheckTextureRequirements(
IDirect3DDevice9 *device,
UINT *width,
UINT *height,
UINT *mip_levels,
DWORD usage,
D3DFORMAT *format,
D3DPOOL pool);

HRESULT ::D3DXCheckCubeTextureRequirements(
IDirect3DDevice9 *device,
UINT *size,
UINT *mip_levels,
DWORD usage,
D3DFORMAT *format,
D3DPOOL pool);

HRESULT ::D3DXCheckVolumeTextureRequirements(
IDirect3DDevice9 *device,
UINT *width,
UINT *height,
UINT *depth,
UINT *mip_levels,
DWORD usage,
D3DFORMAT *format,

580 CHAPTER 15. D3DX UTILITY LIBRARY

D3DPOOL pool);

These functions use the device capabilities and the CheckDeviceFormat
method of IDirect3D9 to adjust the texture creation parameters for the de-
vice. Upon succesful return, the returned parameters can be used to create a
valid texture resource on the device. The usage and pool arguments are used
to validate the requested resource and are not adjusted by the function.

15.9 Format Conversion

D3DX provides routines for converting pixel data from one format to another.
This may involve color space conversion, channel rescaling, compression or de-
compression, and filtering depending on the source and destination pixel for-
mats. D3DXLoadSurfaceFromSurface performs format conversion on surfaces
and D3DXLoadVolumeFromVolume performs format conversion on volumes. To
perform conversions between textures, use the GetSurfaceLevel or GetVolume-
Level methods to obtain the necessary interface pointers for each contained
surface or volume within the textures.

HRESULT ::D3DXLoadSurfaceFromSurface(
IDirect3DSurface9 *destination,
const PALETTEENTRY *dest_palette,
const RECT *dest_rect,
IDirect3DSurface9 *source,
const PALETTEENTRY *source_palette,
const RECT *source_rect,
DWORD filter,
D3DCOLOR color_key);

HRESULT ::D3DXLoadVolumeFromVolume(
IDirect3DVolume9 *destination,
const PALETTEENTRY *dest_palette,
const D3DBOX *dest_box,
IDirect3DVolume9 *source,
const PALETTEENTRY *source_palette,
const D3DBOX *source_box,
DWORD filter,
D3DCOLOR color_key);

The dest palette and source palette arguments are pointers to a block of
memory containing 256 PALETTEENTRY structures when the source or destination
are in D3DFMT P8 format. These arguments may be NULL when the source or
destination is not an indexed format.

The dest rect and source rect arguments allow the conversion operation
to be applied to subrectangles of the source and destination surfaces. The
dest box and source box arguments operate similarly for volumes. When these

15.9. FORMAT CONVERSION 581

arguments refer to regions of different size in the source and destination, D3DX
performs filtering on the regions to resize the source to fit the destination. The
filter kernel used is specified by the filter parameter, whose value can be
D3DX DEFAULT or one or more of the following flags:

D3DX FILTER—textbf

#define D3DX_FILTER_NONE (1 << 0)
#define D3DX_FILTER_POINT (2 << 0)
#define D3DX_FILTER_LINEAR (3 << 0)
#define D3DX_FILTER_TRIANGLE (4 << 0)
#define D3DX_FILTER_BOX (5 << 0)

#define D3DX_FILTER_MIRROR_U (1 << 16)
#define D3DX_FILTER_MIRROR_V (2 << 16)
#define D3DX_FILTER_MIRROR_W (4 << 16)
#define D3DX_FILTER_MIRROR (7 << 16)
#define D3DX_FILTER_DITHER (8 << 16)

The value D3DX FILTER NONE results in pixels in the destination region that
lie outside the source region to be replaced with transparent black. With this
value, no scaling or filtering will be performed. The value D3DX DEFAULT is
equivalent to D3DX FILTER TRIANGLE combined with D3DX FILTER DITHER.

The values D3DX FILTER POINT, D3DX FILTER LINEAR, D3DX FILTER TRIANGLE
or D3DX FILTER BOX specify the filter kernel to be applied to the source region.
Point filtering is the fastest rescaling method, but also introduces the most alias-
ing. Linear filtering uses a 2×2 pixel neighbourhood for a surface, or a 2×2×2
pixel neighbourhood for a volume, and linearly interpolates between the source
pixels in the neighbourhood to compute the destination pixel value. Linear
filtering is more expensive than point filtering but results in a higher quality
image. The triangle filter uses a neighbourhood proportional to the relative
size of the source and destination areas, making this the most expensive filter
with the highest quality. The box filter uses a 2× 2 surface neighbourhood, or
2× 2× 2 for volumes, and computes the destination pixel value as the average
of all pixels within the source neighbourhood. The box filter is typically used
for computing mipmap levels, but still suffers from some aliasing artifacts.

The mirror flags control repetition of the source image with respect to the x,
y, or z axes of the source image. The D3DX FILTER MIRROR flag is a shorthand
for mirroring about all axes of the source image. The D3DX FILTER DITHER
flag enables a 4× 4 ordered dither of the source pixels to the destination pixels.
Dithering is most useful in preventing banding artifacts when reducing the color
depth of the source.

Finally, the color key argument allows the application to specify a pixel
value in the source that will be substituted with transparent black during pro-
cessing. While Direct3D itself does not support color keying transparency,
D3DX provides this limited form of color keying during surface loading.

582 CHAPTER 15. D3DX UTILITY LIBRARY

15.10 Creating Texture Resources

D3DX provides two forms of functions for creating texture resources from files on
disk, files in memory, or files in Win32 resources. The first form uses the resource
checking and filtering functions just described to construct a resource that “just
works”, possibly resizing the resource and converting the pixel format to the
requirements of the device. The second form is an extended version that allows
the application to finely control the process of creating the texture resource.

15.10.1 Creating Uninitialized Textures

The functions D3DXCreateTexture, D3DXCreateCubeTexture, and D3DXCreate-
VolumeTexture create texture resources whose contents are uninitialized. You
can initialize the texture contents with some application code after the resource
has been created. These functions call the corresponding texture resource re-
quirements functions to adjust the input parameters to suit the device and then
call the corresponding method on the device to create the appropriate resource.
The resulting interface pointer is returned to the caller.

HRESULT ::D3DXCreateTexture(IDirect3DDevice9 *device,
UINT width,
UINT height,
UINT mip_levels,
DWORD usage,
D3DFORMAT format,
D3DPOOL pool,
IDirect3DTexture9 **result);

HRESULT ::D3DXCreateCubeTexture(IDirect3DDevice9 *device,
UINT Size,
UINT mip_levels,
DWORD usage,
D3DFORMAT format,
D3DPOOL pool,
IDirect3DCubeTexture9 **result);

HRESULT ::D3DXCreateVolumeTexture(IDirect3DDevice9 *device,
UINT width,
UINT height,
UINT depth,
UINT mip_levels,
DWORD usage,
D3DFORMAT format,
D3DPOOL pool,
IDirect3DVolumeTexture9 **result);

15.10. CREATING TEXTURE RESOURCES 583

15.10.2 Creating Textures From Files

The functions D3DXCreateCubeTextureFromFile, D3DXCreateTextureFromFile,
and D3DXCreateVolumeTextureFromFile create texture resources from files on
disk. These functions obtain the pixel dimensions and pixel format from the
data stored in the file and adjust the dimensions and format to meet the re-
strictions of the device for the resource. The pixel data in the file is read into
memory, and possibly converted to the pixel format used by the resource, be-
fore being copied into the resource. These functions provide a very easy way to
initialize a texture resource from an image file.

HRESULT ::D3DXCreateTextureFromFile(
IDirect3DDevice9 *device,
LPCTSTR filename,
IDirect3DTexture9 **result);

HRESULT ::D3DXCreateCubeTextureFromFile(
IDirect3DDevice9 *device,
LPCTSTR filename,
IDirect3DCubeTexture9 **result);%

HRESULT ::D3DXCreateVolumeTextureFromFile(
IDirect3DDevice9 *device,
LPCTSTR filename,
IDirect3DVolumeTexture9 **result);

Texture resources can be created from any of the supported file formats
enumerated in D3DXIMAGE FILEFORMAT. Cube textures can only be created from
.dds files. Volume textures can be created from .dds files which can contain an
entire volume, or from image files to create a volume containing a single slice.

The extended texture creation functions allow all the parameters of the
texture creation process to be controlled by the caller. The caller can specify
target resource properties and file processing arguments to obtain fine control
over the resource creation process. The resource dimensions, usage, format,
and memory pool can all be specified individually, or left to default arguements
with D3DX DEFAULT. Texture filtering parameters and a color to be treated as a
transparent color key during the loading process can be specified.

HRESULT ::D3DXCreateTextureFromFileEx(
IDirect3DDevice9 *device,
LPCTSTR filename,
UINT width,
UINT height,
UINT mip_levels,
DWORD usage,
D3DFORMAT format,
D3DPOOL pool,

584 CHAPTER 15. D3DX UTILITY LIBRARY

DWORD filter,
DWORD mip_filter,
D3DCOLOR color_key,
D3DXIMAGE_INFO *info,
PALETTEENTRY *palette,
IDirect3DTexture9 **result);

HRESULT ::D3DXCreateCubeTextureFromFileEx(
IDirect3DDevice9 *device,
LPCTSTR filename,
UINT Size,
UINT mip_levels,
DWORD usage,
D3DFORMAT format,
D3DPOOL pool,
DWORD filter,
DWORD mip_filter,
D3DCOLOR color_key,
D3DXIMAGE_INFO *info,
PALETTEENTRY *palette,
IDirect3DCubeTexture9 **result);

HRESULT ::D3DXCreateVolumeTextureFromFileEx(
IDirect3DDevice9 *device,
LPCTSTR filename,
UINT width,
UINT height,
UINT depth,
UINT mip_levels,
DWORD usage,
D3DFORMAT format,
D3DPOOL pool,
DWORD filter,
DWORD mip_filter,
D3DCOLOR color_key,
D3DXIMAGE_INFO *info,
PALETTEENTRY *palette,
IDirect3DVolumeTexture9 **result);

The filter parameter controls the filtering of the image into the most de-
tailed level of the texture resource while the mip filter argument controls the
creation of mipmap levels. When D3DX DEFAULT is used for the filter param-
eter, a triangle filter with dithering is used to resample the image in the file.
When D3DX DEFAULT is used for the mip filter, a box filter is used to generate
the mipmap levels. The info parameter returns information about the image
file that was used to construct the texture. If this information is not needed,

15.10. CREATING TEXTURE RESOURCES 585

an application can pass NULL for the info parameter. The palette parameter
is used to return the palette loaded with the resource. This parameter can be
NULL if no palette is needed.

15.10.3 Creating Textures From Files In Memory

If the file is located in a block of memory, it can be used to create a resource with
D3DXCreateTextureFromFileInMemory, D3DXCreateCubeTextureFromFileIn-
Memory and D3DXCreateVolumeTextureFromFileInMemory. The Ex forms are
similar to the extended texture creation functions discussed earlier in this sec-
tion.

HRESULT ::D3DXCreateTextureFromFileInMemory(
IDirect3DDevice9 *device,
const void *data,
UINT size,
IDirect3DTexture9 **result);

HRESULT ::D3DXCreateCubeTextureFromFileInMemory(
IDirect3DDevice9 *device,
const void *data,
UINT size,
IDirect3DCubeTexture9 **result);

HRESULT ::D3DXCreateVolumeTextureFromFileInMemory(
IDirect3DDevice9 *device,
const void *data,
UINT size,
IDirect3DVolumeTexture9 **result);

HRESULT ::D3DXCreateTextureFromFileInMemoryEx(
IDirect3DDevice9 *device,
const void *data,
UINT size,
UINT width,
UINT height,
UINT mip_levels,
DWORD usage,
D3DFORMAT format,
D3DPOOL pool,
DWORD filter,
DWORD mip_filter,
D3DCOLOR color_key,
D3DXIMAGE_INFO *info,
PALETTEENTRY *palette,
IDirect3DTexture9 **result);

586 CHAPTER 15. D3DX UTILITY LIBRARY

HRESULT ::D3DXCreateCubeTextureFromFileInMemoryEx(
IDirect3DDevice9 *device,
const void *data,
UINT size,
UINT Size,
UINT mip_levels,
DWORD usage,
D3DFORMAT format,
D3DPOOL pool,
DWORD filter,
DWORD mip_filter,
D3DCOLOR color_key,
D3DXIMAGE_INFO *info,
PALETTEENTRY *palette,
IDirect3DCubeTexture9 **result);

HRESULT ::D3DXCreateVolumeTextureFromFileInMemoryEx(
IDirect3DDevice9 *device,
const void *data,
UINT size,
UINT width,
UINT height,
UINT depth,
UINT mip_levels,
DWORD usage,
D3DFORMAT format,
D3DPOOL pool,
DWORD filter,
DWORD mip_filter,
D3DCOLOR color_key,
D3DXIMAGE_INFO *info,
PALETTEENTRY *palette,
IDirect3DVolumeTexture9 **result);

15.10.4 Creating Textures From Resources

Creating a texture from a file stored as a Win32 resource is very similar to
creating a texture from a file stored on disk or stored in memory. The only
difference is how the source of the texture data is specified. To identify a file
stored in a resource you supply the handle to the module containing the resource
and the name of the resource.

The functions D3DXCreateTextureFromResource, D3DXCreateCubeTexture-
FromResource, and D3DXCreateVolumeTextureFromResource are used to cre-
ate texture resources on a device from file data stored in Win32 resources asso-
ciated with an executable module. The extended forms allow the usual control

15.10. CREATING TEXTURE RESOURCES 587

over the resource creation parameters.

HRESULT ::D3DXCreateTextureFromResource(
IDirect3DDevice9 *device,
HMODULE module,
LPCTSTR resource,
IDirect3DTexture9 **result);

HRESULT ::D3DXCreateCubeTextureFromResource(
IDirect3DDevice9 *device,
HMODULE module,
LPCTSTR resource,
IDirect3DCubeTexture9 **result);

HRESULT ::D3DXCreateVolumeTextureFromResource(
IDirect3DDevice9 *device,
HMODULE module,
LPCTSTR resource,
IDirect3DVolumeTexture9 **result);

HRESULT ::D3DXCreateTextureFromResourceEx(
IDirect3DDevice9 *device,
HMODULE module,
LPCTSTR resource,
UINT width,
UINT height,
UINT mip_levels,
DWORD usage,
D3DFORMAT format,
D3DPOOL pool,
DWORD filter,
DWORD mip_filter,
D3DCOLOR color_key,
D3DXIMAGE_INFO *info,
PALETTEENTRY *palette,
IDirect3DTexture9 **result);

HRESULT ::D3DXCreateCubeTextureFromResourceEx(
IDirect3DDevice9 *device,
HMODULE module,
LPCTSTR resource,
UINT Size,
UINT mip_levels,
DWORD usage,
D3DFORMAT format,
D3DPOOL pool,

588 CHAPTER 15. D3DX UTILITY LIBRARY

DWORD filter,
DWORD mip_filter,
D3DCOLOR color_key,
D3DXIMAGE_INFO *info,
PALETTEENTRY *palette,
IDirect3DCubeTexture9 **result);

HRESULT ::D3DXCreateVolumeTextureFromResourceEx(
IDirect3DDevice9 *device,
HMODULE module,
LPCTSTR resource,
UINT width,
UINT height,
UINT depth,
UINT mip_levels,
DWORD usage,
D3DFORMAT format,
D3DPOOL pool,
DWORD filter,
DWORD mip_filter,
D3DCOLOR color_key,
D3DXIMAGE_INFO *info,
PALETTEENTRY *palette,
IDirect3DVolumeTexture9 **result);

For example, if the file “foo.png” is stored in a data resource with the integer
name IDR DATA1 in the module associated with the process’ executable image,
you can create a texture from that resource with the following code snippet:

IDirect3DTexture9 *texture = 0;
::D3DXCreateTextureFromResource(device, NULL,

MAKEINTRESOURCE(IDR_DATA1), &texture);

15.11 Loading Resources

If you have an existing surface or texture resource and want to load images
into that resource, you can use D3DX read the contents into the surface. For
a texture or cube texture resource, you can obtain the surface interface pointer
for a particular level and then load the data into the surface. For a volume
texture you can obtain the volume interface pointer for a particular level and
then load the data into the volume.

The functions D3DXLoadSurfaceFromMemory, D3DXLoadSurfaceFromFile,
D3DXLoadSurfaceFromFileInMemory, and D3DXLoadSurfaceFromResource load
data into surfaces. The functions D3DXLoadVolumeFromMemory, D3DXLoadVolume-
FromFile, D3DXLoadVolumeFromFileInMemory and D3DXLoadVolumeFromResource
load data into volumes.

15.11. LOADING RESOURCES 589

The FromMemory versions of the functions load a surface or volume from a
region of memory containing raw pixel data. The raw pixel data is consistent
with the format and pitch parameters. Surface data is arranged as a sequence
of scanlines, beginning with the bottom-most scanline in the data, with each
scanline offset from the previous scanline by pitch bytes in memory. Volume
data is arranged as a sequence of slices, beginning with the bottom-most slice.
Each slice is arranged as a surface. The slice pitch and row pitch arguments
give the distance in bytes between successive slices within the volume and rows
within a slice, respectively.

The remaining arguments are identical to those described earlier in this
chapter.

HRESULT ::D3DXLoadSurfaceFromMemory(
IDirect3DSurface9 *destination,
const PALETTEENTRY *dest_palette,
const RECT *dest_rect,
const void *source,
D3DFORMAT format,
UINT pitch,
const PALETTEENTRY *source_palette,
const RECT *source_rect,
DWORD filter,
D3DCOLOR color_key);

HRESULT ::D3DXLoadSurfaceFromFile(
IDirect3DSurface9 *destination,
const PALETTEENTRY *dest_palette,
const RECT *dest_rect,
LPCTSTR filename,
const RECT *source_rect,
DWORD filter,
D3DCOLOR color_key,
D3DXIMAGE_INFO *info);

HRESULT ::D3DXLoadSurfaceFromFileInMemory(
IDirect3DSurface9 *destination,
const PALETTEENTRY *dest_palette,
const RECT *dest_rect,
const void *data,
UINT size,
const RECT *source_rect,
DWORD filter,
D3DCOLOR color_key,
D3DXIMAGE_INFO *info);

HRESULT ::D3DXLoadSurfaceFromResource(

590 CHAPTER 15. D3DX UTILITY LIBRARY

IDirect3DSurface9 *destination,
const PALETTEENTRY *dest_palette,
const RECT *dest_rect,
HMODULE module,
LPCTSTR resource,
const RECT *source_rect,
DWORD filter,
D3DCOLOR color_key,
D3DXIMAGE_INFO *info);

HRESULT ::D3DXLoadVolumeFromMemory(
IDirect3DVolume9 *destination,
const PALETTEENTRY *dest_palette,
const D3DBOX *dest_box,
const void *source,
D3DFORMAT format,
UINT row_pitch,
UINT slice_pitch,
const PALETTEENTRY *source_palette,
const D3DBOX *source_box,
DWORD filter,
D3DCOLOR color_key);

HRESULT ::D3DXLoadVolumeFromFile(
IDirect3DVolume9 *destination,
const PALETTEENTRY *dest_palette,
const D3DBOX *dest_box,
LPCTSTR filename,
const D3DBOX *source_box,
DWORD filter,
D3DCOLOR color_key,
D3DXIMAGE_INFO *info);

HRESULT ::D3DXLoadVolumeFromFileInMemory(
IDirect3DVolume9 *destination,
const PALETTEENTRY *dest_palette,
const D3DBOX *dest_box,
const void *data,
UINT size,
const D3DBOX *source_box,
DWORD filter,
D3DCOLOR color_key,
D3DXIMAGE_INFO *info);

HRESULT ::D3DXLoadVolumeFromResource(
IDirect3DVolume9 *destination,

15.12. SAVING RESOURCES 591

const PALETTEENTRY *dest_palette,
const D3DBOX *dest_box,
HMODULE module,
LPCTSTR resource,
const D3DBOX *source_box,
DWORD filter,
D3DCOLOR color_key,
D3DXIMAGE_INFO *info);

15.12 Saving Resources

D3DX can save surface, texture and volume texture resource data to the .bmp
and .dds file formats. The bitmap file format is supported for images, single-
level textures and single-slice volumes. The DirectDraw surface format is sup-
ported for all resource types. A portion of the resource can be saved to the file
using the rect and box parameters. If the resource is in a palette-based format,
the palette parameter supplies the color palette to be saved in the file.

HRESULT ::D3DXSaveSurfaceToFile(LPCTSTR filename,
D3DXIMAGE_FILEFORMAT file_format,
IDirect3DSurface9 *source,
const PALETTEENTRY *palette,
const RECT *rect);

HRESULT ::D3DXSaveTextureToFile(LPCTSTR filename,
D3DXIMAGE_FILEFORMAT file_format,
IDirect3DBaseTexture9 *source,
const PALETTEENTRY *palette);

HRESULT ::D3DXSaveVolumeToFile(LPCTSTR filename,
D3DXIMAGE_FILEFORMAT file_format,
IDirect3DVolume9 *source,
const PALETTEENTRY *palette,
const D3DBOX *box);

15.13 Filling Textures

In addition to loading resources with images and volumes from files, D3DX pro-
vides a way for you to procedurally fill a texture resource.1 The functions D3DX-
FillTexture, D3DXFillCubeTexture and D3DXFillVolumeTexture each take
a pointer to a function supplied by the application in the fill proc parameter.
D3DX calls this function for each pixel in the resource with the coordinates
of the pixel to be filled and the context argument passed to the fill function.

1There is no function provided to procedurally fill a surface.

592 CHAPTER 15. D3DX UTILITY LIBRARY

The context argument allows the fill function to obtain information from the
application.

HRESULT ::D3DXFillTexture(IDirect3DTexture9 *texture,
LPD3DXFILL2D fill_proc,
void *context);

HRESULT ::D3DXFillCubeTexture(
IDirect3DCubeTexture9 *texture,
LPD3DXFILL3D fill_proc,
void *context);

HRESULT ::D3DXFillVolumeTexture(
IDirect3DVolumeTexture9 *texture,
LPD3DXFILL3D fill_proc,
void *context);

D3DXFILL2D is the fill procedure used for filling texture resources. Cube
textures and volume textures are filled with a three dimensional fill procedure
D3DXFILL3D.

typedef void (*LPD3DXFILL2D)(D3DXVECTOR4 *result,
D3DXVECTOR2 *coord,
D3DXVECTOR2 *size,
void *context);

typedef void (*LPD3DXFILL3D)(D3DXVECTOR4 *result,
D3DXVECTOR3 *coord,
D3DXVECTOR3 *size,
void *context);

The fill procedure receives the texture coordinates in the coord vector. The
coordinates will be drawn from [0, 1] for textures and volume textures, while
cube texture coordinates are drawn from [−1, 1]. For a cube texture, one of the
three coordinates will always have the value 1 or −1 indicating which face of the
cube is being filled. The size vector describes the region of the texture being
sampled, with larger values corresponding to larger regions of texture space.

15.14 Filtering Textures

When an application changes the most detailed level of a mipmapped texture,
the less detailed levels of the mipmap chain need to be regenerated. D3DX
provides a single function to create the mipmap levels by filtering. Since all
texture resources derive from IDirect3DBaseTexture9, only a single function
is needed. The function determines the texture type and filters the texture level
given by the level parameter to produce the lesser detailed levels. If D3DX -
DEFAULT is used for the level parameter, then level 0 is used to construct all

15.15. CREATING NORMAL MAPS 593

the other mipmap levels. If the filter parameter is D3DX DEFAULT, then a box
filter is used.

HRESULT ::D3DXFilterTexture(
IDirect3DBaseTexture9 *texture,
const PALETTEENTRY *palette,
UINT level,
DWORD filter);

15.15 Creating Normal Maps

D3DX can create a normal map from a height field. The destination argument
gives the texture into which the normal map will be stored. The destination
texture must already exist, it is not created by this function. The source
argument gives the texture in which the height field is stored. Each pixel in the
height field is treated as an elevation and a 3 × 3 neighbourhood around the
source pixel is used to compute the normal to the height field.

HRESULT ::D3DXComputeNormalMap(IDirect3DTexture9 *destination,
IDirect3DTexture9 *source,
const PALETTEENTRY *palette,
DWORD flags,
DWORD channel,
float amplitude);

The channel argument specifies which channel from the height field is used
as the elevation. It can be one of the following values.

#define D3DX_CHANNEL_RED (1 << 0)
#define D3DX_CHANNEL_BLUE (1 << 1)
#define D3DX_CHANNEL_GREEN (1 << 2)
#define D3DX_CHANNEL_ALPHA (1 << 3)
#define D3DX_CHANNEL_LUMINANCE (1 << 4)

The flags argument supplies options to the computation of the normal
map and is a combination of zero or more flags. The mirroring flags control
the repetition of the height field in the x and y directions, with D3DX NORMAL-
MAP MIRRORU and D3DX NORMALMAP MIRRORV, respectively. The D3DX NORMAL-
MAP MIRROR flag enables mirroring in both directions. The D3DX NORMALMAP -
INVERTSIGN flag reverses the direction of the computed normal. The D3DX -
NORMALMAP COMPUTEOCCLUSION flag computes a per-pixel occlusion value and
stores it in the alpha channel of the resulting normal map. A value of 0 means
that the pixel is completely obscured and a value of 1 means that the pixel is
not obscured in any direction.

#define D3DX_NORMALMAP_MIRROR_U (1 << 16)

594 CHAPTER 15. D3DX UTILITY LIBRARY

#define D3DX_NORMALMAP_MIRROR_V (2 << 16)
#define D3DX_NORMALMAP_MIRROR (3 << 16)
#define D3DX_NORMALMAP_INVERTSIGN (8 << 16)
#define D3DX_NORMALMAP_COMPUTE_OCCLUSION (16 << 16)

15.16 Miscellaneous

Besides data types, helper objects, triangle meshes, and resource functions,
D3DX provides some other operations that don’t fit into any of the other cate-
gories.

Mathematical constant macros, unit conversion macros

15.16.1 Macros

D3DX supplies some trigonometric macros. The macros D3DX PI and D3DX 1-
BYPI define constants for the value of π and 1/π. The macros D3DXToDegree
and D3DXToRadian provide conversions between degrees and radians.

const float D3DX_PI;
const float D3DX_1BYPI;

float D3DXToRadian(float degrees);
float D3DXToDegree(float radians);

15.16.2 Fresnel’s Formulas

Fresnel’s formulas describe the amount of light reflected at an interface between
two materials. The formulas give the amount of reflected light as a sum of
two polarized components: light polarized parallel (F‖) to the interface surface
and light polarized perpendicular (F⊥) to the interface surface. The amount of
reflected light depends on the angle θ of the incident light, the index of refraction
of the materials N , the geometry of the interface and the light as well as the
wavelength of the light.

A material is characterized by its complex index of refraction N = η + iκ,
where η is the simple index of refraction for the material and κ is the material’s
extinction coefficient. When considering reflection at the interface between the
two materials, the relative index of refraction may be used:

N =
N1

N2
=

η1 + iκ1

η2 + iκ2
=

η1η2 + κ1κ2

η2
1 + κ2

1

+ i
η1η2 − κ1κ2

η2
1 + κ2

1

The parallel component of the reflected light, F‖, and the perpendicular
component of the reflected light, F⊥, are given by Fresnel’s formulas as follows,
using the relative index of refraction N and the angle of the incident light θ.

15.17. ERROR HANDLING 595

F⊥ =
a2 + b2 − 2a cos θ + cos2 θ

a2 + b2 + 2a cos θ + cos2 θ

F‖ = F⊥
a2 + b2 − 2a sin θ tan θ + sin2 θ tan2 θ

a2 + b2 + 2a sin θ tan θ + sin2 θ tan2 θ

a =

√
1
2
(c + d)

b =

√
1
2
(c− d)

c =
√

d2 + 4η2κ2

d = η2 − κ2 − sin2 θ

For an interface between two simple materials, the simple relative index of
refraction is the ratio of the index of fraction of the two materials, η1/η2. For
instance, the relative index of refraction between air and glass is about 1.5. In
this simplified case, κ1 = κ2 = 0 and the reflectance terms are simplified to the
following formulas.

F⊥ =
a2 − 2a cos θ + cos2 θ

a2 + 2a cos θ + cos2 θ

F‖ = F⊥
a2 − 2a sin θ tan θ + sin2 θ tan2 θ

a2 + 2a sin θ tan θ + sin2 θ tan2 θ

a =
√

η2 − sin2 θ

The total reflectance F for polarized light is a weighted sum of the two
components, a0F⊥ + a1F‖, where the weights a0 and a1 sum to unity. For
unpolarized light, F = (F⊥ + F‖)/2.

The D3DXFresnelTerm function computes the Fresnel reflection term F for
unpolarized light, incident at an angle whose cosine is given by the cos angle
parameter, reflecting from an interface between two simple materials whose
relative index of refraction is given by the refraction index parameter.

float ::D3DXFresnelTerm(float cos_angle, float refraction_index);

15.17 Error Handling

DirectX provides some error handling facililites that are global across all Direct-
X components. The functions DXGetErrorDescription8 and DXGetError-
String8 are used to retrieve strings that correspond to failed HRESULTs. DXGet-
ErrorString8 returns a simple string corresponding to the failed HRESULT,

596 CHAPTER 15. D3DX UTILITY LIBRARY

such as “D3DERR DEVICELOST”. DXGetErrorDescription8 returns a string that
describes the error, such as “device lost”. The global error functions require the
inclusion of <dxerr9.h> and the linking of dxerr9.lib.

LPCTSTR ::DXGetErrorString9(HRESULT hr);
LPCTSTR ::DXGetErrorDescription9(HRESULT hr);

In addition to these global error functions, D3DX provides a similar function,
D3DXGetErrorString, for Direct3D and D3DX errors. Instead of returning the
string as the result of the function, the caller supplies a buffer into which the
string is written.

HRESULT ::D3DXGetErrorString(HRESULT hr,
LPTSTR pBuffer,
UINT BufferLen);

The following HRESULT error codes are specific to D3DX.

enum _D3DXERR
{

D3DXERR_CANNOTATTRSORT = MAKE_DDHRESULT(2902),
D3DXERR_CANNOTMODIFYINDEXBUFFER = MAKE_DDHRESULT(2900),
D3DXERR_INVALIDDATA = MAKE_DDHRESULT(2905),
D3DXERR_INVALIDMESH = MAKE_DDHRESULT(2901),
D3DXERR_LOADEDMESHASNODATA = MAKE_DDHRESULT(2906),
D3DXERR_SKINNINGNOTSUPPORTED = MAKE_DDHRESULT(2903),
D3DXERR_TOOMANYINFLUENCES = MAKE_DDHRESULT(2904)

};

15.18 ID3DXBuffer

Several functions and object methods in D3DX, the mesh functions and methods
in particular, need a way to pass an arbitrarily sized and typed buffer between
the application and the function or object. The ID3DXBuffer encapsulates this
concept as a COM object that implements a simple wrapper around a variable-
sized chunk of memory. An application can create a buffer object with the
D3DXCreateBuffer function. The object allocates size bytes and manages the
lifetime of the allocated memory with the lifetime of the object.

HRESULT ::D3DXCreateBuffer(DWORD size,
ID3DXBuffer **result);

The ID3DXBuffer interface includes only two methods: one for obtaining a
pointer to the allocated memory and one for obtaining the size of the allocated
memory.

15.19. VERTEX DECLARATIONS 597

Interface 15.1: Summary of the ID3DXBuffer interface.

ID3DXBuffer

Read-Only Properties
GetBufferPointer A pointer to the contained data
GetBufferSize The size of the contained data

interface ID3DXBuffer : IUnknown
{

void *GetBufferPointer();
DWORD GetBufferSize();

};

The type of the data contained in the buffer is not exposed by the interface.
When we know the type of the encapsulated data, we can use a template-based
wrapper to safely expose the underlying type of the contained data. The class
rt::dx buffer in the include file rt/mesh.h in the sample code contains such
a wrapper.

15.19 Vertex Declarations

D3DX provides several functions for manipulating vertex FVF codes and their
corresponding vertex shader declarations. D3DXGetFVFVertexSize returns the
size in BYTEs of a vertex, calculated from its flexible vertex format code. D3DX-
DeclaratorFromFVF returns the vertex shader declaration corresponding to an
FVF code. Every FVF code can be expressed as a vertex shader declaration.
D3DXFVFFromDeclarator returns an FVF code corresponding to the given ver-
tex shader declaration, if any. FVF codes are a subset of vertex shader decla-
rations, so this function may fail. The shader declaration token array should
contain an end token, or be at least as big as MAX FVF DECL SIZE

UINT ::D3DXGetFVFVertexSize(DWORD fvf);

HRESULT ::D3DXDeclaratorFromFVF(DWORD fvf,
DWORD result[MAX_FVF_DECL_SIZE]);

HRESULT ::D3DXFVFFromDeclarator(const DWORD *declaration,
DWORD *result);

15.20 Intersection Testing

D3DX provides functions for computing the intersection of a ray with a triangle
with D3DXIntersectTri. The coordinates of the triangle vertices are given

598 CHAPTER 15. D3DX UTILITY LIBRARY

by the p0, p1, and p2 parameters. The starting point of the ray is given by
the position parameter and the ray’s direction is given by the direction
parameter. The result of the function is TRUE when the ray intersects the triangle
and FALSE otherwise. If the ray intersects the triangle, then the barycentric
coordinates of the intersection point are returned in the u and v parameters.
The distance of the intersection point from the origin of the ray is returned in
the distance parameter.

BOOL ::D3DXIntersectTri(const D3DXVECTOR3 *p0,
const D3DXVECTOR3 *p1,
const D3DXVECTOR3 *p2,
const D3DXVECTOR3 *position,
const D3DXVECTOR3 *direction,
float *u,
float *v,
float *distance);

D3DX also provides the D3DXSphereBoundProbe and D3DXBoxBoundProbe
functions to test the intersection of a ray with a bounding volume. This is most
useful in picking objects on the screen. First, the pick ray can be intersected
with an object’s bounding volume. If the pick ray doesn’t intersect the object’s
bounding volume, then it is not necessary to test the triangles in the object for
intersection, avoiding many unnecessary triangle itnersection tests.

A bounding sphere is given by the coordinate of the center of the sphere
and its radius. A bounding box is given by two coordinates representing the
minimum and maximum extent of the box. In each case, the ray is given as a
position and direction and the result of the function is TRUE if the ray intersects
the volume, as in D3DXIntersectTri.

BOOL ::D3DXSphereBoundProbe(const D3DXVECTOR3 *center,
float radius,
const D3DXVECTOR3 *position,
const D3DXVECTOR3 *direction);

BOOL ::D3DXBoxBoundProbe(const D3DXVECTOR3 *minima,
const D3DXVECTOR3 *maxima,
const D3DXVECTOR3 *position,
const D3DXVECTOR3 *direction);

15.21 Shader Assembly

D3DX provides functions for converting shader instructions in text form into
an array of shader tokens. The assembly process can also perform a validation
step on the shader to ensure that the shader instructions do not violate any of
the appropriate rules for constructing vertex and pixel shaders.

15.22. FURTHER READING 599

The functions D3DXAssembleShader, D3DXAssembleShaderFromFile and D3DX-
AssembleShaderFromResource assemble a pixel or vertex shader from ASCII
text located in a block of memory, a file on disk, or a Win32 executable mod-
ule resource, respectively. If the shader is encoded with Unicode characters, it
should be converted to ANSI before using these functions. In each function,
three ID3DXBuffer objects are returned to the caller containing vertex shader
constant declarations, the assembled shader token array, and an array of strings
containing any assembly warning or error messages. Any of these arguments
may be NULL if the associated data is not needed by the caller.

HRESULT ::D3DXAssembleShader(const void *data,
UINT size,
DWORD flags,
ID3DXBuffer **constants,
ID3DXBuffer **shader,
ID3DXBuffer **errors);

HRESULT ::D3DXAssembleShaderFromFile(LPCTSTR filename,
DWORD flags,
ID3DXBuffer **constants,
ID3DXBuffer **shader,
ID3DXBuffer **errors);

HRESULT ::D3DXAssembleShaderFromResource(HMODULE module,
LPCTSTR resource,
DWORD flags,
ID3DXBuffer **constants,
ID3DXBuffer **shader,
ID3DXBuffer **errors);

The flags argument can be zero or more of the following flags to indicate
options to the assembly process. D3DXASM DEBUG inserts debugging information
as comments into the assembled shader. D3DXASM SKIPVALIDATION does not
perform any validation checks on the assembled shader.

#define D3DXASM_DEBUG (1 << 0)
#define D3DXASM_SKIPVALIDATION (1 << 1)

15.22 Further Reading

Principles of Digital Image Synthesis by Andrew Glassner gives more infor-
mation about the interaction between light and matter and how this relates
to computer graphics. This two-volume work is a definitive reference for the
physics of advanced lighting and shading and materials.

600 CHAPTER 15. D3DX UTILITY LIBRARY

