
Chapter 17

D3DX Helper Objects

“For a man to help another is to be a god.”
Pliny the Elder, Natural History, II, 77

17.1 Overview

In addition to the objects provided by D3DX as concrete classes, D3DX provides
several abstract COM objects for performing tasks associated with rendering.
Matrix stack objects aid in the maintenance of coordinate systems while travers-
ing a hierarchy of relative coordinate frames. Font and sprite objects aid in the
rendering of text with GDI and textured screen-space quadrilaterals, respec-
tively. The render to surface and render to environment map objects simplify
the use of secondary render targets and the construction of environment map
textures. These are relatively simple objects.

D3DX also provides an object that implements visual effects. Effects are
specified through a text syntax and implement an effect with one or more tech-
niques. Each technique consists of a collection of rendering passes and the re-
quired state for each pass. Effects can be parameterized to allow the application
to pass in variable data.

17.2 Matrix Stacks

A matrix stack object is helpful in implementing scene graphs containing a
hierarchy of coordinate frames described by relative transformation matrices.
A matrix stack object is created with D3DXCreateMatrixStack. The DWORD
argument zero is for unused flags and is always zero. The ID3DXMatrixStack
interface is summarized in interface 17.1. A newly created matrix stack is empty
and its top element is undefined.

HRESULT D3DXCreateMatrixStack(DWORD zero,

631

632 CHAPTER 17. D3DX HELPER OBJECTS

ID3DXMatrixStack **result);

Interface 17.1: Summary of the ID3DXMatrixStack interface.

ID3DXMatrixStack

Read-Only Properties
GetTop The topmost matrix in the stack

Methods
LoadIdentity Loads an identity matrix
LoadMatrix Loads an arbitrary matrix
MultMatrix Post-multiplies a matrix
MultMatrixLocal Pre-multiplies a matrix
Pop Pops the topmost matrix from the stack
Push Pushes a matrix onto the stack
RotateAxis Post-multiplies a rotation matrix
RotateAxisLocal Pre-multiplies a rotation matrix
RotateYawPitchRoll Post-multiplies a rotation matrix
RotateYawPitchRollLocal Pre-multiplies a rotation matrix
Scale Post-multiplies a scaling matrix
ScaleLocal Pre-multiplies a scaling matrix
Translate Post-multiplies a translation matrix
TranslateLocal Pre-multiplies a translation matrix

interface ID3DXMatrixStack : IUnknown
{

// read-only properties
D3DXMATRIX *GetTop();

// methods
HRESULT LoadIdentity();
HRESULT LoadMatrix(const D3DXMATRIX *m);
HRESULT MultMatrix(const D3DXMATRIX *m);
HRESULT MultMatrixLocal(const D3DXMATRIX *m);
HRESULT Pop();
HRESULT Push();
HRESULT RotateAxis(const D3DXVECTOR3 *v,

float angle);
HRESULT RotateAxisLocal(const D3DXVECTOR3 *v,

float angle);
HRESULT RotateYawPitchRoll(float Yaw,

float pitch,
float roll);

17.2. MATRIX STACKS 633

HRESULT RotateYawPitchRollLocal(float Yaw,
float pitch,
float roll);

HRESULT Scale(float x, float y, float z);
HRESULT ScaleLocal(float x, float y, float z);
HRESULT Translate(float x, float y, float z);
HRESULT TranslateLocal(float x, float y, float z);

};

The topmost matrix on the stack can be accessed with the GetTop method.
This method returns a pointer to the matrix, which allows the application to
read or write values into the matrix. The matrix stack object is rather forgiving
of erroneous usage patterns, but makes no complaints to the debug output
stream, so you should be careful to correctly use the stack, or you may get
unexpected values from the matrix.

You can load an identity matrix, or an arbitrary matrix with the Load-
Identity and LoadMatrix methods, respectively. Once a matrix is on the
stack, you can perform stack manipulations with the Push and Pop methods.
Push inserts a copy of the topmost matrix at the top of the stack and pushes all
the other elements down in the stack. Pop removes the topmost stack element.
Although the matrix stack will not return an error when you pop off more
elements than are on the stack, the top element of the stack will be undefined.

You can post-multiply a matrix onto the top of the stack with the Mult-
Matrix method. You can pre-multiply a matrix onto the top of the stack with
the MultMatrixLocal method. The Scale, RotateAxis, RotateYawPitchRoll,
and Translate methods create scale, axis rotation, Euler angle rotation and
translation matrices and post-multiply them onto the top of the stack. The
Local versions of these methods pre-multiply the constructed matrix onto the
top of the stack.

You can also use the C++ Standard Library classes std::stack or std::-
vector to implement your own matrix stack. The stack class has push, pop
and top methods that function similarly to those in ID3DXMatrixStack. The
vector class has push back, pop back and back methods that serve the same
purposes.

typedef std::stack<D3DXMATRIX> t_matrix_stack;
typedef std::vector<D3DXMATRIX> t_matrix_vector;

Neither of these classes have methods for constructing matrices and multi-
plying them onto the top of the stack. However, you can perform these opera-
tions directly using the C++ extensions to D3DXMATRIX and matrix construction
helper classes. For example, the following snippet uses a stack implemented as
a std::vector. First, a rotation matrix is post-multiplied onto the top of the
stack and then a translation matrix is pre-multiplied onto the top of the stack.

std::vector<D3DXMATRIX> stack;
stack.push_back(D3DXMATRIX(1, 0, 0, 0,

634 CHAPTER 17. D3DX HELPER OBJECTS

0, 1, 0, 0,
0, 0, 1, 0,
0, 0, 0, 1));

stack.back() *= rt::mat_rot_x(D3DX_PI*0.5f);
stack.back() = rt::mat_trans(1,0,0)*stack.back();

17.3 Fonts

D3DX provides the ID3DXFont interface for GDI-based text rendering in Direct-
3D. Text rendered with this interface will first be rasterized by GDI into a mem-
ory DC. The contents of the memory DC will then be copied to a texture and
a textured quadrilateral will be drawn to get the text into the render target.
This involves two potentially slow operations each time text is rendered: GDI
text rendering is performed, and the new texture contents must be copied into
device memory. However, the quality of the rendered text is high, properly han-
dling kerning and ligature issues, as well as text containing multibyte character
sequences and UNICODE text. An instance of the interface is created by the
D3DXCreateFont function.

HRESULT D3DXCreateFont(IDirect3DDevice9 *device,
HFONT font,
ID3DXFont **result);

The font argument specifies the handle to an existing GDI font. You can
create a font from a LOGFONT structure for use with this function and delete the
font after calling D3DXCreateFont, as in this example from the rt Text sample.

{
HFONT font = ::CreateFontIndirect(&m_d3dx_lf);
THR(::D3DXCreateFont(m_pd3dDevice, font, &m_d3dx_font));
::DeleteObject(font);

}

The function D3DXCreateFontIndirect performs these steps for you as a
convenience.

HRESULT D3DXCreateFontIndirect(IDirect3DDevice9 *device,
const LOGFONT *description,
ID3DXFont **result);

The ID3DXFont interface is summarized in interface 17.2. The font interface
has only two properties: the associated device, and the LOGFONT description of
the associated GDI font.

Interface 17.2: Summary of the ID3DXFont interface.

ID3DXFont

17.3. FONTS 635

Read-Only Properties
GetDC GetDC
GetDescA GetDescA
GetDescW GetDescW
GetDevice The associated device
GetGlyphData GetGlyphData
GetText-
MetricsA

GetTextMetricsA

GetText-
MetricsW

GetTextMetricsW

Methods
DrawTextA Renders ASCII text
DrawTextW Renders UNICODE text
OnLostDevice Releases device resources
OnResetDevice Restores device resources
Preload-
Characters

PreloadCharacters

PreloadGlyphs PreloadGlyphs
PreloadTextA PreloadTextA
PreloadTextW PreloadTextW

interface ID3DXFont : IUnknown
{

// read-only properties
HRESULT GetDevice(IDirect3DDevice9 **value);
HRESULT GetLogFont(LOGFONT *value);

// methods
HRESULT Begin();
INT DrawTextA(LPCSTR text,

INT count,
RECT *region,
DWORD flags,
D3DCOLOR color);

INT DrawTextW(LPCWSTR text,
INT count,
RECT *region,
DWORD flags,
D3DCOLOR color);

HRESULT End();
HRESULT OnLostDevice();
HRESULT OnResetDevice();

};

636 CHAPTER 17. D3DX HELPER OBJECTS

The font object uses a state block to preserve the state of the device during
drawing and a texture for use in drawing the result of GDI’s rendering. The
OnLostDevice and OnResetDevice methods are used to manage the lifetime of
the font’s device resources. They should be called when the device is lost or
reset, respectively.TODO: fix font

The xfontBegin and xfontEnd methods set and restore device state in
preparation for text rendering. When drawing more than one text string, call
xfontBegin to set the appropriate state once for all the text. Similarly, call
xfontEnd after the text is rendered to restore the device state. If these methods
are not called explicitly, then the methods DrawTextA and DrawTextW will call
them implicitly each time they are called, to properly save and restore device
state.

The DrawTextA and DrawTextW methods render ANSI or UNICODE text,
respectively.1 These methods function similarly to the GDI function ::Draw-
Text. If the count argument is −1, then the text argument is assumed to be
NULL terminated. The region parameter points to a rectangle in render target
pixel coordinates where the text should be rendered. The color argument gives
the color of the rendered text. The texture map created internally by ID3DXFont
is modulated by this color.

The flags argument specifies a set of formatting options that are identical
to those described in MSDN for ::DrawText. The flags are summarized as
follows.

DT BOTTOM The text is aligned to the bottom of the rectangle. This value must
be used with DT SINGLELINE.

DT CALCRECT The width and height of the required rectangle are computed and
returned to the caller. No rendering is performed. If there are multiple
lines of text, DrawText uses the width of the rectangle given in the region
parameter and extends the base of the rectangle to bound the last line of
text. If there is only one line of text, DrawText modifies the right side of
the rectangle so that it bounds the last character in the line. In either
case, DrawText returns the bounds of the formatted text but does not
draw the text.

DT CENTER The text is centered horizontally within the rectangle.

DT EDITCONTROL Duplicates the text-displaying characteristics of a multiline
edit control. Specifically, the average character width is calculated in the
same manner as for an edit control, and the function does not display a
partially visible last line.

DT END ELLIPSIS or DT PATH ELLIPSIS Truncates the string without adding
ellipses so that the result fits in the specified rectangle. The string is not
modified unless the DT MODIFYSTRING flag is specified. Specify DT END -
ELLIPSIS to truncate characters at the end of the string, or DT PATH -
ELLIPSIS to truncate characters in the middle of the string. If the string

1Collectively, they will be referred to as DrawText.

17.3. FONTS 637

contains backslash characters, DT PATH ELLIPSIS preserves as much of the
text as possible after the last backslash.

DT EXPANDTABS Expands tab characters. The default number of characters per
tab is eight. The DT WORD ELLIPSIS, DT PATH ELLIPSIS, and DT END -
ELLIPSIS values cannot be used with the DT EXPANDTABS value.

DT EXTERNALLEADING Includes the font external leading in line height. Nor-
mally, external leading is not included in the height of a line of text.

DT HIDEPREFIX Windows 2000: Ignores the ampersand (&) prefix character in
the text. The letter that follows is not underlined, but other mnemonic-
prefix characters are still processed.

DT INTERNAL Uses the system font to calculate text metrics.

DT LEFT Aligns text to the left.

DT MODIFYSTRING Modifies the string to match the displayed text. This flag
has no effect unless the DT END ELLIPSIS or DT PATH ELLIPSIS flag is
specified.

DT NOCLIP Draws without clipping. DrawText is somewhat faster when DT NO-
CLIP is used.

DT NOFULLWIDTHCHARBREAK Windows 98, Windows 2000: Prevents a line break
at a double-wide character string (DBCS), so that the line-breaking rule
is equivalent to a single-byte character string (SBCS). For example, this
can be used in Korean windows for more readability of icon labels. This
is effective only if DT WORDBREAK is specified.

DT NOPREFIX Turns off processing of prefix characters. Normally, DrawText
interprets the mnemonic-prefix character & as a directive to underscore
the character that follows, and the mnemonic-prefix characters && as a
directive to print a single &. By specifying DT NOPREFIX, this processing
is turned off. Compare with DT HIDEPREFIX and DT PREFIXONLY.

DT PREFIXONLY Windows 2000: Draws only an underline at the position of the
character following the ampersand (&) prefix character. Does not draw
any character in the string.

DT RIGHT Aligns text to the right.

DT RTLREADING Displays text in right-to-left reading order for bi-directional text
when a Hebrew or Arabic font is selected. The default reading order for
all text is left-to-right.

DT SINGLELINE Displays text on a single line only. Carriage returns and line
feeds do not break the line.

638 CHAPTER 17. D3DX HELPER OBJECTS

DT TABSTOP Sets tab stops. Bits 15-8 (high-order byte of the low-order word)
of the Format parameter specify the number of characters for each tab.
The default number of characters per tab is eight. The DT CALCRECT,
DT EXTERNALLEADING, DT INTERNAL, DT NOCLIP, and DT NOPREFIX values
cannot be used with the DT TABSTOP value.

DT TOP Top-justifies text (single line only).

DT VCENTER Centers text vertically (single line only).

DT WORDBREAK Breaks words. Lines are automatically broken between words if
a word would extend past the edge of the rectangle specified by the region
parameter. A carriage return/line feed sequence also breaks the line.

DT WORD ELLIPSIS Truncates text that does not fit in the rectangle and adds
ellipses.

For special effects with fonts, you can modify the state used to render
The SDK sample framework includes a CD3DFont class that implements text

rendering in a different manner. It rasterizes character glyphs into a texture
map and draws textured quads for each character when a string is drawn. This
method uses GDI only for the construction of the texture map; all drawing is
performed entirely with Direct3D. This improves performance, but introduces
some limitations on the text that can be drawn, see section B.6.

17.4 Sprites

A sprite is a textured quadrilateral that is always drawn parallel to the screen.
D3DX implements a sprite object with the ID3DXSprite interface. An instance
of a sprite object is created with D3DXCreateSprite.

HRESULT D3DXCreateSprite(IDirect3DDevice9 *device,
ID3DXSprite **result);

The interface is summarized in interface 17.3. The only property exposed
by a sprite is the device property, which returns the device associated with the
sprite. The texture used for the sprite does not belong to the sprite and is
passed into the sprite drawing methods. A sprite uses a state block to save
and restore state on the device, with the Begin and End methods, respectively.
Calls to Begin and End should surround code that draws multiple sprites so
that the appropriate device state is set and restored only once for all the drawn
sprites. The OnLostDevice and OnResetDevice methods should be called when
a device is lost or reset, respectively, to manage the device resources associated
with the sprite.

17.4. SPRITES 639

Interface 17.3: Summary of the ID3DXSprite interface.

ID3DXSprite

Read-Only Properties
GetDevice The associated device

Write-Only Properties
SetWorldViewLH SetWorldViewLH
SetWorldViewRH SetWorldViewRH

Properties
GetTransform
SetTransform

Methods
Begin Begin
Draw Draw
End End
Flush Flush
OnLostDevice Releases device resources
OnResetDevice Restores device resources

interface ID3DXSprite : IUnknown
{

// read-only properties
HRESULT GetDevice(IDirect3DDevice9 **value);

// methods
HRESULT Begin();
HRESULT Draw(IDirect3DTexture9 *texture,

const RECT *region,
const D3DXVECTOR2 *scaling,
const D3DXVECTOR2 *rotation_center,
float angle,
const D3DXVECTOR2 *translation,
D3DCOLOR color);

HRESULT DrawTransform(IDirect3DTexture9 *texture,
const RECT *region,
const D3DXMATRIX *matrix,
D3DCOLOR color);

HRESULT End();
HRESULT OnLostDevice();
HRESULT OnResetDevice();

};

640 CHAPTER 17. D3DX HELPER OBJECTS

The Draw method renders a sprite using the given texture. The region
parameter defines what portion of the texture will be used to render the sprite;
if NULL is passed, then the entire texture is used for the sprite. The color
argument is used to modulate the given texture. If no modulation is required,
then pass opaque white as the color.2

The scaling, rotation center, angle, and translation arguments are
used to transform the sprite in screen space. The sprite is initially located
in screen space with its upper-left corner at (0, 0). The order of transforma-
tions is S(s)T (−Cr)Tz(θ)T (Cr)T (P), where s is the scaling parameter, Cr

is the rotation center parameter, θ is the angle parameter, and P is the
translation parameter.

The DrawTransform method takes a transformation matrix directly. The
matrix maps screen space coordinates to screen space. Remember that screen
space has an increasing y value from top to bottom, unlike cartesian coordinates,
when constructing this matrix.

One drawback of ID3DXSprite is that there is no batching of the rendered
sprites, effectively resulting in a call to DrawPrimitive for each time one of the
draw methods is called on the sprite object. This reduces performance if many
sprites must be drawn.

17.5 Surface Rendering

D3DX provides the ID3DXRenderToSurface interface to simplify rendering to
an arbitrary surface. An instance of this object is obtained with the D3DX-
CreateRenderToSurface function.

HRESULT D3DXCreateRenderToSurface(IDirect3DDevice9 *device,
UINT width,
UINT height,
D3DFORMAT format,
BOOL depth_stencil,
D3DFORMAT ds_format,
ID3DXRenderToSurface **result);

A summary of the interface is given in interface 17.4.

Interface 17.4: Summary of the ID3DXRenderToSurface interface.

ID3DXRenderToSurface

Read-Only Properties
GetDesc A description of the render target surface
GetDevice The associated device

Methods
2Most easily written in C++ as ~0.

17.5. SURFACE RENDERING 641

BeginScene Start rendering to a surface
EndScene Finish rendering to a surface
OnLostDevice Releases device resources
OnResetDevice Restores device resources

interface ID3DXRenderToSurface : IUnknown
{

// read-only properties
HRESULT GetDesc(D3DXRTS_DESC *value);
HRESULT GetDevice(IDirect3DDevice9 **value);

// methods
HRESULT BeginScene(IDirect3DSurface9 *surface,

const D3DVIEWPORT9 *viewport);
HRESULT EndScene();
HRESULT OnLostDevice();
HRESULT OnResetDevice();

};

GetDevice returns the device associated with the render to surface object.
The GetDesc method returns a description of the created render to surface
object in the D3DXRTSDESC structure. The structure gives the dimensions and
format of the render target and any associated depth buffer, if any. A render to
surface object must be destroyed and recreated to change any of these values.

typedef struct _D3DXRTS_DESC
{

UINT Width;
UINT Height;
D3DFORMAT Format;
BOOL DepthStencil;
D3DFORMAT DepthStencilFormat;

} D3DXRTS_DESC;

The OnLostDevice and OnResetDevice manage any device resources asso-
ciated with the render to surface object. They should be called when the device
is lost or reset, respectively.

The BeginScene and EndScene methods are the meat of the object. The
surface parameter specifies the destination of the rendering. The destination
is not required to be a surface created with the render target usage. If the
destination isn’t a valid render target, then ID3DXRenderToSurface will create
a render target surface which will be copied into the destination surface after
rendering is complete.

If you call BeginScene while the associated device is inside a scene, then the
call will fail. The following code snippet shows how to render to a texture level

642 CHAPTER 17. D3DX HELPER OBJECTS

surface and use the texture to render another scene on the back buffer of the
default swap chain.

CComPtr<IDirect3DSurface9> level;
THR(m_texture->GetSurfaceLevel(0, &level));
THR(m_rts->BeginScene(level, NULL));
render_texture_scene();
THR(m_rts->EndScene());
THR(::D3DXFilterTexture(m_texture, NULL, 0, D3DX_DEFAULT));

THR(m_pd3dDevice->BeginScene());
THR(m_pd3dDevice->SetTexture(0, m_texture);
render_scene();
THR(m_pd3dDevice->EndScene());

The most detailed level of a texture is obtained to be the destination of the
rendering. The call to render texture scene results in the setting of device
state and the rendering of primitives for the scene rendered onto the texture.
After the scene is rendered, D3DX is used to filter the top level to other mipmap
levels in the texture. Finally, the rendered and filtered texture is used as the
source for rendering and render scene is called.

17.6 Environment Map Rendering

Rendering to an environment with ID3DXRenderToEnvMap is similar to rendering
to a surface with ID3DXRenderToSurface, except that viewing and projection
into the target are suitably adjusted for the appropriate environment map. An
instance of this object is created with D3DXCreateRenderToEnvMap.

HRESULT D3DXCreateRenderToEnvMap(IDirect3DDevice9 *device,
UINT size,
D3DFORMAT format,
BOOL depth_stencil,
D3DFORMAT ds_format,
ID3DXRenderToEnvMap **result);

The destination of the rendering is not required to be a texture created with
the render target usage. If the destination isn’t a valid render target, then
ID3DXRenderToEnvMap will create a render target texture which will be copied
into the destination texture after rendering is complete. A summary of the
interface is given in interface 17.5.

Interface 17.5: Summary of the ID3DXRenderToEnvMap interface.

ID3DXRenderToEnvMap

17.6. ENVIRONMENT MAP RENDERING 643

Read-Only Properties
GetDesc A description of the render target used
GetDevice The associated device

Methods
BeginCube Begin rendering to a cubic environment map
BeginHemisphere Begin rendering to a hemispherical environment map
BeginParabolic Begin rendering to a parabolic environment map
BeginSphere Begin rendering to a spherical environment map
End End rendering to an environment map
Face Select a cubic environment map face for rendering
OnLostDevice Releases device resources
OnResetDevice Restores device resources

interface ID3DXRenderToEnvMap : IUnknown
{

// read-only properties
HRESULT GetDesc(D3DXRTE_DESC *value);
HRESULT GetDevice(IDirect3DDevice9 **value);

// methods
HRESULT BeginCube(IDirect3DCubeTexture9 *texture);
HRESULT BeginHemisphere(IDirect3DTexture9 *pos_z,

IDirect3DTexture9 *neg_z);
HRESULT BeginParabolic(IDirect3DTexture9 *pos_z,

IDirect3DTexture9 *neg_z);
HRESULT BeginSphere(IDirect3DTexture9 *texture);
HRESULT End();
HRESULT Face(D3DCUBEMAP_FACES face);
HRESULT OnLostDevice();
HRESULT OnResetDevice();

};

GetDevice returns the device associated with the render to environment
map object. GetDesc method returns a description of the created render to
environment map object in the D3DXRTEDESC structure. The structure gives the
dimensions and format of the render target texture and any associated depth
buffer, if any. The render targets are assumed to be square in all cases. A render
to environment map object must be destroyed and recreated to change any of
these values.

typedef struct _D3DXRTE_DESC
{

UINT Size;

644 CHAPTER 17. D3DX HELPER OBJECTS

D3DFORMAT Format;
BOOL DepthStencil;
D3DFORMAT DepthStencilFormat;

} D3DXRTE_DESC;

The OnLostDevice and OnResetDevice manage any device resources asso-
ciated with the render to surface object. They should be called when the device
is lost or reset, respectively.

The Begin methods are the meat of the object. They begin rendering a
scene for a cubic, spherical, hemispherical or parabolic environment map. The
Face method should then be called and the environment scene for each of the
six cube faces. All environment maps need all six faces of the cube rendered
in order to construct a complete environment map. The End method completes
scene rendering and performs any copying necessary for non-render target des-
tinations. If you call one of the begin methods while the associated device is
inside a scene, then the call will fail.

The following code snippet shows how to render to all six surfaces of a
cubemap texture and use the texture to render another scene on the back buffer
of the default swap chain.

THR(m_rtem->BeginCube(m_texture));
for (UINT i = 0; i < 6; i++)
{

THR(m_rtem->Face(D3DCUBEMAP_FACES(i)));
THR(m_pd3dDevice->SetTransform(D3DTS_VIEW,

&::D3DUtil_GetCubeMapViewMatrix(D3DCUBEMAP_FACES(i)));
render_texture_scene();

}
THR(m_rtem->End());

THR(m_pd3dDevice->BeginScene());
THR(m_pd3dDevice->SetTexture(0, m_texture));
render_scene();
THR(m_pd3dDevice->EndScene());

The rendering of the cubemap texture is started and then a loop is made
over each face, setting the appropriate viewing transformation The most detailed
level of a texture is obtained to be the destination of the rendering. The call to
render texture scene results in the setting of device state and the rendering
of primitives for the scene rendered onto the texture. After the scene is rendered
on all six faces of the cubemap, the texture is used as the source for rendering
and render scene is called.

