
Chapter 19

D3DX Mesh Objects

“net, n.: Anything reticulated or decussated at equal
distances, with interstices between the intersections”

Samuel Johnson: Dictionary, 1755

19.1 Overview

A surface modelled as a collection of adjacent triangles is referred to as a triangle
mesh. When drawn in wireframe mode, such a triangulated surface has an
appearance similar to a fishing net. D3DX provides several COM objects and
their associated global functions that encapsulate meshes as indexed triangle
lists. The interface hierarchy of the mesh objects in D3DX is given in figure
figure 19.1.

A base mesh interface, ID3DXBaseMesh, handles the details of managing the
vertex and index buffers needed for the mesh. A derived interface, ID3DXMesh,
is the most commonly used mesh interface and provides optimized rendering of
the triangles in the mesh.

D3DX provides objects that allow you to implement a level of detail scheme
through mesh simplification and progressive meshes. Mesh simplification is the
process of reducing the number of vertices or triangles in a mesh, while preserv-
ing its overall shape and appearance. View independent mesh simplification re-
duces the number of vertices or triangles based on global attributes of the mesh.
View dependent simplification techniques take into account the orientation and
position of the mesh within the scene to simplify small distant meshes more
aggressively, while large meshes in the foreground are more detailed. D3DX
provides the ID3DXSPMesh interface and several functions for view independent
mesh simplification.

Progressive meshes take the idea of mesh simplification further and provide
a rapid means of obtaining a mesh at any vertex or triangle size within a range
of sizes. With progressive meshes, dynamic level of detail on a mesh can rapidly

671



672 CHAPTER 19. D3DX MESH OBJECTS

IUnknown

ID3DXBaseMesh

ID3DXMesh

ID3DXPMesh

ID3DXSPMesh

ID3DXSkinInfo

-
-

Figure 19.1: D3DX Mesh Interface Hierarchy.

be achieved, while mesh simplification is more suitable to static level of detail
refinements due to the cost of computing the simplified mesh. D3DX provides
the ID3DXPMesh object for progressive meshes.

A skinned mesh combines a triangle mesh with vertex blending to give the
appearance of a smoothly deforming object. D3DX provides the ID3DXSkinInfo
object to create meshes with skinning information.

19.2 Use of const Qualifiers

Unfortunately, the D3DX mesh header file improperly uses const qualifiers
in conjunction with pointer typedefs in several places. The intention was to
declare pointers to arrays of constant data, but the declarations are written so
as to produce a type signature of a constant pointer to an array of data. The
problem comes from the use of a typedef alias for a pointer to the type in
combination with const.

To understand the problem, consider the following function declaration. The
code declares the data argument to be a pointer to an array of const DWORDs.
The intention is to signify that the function will not modify the array of data,
even though its being passed to the function as a pointer.

void foo(const DWORD *data, DWORD size);

Now suppose we change the declaration to use a typedef for the DWORD
pointer. The Windows standard header <windows.h> defines a typedef for a
pointer to DWORD called LPDWORD through the included file <windef.h>.

void foo(const LPDWORD data, DWORD size);

The problem here is that LPDWORD isn’t a macro, but an alias for another
type. If it were a macro, then the substitution would occur as you might expect
and data would still declare a pointer to a const array. However, because LP-
DWORD is a type alias for a pointer to DWORD, the code now declares the pointer
to be const rather than declaring the target of the pointer to be const.

There are two ways to correct the problem. The first way to handle this is
to avoid the typedef for pointers completely as in the first declaration above.



19.2. USE OF CONST QUALIFIERS 673

The second way is to introduce additional typedefs for the const variants. The
Windows header files do this for some, but not all, of the type aliases defined.

This unfortunate misuse of const affects the following methods and func-
tions.

Methods
ID3DXSkinMesh::ConvertToBlendedMesh
ID3DXSkinMesh::ConvertToIndexedBlendedMesh
ID3DXSkinMesh::GenerateSkinnedMesh

Functions
::D3DXCreateSPMesh ::D3DXSimplifyMesh
::D3DXGeneratePMesh ::D3DXSplitMesh
::D3DXSaveMeshToX ::D3DXWeldVertices

When you use these methods or functions, you may encounter the following
compiler error:

error C2664: ’D3DXSaveMeshToX’ : cannot convert parameter 4 from
’const struct D3DXMATERIAL *’ to ’struct D3DXMATERIAL *const ’

You can eliminate the error with the const cast<> casting operator on the
offending parameter. In this particular case, the code can be written as follows.

THR(::D3DXSaveMeshToX("foo2.x", mesh, &adj[0],
const_cast<D3DXMATERIAL *const>(&mats[0]), NUM_OF(mats),
DXFILEFORMAT_TEXT));

Fortunately, this problem only appears in the <d3dx9mesh.h> header file
and only for a handful of methods and functions. However, it can be irritating
if you use these methods or functions often. If that is the case, you may wish
to create your own inline wrapper around the function to eliminate the need for
const cast<>. For methods you can declare an inline function that takes the
interface pointer and performs the method call with the appropriate cast.

For instance, the following wrapper around D3DXSaveMeshToX eliminates the
need for the const cast<> for the materials parameter and also allows the
filename parameter to be passed in as const. (The function does not modify
the filename, but does not declare the string as const.)

namespace rt
{

HRESULT SaveMeshToX(LPCSTR filename, ID3DXMesh *mesh,
const DWORD *adjacency, const D3DXMATERIAL *materials,
DWORD num_materials, DWORD format)

{
return ::D3DXSaveMeshToX(const_cast<LPSTR>(filename),

mesh, adjacency,
const_cast<D3DXMATERIAL *const>(materials),



674 CHAPTER 19. D3DX MESH OBJECTS

q q

q

q

q

q q

q

0

1

2

3
4

5

6 7 q q

q

q

q

q q

q

©©©©©










PPPPPPP

©©©©©A
A
A
AA

¢
¢
¢
¢¢

HHHHH

³³³³³³³HHHHH

©©©©©PPPPPPP

0

1

23

4

5

6
7

8

Vertex Position
0 (0, 0, 0)
1 (−2, 1, 0)
2 (−2,−1, 0)
3 (1, 2, 0)
4 (−2, 3, 0)
5 (−4, 2, 0)
6 (−4,−2, 0)
7 (1,−2, 0)

Triangle Indices Adjacency
0 1, 0, 2 1, 7, 5
1 1, 3, 0 2, 8, 0
2 4, 3, 1 −1, 1, 3
3 5, 4, 1 −1, 2, 4
4 5, 1, 6 3, 5,−1
5 1, 2, 6 0, 6, 4
6 2, 7, 6 7,−1, 5
7 0, 7, 2 8, 6, 0
8 3, 7, 0 −1, 7, 1

Figure 19.2: Triangle Adjacency. The vertices on the left are arranged into the
triangles on the right, forming a mesh of triangles in the xy plane.

num_materials, format);
}

};

The header file <rt/const.h> in the sample code includes wrappers around
methods and functions mentioned in this section as well as a few other places
where pointers to const strings should have been used, making D3DX a bit
easier to use with the standard library string classes.

19.3 Triangle Adjacencies

Many mesh algorithms make use of triangle adjacency information. The adja-
cency of a triangle gives the triangles adjacent to each of its edges. With an
indexed triangle list, each triangle is stored as three vertex indices in the index
buffer. Each triangle is numbered with an unsigned integer, starting from zero.
The offset into the index buffer for a triangle is three times its triangle number.
The adjacency information corresponds to the order in which the vertices are
listed for each triangle.

For example, consider the simple planar triangle mesh shown in figure 19.2.
For triangle number zero, the vertex indices are 1, 0, 2 with adjacency 1, 7, 5.
As can be seen from the figure, triangle one is adjacent to the edge made by



19.4. VERTEX AND TRIANGLE REMAPPING 675

vertices 1, 0, triangle seven is adjacent to the edge made by vertices 0, 2 and
triangle five is adjacent to the edge made by vertices 2, 1.

When there is no adjacent triangle, the adjacency value for that edge is the
DWORD value 0xFFFFFFFF. When interpreted as a 32-bit integer, this is the value
−1, used in figure 19.2.

When D3DX methods or functions pass adjacency information, they expect
to receive or return arrays of DWORDs, three for each triangle. The number of
triangles expected to be in the array is the same as the corresponding number
of triangles in the particular mesh.

19.4 Vertex and Triangle Remapping

Mesh object methods and functions may reorder the vertices and triangles within
a mesh. When this occurs, the functions return arrays of DWORDs indicating the
new position of vertices or triangles within the vertex and index buffers. For
example, if the mesh in figure 19.2 were optimized to reorder the vertices and
triangles in triangle strip order, then the resulting face and vertex remap arrays
would be as follows.

Vertex Remapped To
0 3
1 7
2 0
3 2
4 6
5 1
6 4
7 5

Triangle Remapped To
0 8
1 7
2 6
3 5
4 0
5 1
6 2
7 3
8 4

The values in the left-hand column of each table give the index into the
remap array and the values in the right-hand column give the value stored at
that array location. So, if the remap arrays are declared as standard vector
classes as:

std::vector<DWORD> vertmap(mesh->GetNumVertices());
std::vector<DWORD> trimap(mesh->GetNumFaces());

then the new location in the vertex buffer for vertex 3 is given by vertmap[3]
and has the value 2. Similarly, the new location in the index buffer for the
indices of triangle 3 is given by trimap[3] and has the value 5. Since there are
three indices for each triangle, the triangle position corresponds to the indices
at offsets 15, 16, and 17.

When vertices or triangles are removed from a mesh, the corresponding
remap value will be the DWORD value 0xFFFFFFFF. When interpreted as a 32-bit
integer, this is the value −1.



676 CHAPTER 19. D3DX MESH OBJECTS

19.5 Base Mesh

The ID3DXBaseMesh interface is the base interface for ID3DXMesh and ID3DXP-
Mesh. It provides operations common to both mesh objects for accessing infor-
mation relating to the number of triangles in the mesh and their related vertex
and index data. The interface is summarized in interface 19.1. A mesh stores the
geometry data as indexed triangle list primitives. The triangles can be grouped
into subsets, with all triangles in the subset sharing the same rendering state.
This allows the mesh objects to be ignorant of the necessary device state, while
still allowing for it.

Interface 19.1: Summary of the ID3DXBaseMesh interface.

ID3DXBaseMesh

Read-Only Properties
GetAttributeTable The attribute table entries
GetDeclaration The vertex shader declaration for the mesh ver-

tices
GetDevice The associated device
GetFVF The FVF code for the mesh vertices
GetIndexBuffer The indices of the mesh
GetNumFaces The number of triangles in the mesh
GetNumVertices The number of vertices in the mesh
GetOptions The mesh options
GetVertexBuffer The vertices of the mesh

Methods
CloneMesh Makes a copy of the mesh with a declarator
CloneMeshFVF Makes a copy of the mesh with an FVF code
ConvertAdjacencyTo-
PointReps

Create adjacencies from point representatives

ConvertPointRepsTo-
Adjacency

Create point representatives from adjacencies

DrawSubset Renders triangles with common attributes
GenerateAdjacency Generates adjacency information
LockIndexBuffer Obtain access to the indices of the mesh
LockVertexBuffer Obtain access to the vertices of the mesh
UnlockIndexBuffer Release access to the indices of the mesh
UnlockVertexBuffer Release access to the vertices of the mesh

interface ID3DXBaseMesh : IUnknown
{

// read-only properties
HRESULT GetAttributeTable(D3DXATTRIBUTERANGE *value,

DWORD *size);



19.5. BASE MESH 677

HRESULT GetDeclaration(DWORD value[MAX_FVF_DECL_SIZE]);
HRESULT GetDevice(IDirect3DDevice9 **value);
DWORD GetFVF();
HRESULT GetIndexBuffer(IDirect3DIndexBuffer9 **value);
DWORD GetNumFaces();
DWORD GetNumVertices();
DWORD GetOptions();
HRESULT GetVertexBuffer(IDirect3DVertexBuffer9 **value);

// methods
HRESULT CloneMeshFVF(DWORD options,

DWORD fvf,
IDirect3DDevice9 *device,
ID3DXMesh **result);

HRESULT CloneMesh(DWORD options,
const DWORD *declaration,
IDirect3DDevice9 *device,
ID3DXMesh **result);

HRESULT ConvertAdjacencyToPointReps(const DWORD *adjacency,
DWORD *pPRep);

HRESULT ConvertPointRepsToAdjacency(const DWORD *pPRep,
DWORD *adjacency);

HRESULT DrawSubset(DWORD attribute);
HRESULT GenerateAdjacency(float Epsilon,

DWORD *adjacency);
HRESULT LockIndexBuffer(DWORD Flags,

BYTE **ppData);
HRESULT LockVertexBuffer(DWORD Flags,

BYTE **ppData);
HRESULT UnlockIndexBuffer();
HRESULT UnlockVertexBuffer();

};

The device property returns the device associated with the mesh’s index
and vertex buffers and is returned by GetDevice. The vertex and index buffers
themselves are returned by the GetVertexBuffer and GetIndexBuffer meth-
ods, respectively. The number of triangles and vertices in the mesh are returned
by the GetNumFaces and GetNumVertices methods. TODO: xbaseGetDec-

laration, xbaseGet-
FVF

The format of the vertices can be retrieved either as an FVF code by the
GetFVF method or as a vertex declaration by the GetDeclaration method. The
mesh objects provided by D3DX only support meshes that can be described with
an FVF code. The declaration related methods and functions are only provided
as a convenience. When obtaining the format of the vertex as a declaration,
an array of DWORDs is passed into GetDeclaration. The size of the array is
declared to be MAX FVF DECL SIZE.

enum _MAX_FVF_DECL_SIZE



678 CHAPTER 19. D3DX MESH OBJECTS

{
MAX_FVF_DECL_SIZE = 20

};

The options property of the mesh is obtained by the GetOptions method and
describes the usage pattern of the associated vertex and index buffers containing
the mesh data. The options property is a DWORD containing zero or more of the
D3DXMESH flags, shown here in four groups. The first group contains flags relating
to the mesh as a whole. The second and third groups contain flags relating to
the usage of the mesh’s index and vertex buffers. The fourth group combines
the corresponding flags from the second and third groups, giving the usage of
both buffers. A mesh in the default pool is created by omitting the managed
and system memory options.

enum _D3DXMESH
{

// general flags
D3DXMESH_32BIT = 0x00001,
D3DXMESH_DONOTCLIP = 0x00002,
D3DXMESH_NPATCHES = 0x04000,
D3DXMESH_POINTS = 0x00004,
D3DXMESH_RTPATCHES = 0x00008,
D3DXMESH_USEHWONLY = 0x02000,

// index buffer usage flags
D3DXMESH_IB_DYNAMIC = 0x00800,
D3DXMESH_IB_MANAGED = 0x00200,
D3DXMESH_IB_SOFTWAREPROCESSING = 0x10000,
D3DXMESH_IB_SYSTEMMEM = 0x00100,
D3DXMESH_IB_WRITEONLY = 0x00400,

// vertex buffer usage flags
D3DXMESH_VB_DYNAMIC = 0x00080,
D3DXMESH_VB_MANAGED = 0x00020,
D3DXMESH_VB_SOFTWAREPROCESSING = 0x08000,
D3DXMESH_VB_SYSTEMMEM = 0x00010,
D3DXMESH_VB_WRITEONLY = 0x00040,
D3DXMESH_VB_SHARE = 0x01000,

// combined usage flags
D3DXMESH_MANAGED = 0x00220,
D3DXMESH_DYNAMIC = 0x00880,
D3DXMESH_SOFTWAREPROCESSING = 0x18000,
D3DXMESH_SYSTEMMEM = 0x00110,
D3DXMESH_WRITEONLY = 0x00440

};



19.5. BASE MESH 679

The attribute table divides the triangles in the mesh into subsets. The table
is created when one of the optimize methods of ID3DXMesh is used to sort the
mesh data by the attribute ids in the attribute buffer. If the attribute buffer is
modified, then the attribute table is cleared.

Subsets are usually used to group triangles together that share common
rendering state. However, as far as the mesh objects are concerned, subsets are
merely groups of triangles; the mesh objects themselves are not concerned with
the rendering state. For example, the application could use subsets to divide
the mesh into portions that are hidden, higlighted, selected, and so-on.

The GetAttributeTable method returns the attribute table as an array of
D3DXATTRIBUTERANGE structures. The value argument may be NULL, in which
case the number of entries in the entire table will be stored in the size argument.
Otherwise, the size argument gives the number of structures that can be stored
in the value argument.

typedef struct _D3DXATTRIBUTERANGE
{

DWORD AttribId;
DWORD FaceStart;
DWORD FaceCount;
DWORD VertexStart;
DWORD VertexCount;

} D3DXATTRIBUTERANGE;

The AttribId member is an arbitrary value that identifies the subset de-
scribed by the structure. The range of indices associated with this subset are
given by the FaceStart and FaceCount members. Triangles are numbered from
zero in the order they are stored in the index buffer, with groups of three in-
dices identifying the three vertices used for each triangle. The VertexStart and
VertexCount members identify the range of vertices associated with the subset.
Unless the triangles in the mesh are sorted by their attribute id, the triangles
and vertices associated with the subset may not be contiguous in the associated
buffers.

In common Windows style, the method will typically be called twice: once
to find out the size of the table so that appropriate storage can be allocated
and a second time to obtain the table itself. For example, the following code
obtains the attribute table from an ID3DXBaseMesh interface declared as base.

DWORD size = 0;
THR(base->GetAttributeTable(NULL, &size));
std::vector<D3DXATTRIBUTERANGE> table(size);
THR(base->GetAttributeTable(&table[0], &size));

A copy, or clone, of the mesh can be used to add or remove vertex compo-
nents to the mesh, or change the options associated with the mesh. The vertex
components of the clone are described by either an FVF code, with the Clone-
MeshFVF method, or by a vertex declaration with the CloneMesh method. The



680 CHAPTER 19. D3DX MESH OBJECTS

vertex declaration must correspond to a valid FVF code, or the method will
fail. The options parameter to these methods gives the D3DXMESH flags for the
cloned mesh. For instance, the following code clones a system memory mesh in
the variable mesh into a mesh in the default pool.

CComPtr<ID3DXMesh> clone;
THR(mesh->CloneMeshFVF(

mesh->GetOptions() & ~(D3DXMESH_MANAGED | D3DXMESH_SYSTEMMEM),
mesh->GetFVF(), device, &clone));

The index and vertex buffers associated with the mesh can be accessed
directly with the LockIndexBuffer, UnlockIndexBuffer, LockVertexBuffer,
and UnlockVertexBuffer methods. These methods function similarly to the
corresponding lock and unlock methods on the underlying vertex and index
buffers. Helper functions for ensuring that unlock is always called for each suc-
cessful lock can be constructed for mesh objects, as was done in chapter 5. Such
helper classes are defined in the include file <rt/mesh.h> in the sample code.

The triangle adjacency information can be generated from the index and
vertex buffer contents directly by the GenerateAdjacency method. This is
useful when another mesh operation requires adjacency information and the
vertex and index buffers were filled directly by the application. The epsilon
parameter gives a tolerance for comparing vertex positions to determine if they
represent the same position. The adjacency parameter points to an array of
DWORDs and should contain at least three DWORDs for each triangle in the mesh.
For example, the following generates the adjacency for a mesh into a local array,
considering vertices whose position coordinates differ by less than 10−6 to be
identical.

std::vector<DWORD> adjacency(mesh->GetNumFaces()*3);
THR(mesh->GenerateAdjacency(1.0e-6f, &adjacency[0]));

A point representative is another way of thinking about the adjacency infor-
mation of a mesh. With a point representative, each vertex in the mesh is asso-
ciated with another vertex that is the representative point for the vertex. Some
model formats use a single vertex position associated with multiple sets of other
vertex components, such as texture coordinates, normals, etc. These formats use
independent indices for the different vertex components, while Direct3D uses a
unique index for each vertex as a whole. When converting from such a format to
Direct3D, the original vertex position associated with the components becomes
duplicated for each differing set of vertex components. The duplicated posi-
tions refer to the original position through the point representative index. The
ConvertAdjacencyToPointReps and ConvertPointRepsToAdjacency methods
provide a means for converting from a point representative array and an adja-
cency array.

For example, consider a flat shaded cube with surface normals, such as the
mesh created with D3DXCreateBox. Such a cube will have 24 vertices, due
to differing surface normals at each corner for the six faces of the cube. The



19.5. BASE MESH 681

Point
Vertex Representative Position Normal

0 0 (−1,−1,−1) 〈−1, 0, 0〉
1 1 (−1,−1, 1) 〈−1, 0, 0〉
2 2 (−1, 1, 1) 〈−1, 0, 0〉
3 3 (−1, 1,−1) 〈−1, 0, 0〉
4 3 (−1, 1,−1) 〈0, 1, 0〉
5 2 (−1, 1, 1) 〈0, 1, 0〉
6 6 (1, 1, 1) 〈0, 1, 0〉
7 7 (1, 1,−1) 〈0, 1, 0〉
8 7 (1, 1,−1) 〈1, 0, 0〉
9 6 (1, 1, 1) 〈1, 0, 0〉
10 10 (1,−1, 1) 〈1, 0, 0〉
11 11 (1,−1,−1) 〈1, 0, 0〉
12 1 (−1,−1, 1) 〈0, −1, 0〉
13 0 (−1,−1,−1) 〈0, −1, 0〉
14 11 (1,−1,−1) 〈0, −1, 0〉
15 10 (1,−1, 1) 〈0, −1, 0〉
16 1 (−1,−1, 1) 〈0, 0, 1〉
17 10 (1,−1, 1) 〈0, 0, 1〉
18 6 (1, 1, 1) 〈0, 0, 1〉
19 2 (−1, 1, 1) 〈0, 0, 1〉
20 0 (−1,−1,−1) 〈0, 0, −1〉
21 3 (−1, 1,−1) 〈0, 0, −1〉
22 7 (1, 1,−1) 〈0, 0, −1〉
23 11 (1,−1,−1) 〈0, 0, −1〉

Table 19.1: Vertex data for a flat shaded cube.

Vertex Edge
Face Indices Adjacencies

0 0, 1, 2 6, 9, 1
1 2, 3, 0 2, 10, 0
2 4, 5, 6 1, 9, 3
3 6, 7, 4 4, 10, 2
4 8, 9, 10 3, 8, 5
5 10, 11, 8 7, 11, 4
6 12, 13, 14 0, 11, 7
7 14, 15, 12 5, 8, 6
8 16, 17, 18 7, 4, 9
9 18, 19, 16 2, 0, 8
10 20, 21, 22 1, 3, 11
11 22, 23, 20 5, 6, 10

Table 19.2: Face data for a flat shaded cube.



682 CHAPTER 19. D3DX MESH OBJECTS

cube is a completely closed surface, so each face will have adjacent faces on all
three edges. The associated vertex and face data are shown in table 19.1 and
table 19.2.

The final method in the base mesh interface is DrawSubset. This method
sets the minimum amount of device state necessary to drawn an indexed triangle
list: the mesh’s vertex and index buffers are set as the source for primitive data
and a vertex shader is set. Then DrawPrimitive is called for the appropriate
triangles in the subset. The attribute argument identifies the subset to render.
If no attribute table exists for the mesh, then all the triangles are categorized
into subset zero.

DrawSubset uses a fixed-function vertex shader based on the FVF of the
mesh’s vertices. If you wish to draw a mesh subset with a programmable ver-
tex shader, you can use the information in the attribute buffer to draw the
appropriate triangles. The following code snippet shows how to call Draw-
IndexedPrimitive for the triangles in a mesh. The calls to set state and
set default state are only illustrative of the location where any subset-specific
rendering state should be set based on its attribute identifier.

void
render_mesh(DWORD shader, ID3DXBaseMesh *mesh)
{

CComPtr<IDirect3DDevice9> device;
THR(mesh->GetDevice(&device));

CComPtr<IDirect3DVertexBuffer9> vb;
THR(mesh->GetVertexBuffer(&vb));
THR(device->SetStreamSource(0, vb,

::D3DXGetFVFVertexSize(mesh->GetFVF())));

CComPtr<IDirect3DIndexBuffer9> ib;
THR(mesh->GetIndexBuffer(&ib));
THR(device->SetIndices(ib, 0));

THR(device->SetVertexShader(shader));

DWORD size = 0;
THR(mesh->GetAttributeTable(NULL, &size));
if (size)
{

std::vector<D3DXATTRIBUTERANGE> table(size);
THR(mesh->GetAttributeTable(&table[0], &size));

for (UINT i = 0; i < size; i++)
{

set_state(device, table[i].Attribid);
THR(device->DrawIndexedPrimitive(D3DPT_TRIANGLELIST,



19.6. MESH 683

table[i].VertexStart, table[i].VertexCount,
table[i].FaceStart*3, table[i].FaceCount));

}
}
else
{

set_default_state();
THR(device->DrawIndexedPrimitive(D3DPT_TRIANGLELIST,

0, mesh->GetNumVertices(), 0, mesh->GetNumFaces()));
}

}

19.6 Mesh

The most commonly used mesh interface is ID3DXMesh, which provides direct
access to the attribute buffer and mesh optimization. A mesh object can be
created with D3DXCreateMeshFVF or D3DXCreateMesh from a vertex FVF code
or vertex declaration, respectively. The options parameter specifies D3DXMESH
options for the encapsulated vertex and index buffers. The ID3DXMesh interface
is summarized in interface 19.2.

HRESULT D3DXCreateMeshFVF(DWORD num_faces,
DWORD num_vertices,
DWORD options,
DWORD fvf,
IDirect3DDevice9 *device,
ID3DXMesh **result);

HRESULT D3DXCreateMesh(DWORD num_faces,
DWORD num_vertices,
DWORD options,
const DWORD *declaration,
IDirect3DDevice9 *device,
ID3DXMesh **result);

Interface 19.2: Summary of the ID3DXMesh interface.

ID3DXMesh

Methods
LockAttributeBuffer Obtains direct access to the attribute table
Optimize Optimizes mesh vertices into a new mesh
OptimizeInplace Optimizes mesh vertices into the existing

mesh
UnlockAttributeBuffer Releases direct access to the attribute table



684 CHAPTER 19. D3DX MESH OBJECTS

interface ID3DXMesh : ID3DXBaseMesh
{

// methods
HRESULT LockAttributeBuffer(DWORD flags,

DWORD **ppData);
HRESULT Optimize(DWORD flags,

const DWORD *adjacency_in,
DWORD *adjacency_out,
DWORD *face_remap,
ID3DXBuffer **vertex_remap,
ID3DXMesh **result);

HRESULT OptimizeInplace(DWORD flags,
const DWORD *adjacency_in,
DWORD *adjacency_out,
DWORD *face_remap,
ID3DXBuffer **vertex_remap);

HRESULT UnlockAttributeBuffer();
};

The attribute buffer can be accessed directly with the LockAttributeBuffer
and UnlockAttributeBuffer methods. The flags argument can be one of the
values D3DLOCK DISCARD, D3DLOCK NOOVERWRITE, D3DLOCK NOSYSLOCK, or D3D-
LOCK READONLY. The flags have the same meaning as those used for locking a
vertex buffer, described on page 178. The attribute buffer is exposed as an array
of DWORD values, one per triangle, that indicate the attribute identifier of the
triangle.

The OptimizeInplace and Optimize methods reorder vertices and indices
to optimize rendering performance. The data is reordered based on the flags
argument, which may be zero or more of the following values.

enum _D3DXMESHOPT
{

D3DXMESHOPT_ATTRSORT = 0x02000000,
D3DXMESHOPT_COMPACT = 0x01000000,
D3DXMESHOPT_IGNOREVERTS = 0x10000000,
D3DXMESHOPT_SHAREVB = 0x00001000,
D3DXMESHOPT_STRIPREORDER = 0x08000000,
D3DXMESHOPT_VERTEXCACHE = 0x04000000

};

The attribute sort flag reorders indices so that triangles sharing common
rendering state can be rendered with fewer calls to DrawIndexedPrimitive.
The compact flag reorders indices to remove unused vertices and faces. The
underlying vertex and index buffers are not made smaller, the unused data is
moved to the end of the buffers. The ignore vertices flag indicates that only the
indices should be modified and the vertices left unchanged. The share vertex



19.6. MESH 685

buffer flag indicates that any resulting mesh should share the vertex buffer with
the original mesh.

The last two flags are mutually exclusive and indicate the ordering of indices
to improve the rendering performance of individual DrawIndexedPrimitive
calls. The strip reorder flag reorders indices to render triangles in the same
order as the set of largest possible triangle strips. The vertex cache flag re-
orders the indices to increase the hardware vertex cache hit rate. The cache
optimization is specific to the hardware from different vendors and is imple-
mented with access to information on the hardware covered by non-disclosure
agreements between Microsoft and the hardware vendors.

If you wish to take advantage of the cache optimization, but don’t wish to
use D3DX mesh interfaces, you can still take advantage of cache reordering op-
timization facilities. You can create a mesh object with the appropriate number
of vertices and indices and copy your mesh data into the object’s buffers. Then
call OptimizeInplace with the appropriate flags and copy the vertex and index
buffer data back into your own buffers.

19.6.1 Creating Meshes From Scratch

Using a combination of the mesh helper classes in <rt/mesh.h> from the sample
code and the standard library, a mesh can be constructed from scratch and
filled with data in a small amount of code. The following code constructs a
mesh containing a cube in the InitDeviceObjects method of an application
generated with the sample framework. Each face of the cube is modelled as
two triangles, each in its own subset. Each vertex contains a position and a
surface normal to provide flat shading for the cube. The data for the vertices
and indices are given in table 19.1 and table 19.2 and are omitted from the code
listing for clarity.

#define NUM_OF(ary_) (sizeof(ary_)/sizeof((ary_)[0]))

struct s_vertex
{

float x, y, z;
float nx, ny, nz;

static const DWORD FVF;
};

const DWORD s_vertex::FVF = D3DFVF_XYZ | D3DFVF_NORMAL;

HRESULT CMyD3DApplication::InitDeviceObjects()
{

const s_vertex vertices[24] =
{

// ....



686 CHAPTER 19. D3DX MESH OBJECTS

};
const WORD indices[12*3] =
{

// ...
};
const DWORD attributes[12] =
{

0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5
};

THR(::D3DXCreateMeshFVF(NUM_OF(indices)/3, NUM_OF(vertices),
D3DXMESH_MANAGED, s_vertex::FVF, m_pd3dDevice, &m_mesh));

std::copy(vertices, vertices + NUM_OF(vertices),
rt::mesh_vertex_lock<s_vertex>(m_mesh).data());

std::copy(indices, indices + NUM_OF(indices),
rt::mesh_index_lock<WORD>(m_mesh).data());

std::copy(attributes, attributes + NUM_OF(attributes),
rt::mesh_attribute_lock(m_mesh).data());

std::vector<DWORD> adjacency(m_mesh->GetNumFaces()*3);
THR(m_mesh->GenerateAdjacency(0.0f, &adjacency[0]));

THR(m_mesh->OptimizeInplace(D3DXMESHOPT_VERTEXCACHE |
D3DXMESHOPT_ATTRSORT, &adjacency[0], NULL, NULL, NULL));

return S_OK;
}

The mesh is created and filled with data in four statements. The standard
copy algorithm is used to copy the data from arrays into the corresponding
buffers using the locking helper classes. The lock is constructed as an unnamed
temporary, locking the underlying buffer, and the data pointer is passed to the
copy algorithm. The unnamed temporary will be destroyed when the copy algo-
rithm returns and the lock object’s destructor will call unlock on the associated
buffer. This code is just as efficient as if we had written all the locking by hand,
but the helper class allows us to be more concise and productive. This style of
programming may seem odd or even look like a jumble of punctuation at first,
but after a short while you will recognize this idiom quickly for what it does.

Three more statements optimize the mesh for rendering. The adjacency
array for the mesh is generated and then used to optimize the mesh for vertex
cache order and to sort the triangles by attribute. Altogether, the code for
constructing and optimizing the mesh object is only a few lines.



19.6. MESH 687

19.6.2 Primitive Construction

D3DX provides routines for creating some simple geometric shapes, as well as
the classic “Utah Teapot” model1. Each of these functions returns an ID3DX-
Mesh instance and an adjacency array stored in an ID3DXBuffer interface. All
of the meshes are described by vertices containing a position and a surface
normal in a left-handed coordinate system. If additional vertex components
are required, such as texture coordinates, the mesh should be cloned to include
those components. The rt::dx buffer helper class, described in section 15.18
on page 596 simplifies the use of the ID3DXBuffer interface with meshes.

D3DXCreatePolygon creates an n-sided polygon. The length parameter
gives the length in model coordinates of each side of the polygon and the sides
parameter gives the number of sides. The plane of the polygon is aligned with
the xy plane and the surface normal of the polygon faces the +z direction. The
polygon is centered on the origin.

HRESULT D3DXCreatePolygon(IDirect3DDevice9 *device,
float length,
UINT sides,
ID3DXMesh **result,
ID3DXBuffer **adjacency);

D3DXCreateBox creates a rectangular parallelepiped or box. The sides of the
box are aligned with the three coordinate axes. The length of the box along
the x, y, and z axes are given by the width, height, and depth parameters,
respectively. The box is centered on the origin.

HRESULT D3DXCreateBox(IDirect3DDevice9 *device,
float width,
float height,
float depth,
ID3DXMesh **result,
ID3DXBuffer **adjacency);

D3DXCreateCylinder creates a polygonal approximation to a cylinder. The
axis of the cylinder is aligned with and centered along the z axis. The cylinder
may be tapered by specifying different radii at each end of the cylinder. The
radius at the −z and +z ends are given by the radius1 and radius2 parameters,
respectively. The length of the cylinder along the z axis is given by the length
parameter. The cylinder is constructed from stacks along the z axis. Each stack
is made up of slices along the radial circumference of the stack. The number of
stacks in the cylinder is given by the stacks parameter. The number of slices
in each stack is given by the slices parameter.

HRESULT D3DXCreateCylinder(IDirect3DDevice9 *device,
float radius1,

1See section 19.12 for an article on the origin of the teapot.



688 CHAPTER 19. D3DX MESH OBJECTS

float radius2,
float length,
UINT slices,
UINT stacks,
ID3DXMesh **result,
ID3DXBuffer **adjacency);

D3DXCreateSphere creates a polygonal approximation to a sphere. The
sphere is centered on the origin and has a radius given by the radius parameter.
The sphere is approximated as a series of stacks paralell to the xy plane. Each
stack is made up of slices about the z axis. The number of stacks in the sphere
is given by the stacks parameter and the number of of slices within each stack
is given by the slices parameter.

HRESULT D3DXCreateSphere(IDirect3DDevice9 *device,
float radius,
UINT slices,
UINT stacks,
ID3DXMesh **result,
ID3DXBuffer **adjacency);

D3DXCreateTorus creates a polygonal approximation to a torus. The torus
is centered on the origin and the loop of the torus lies in the xy plane. The
torus is approximated as a series of rings around the outer radius. Each ring
is a strip of triangles around the inner radius. The number of rings is given by
the rings parameter and the number of sides in each ring is given by the sides
parameter. The outer radius parameter gives the distance from the z axis for
the loop of the torus and the inner radius parameter gives the radius of the
loop itself.

HRESULT D3DXCreateTorus(IDirect3DDevice9 *device,
float inner_radius,
float outer_radius,
UINT sides,
UINT rings,
ID3DXMesh **result,
ID3DXBuffer **adjacency);

D3DXCreateTeapot creates a mesh containing the “Utah Teapot.” The
teapot is constructed from a fixed triangle list and therefore takes no parameters
to define its shape.

HRESULT D3DXCreateTeapot(IDirect3DDevice9 *device,
ID3DXMesh **result,
ID3DXBuffer **adjacency);

D3DXCreateText creates extruded 3D solid text. The resulting mesh is cen-
tered on the origin, lies parallel to the xy plane and has a thickness along the z



19.6. MESH 689

r r

r rA B

C D

HHHHHHHHHHHH©©©©©©©©©©©©

Figure 19.3: Bowtie arrangement of vertices in a triangle mesh

axis given by the extrusion parameter. The mesh for the text is constructed by
obtaining the glyph outline for each character in the text string. The deviation
parameter gives the maximum chordal deviation from the glyph outline and is
used to determine the location of vertices approximating the smooth outline.
The font used for the mesh is the font currently selected in the dc parame-
ter. The metrics parameter returns the GDI font glyph metric data for each
character in the string argument text.

HRESULT D3DXCreateText(IDirect3DDevice9 *device,
HDC dc,
LPCTSTR text,
float deviation,
float extrusion,
ID3DXMesh **result,
ID3DXBuffer **adjacency,
GLYPHMETRICSFLOAT *metrics);

19.6.3 Reducing Mesh Data

D3DX provides several functions for reducing the amount of data in a mesh.
Vertex components can be removed with the CloneMesh and CloneMeshFVF
methods, but they don’t reduce the number of triangles in the mesh. Reducing
the number of triangles in a mesh is the process of mesh simplification. Meshes,
particularly those obtained from modelers or other external processes, can con-
tain certain arrangments of vertices that are problematic for simplification algo-
rithms. The D3DXValidMesh function examines a mesh and its adjacency data
for vertex arrangements that can cause problems with simplification algorithms.
If the mesh is considered valid, then the function returns a successful HRESULT.
If the mesh is considered invalid, then a failed HRESULT will be returned and the
errors buffer will contain an error message as an ANSI string.

HRESULT D3DXValidMesh(ID3DXMesh *mesh,
const DWORD *adjacency,
ID3DXBuffer **errors);

Meshes will be considered invalid if a “bowtie” vertex topology is found. A
bowtie exists in a triangle mesh when two separate triangle fans use the same



690 CHAPTER 19. D3DX MESH OBJECTS

vertex. For example, consider the vertices in figure 19.3. Triangles 4ABC and
4ABD share the common edge AB, but as part of two distinct triangle fans.

For situations where D3DXValidMesh fails, D3DXCleanMesh can be used to
correct the problem in the original mesh. This consists of adding copies of
existing vertices and adjusting the indices accordingly to eliminate the bowtie
topology. Note that this does not change the number of triangles in the mesh,
although it does change the number of vertices. The result parameter con-
tains the cleansed mesh. If the adjacency of the cleansed mesh is desired, the
adjacency out parameter should point to an array of three DWORDs per triangle.
If the adjacency information is not needed, this parameter may be NULL. If this
function fails, then the mesh errors could not be corrected by D3DXCleanMesh
and error messages describing the failure are returned as an ANSI string in
the errors parameter. This parameter may be NULL if the error string is not
required.

HRESULT D3DXCleanMesh(ID3DXMesh *mesh,
const DWORD *adjacency_in,
ID3DXMesh **result,
DWORD *adjacency_out,
ID3DXBuffer **errors);

The D3DXWeldVertices function combines vertices that are considered to
be equivalent; see section 19.2 for more about the use of const in the mesh
parameter to this function. Vertices are compared using ε values for each of the
vertex components, given by the D3DXWELDEPSILONS structure. As duplicate
vertices are removed from the mesh, the vertices of the triangles in the mesh
and their adjacency may be changed. The adjacency in parameter supplies the
adjacency information of the original mesh and the adjacency out paremeter
returns the adjacency of the resulting mesh. The face remap parameter points
to an array of DWORDs, one per triangle in the original mesh, that identifies
which triangles in the input mesh were mapped to triangles in the output mesh.
The triangles are numbered starting from zero. The vertex remap parameter
returns an ID3DXBuffer interface containing an array of DWORDs, one per vertex
in the original mesh, that identifies how the vertices were reordered. If the
resulting adjacency or remap information is not needed, the parameters may be
NULL.

HRESULT D3DXWeldVertices(ID3DXMesh *const mesh,
D3DXWELDEPSILONS *epsilons,
const DWORD *adjacency_in,
DWORD *adjacency_out,
DWORD *face_remap,
ID3DXBuffer **vertex_remap);

typedef struct _D3DXWELDEPSILONS
{

float SkinWeights;



19.6. MESH 691

r

r

r

r

r

r

r r

©©©©©©©©©©©©HHHHHHHHHHHH

©©©©©©©©©©©©HHHHHHHHHHHH

V1

V2

41 42 -

r

r

r

r

r r

r

©©©©©©©©©©©©HHHHHHHHHHHH













J
J

J
J

J
J

J
JJ

V1

Figure 19.4: Mesh simplification by collapsing edges. The common edge V1V2

shared by triangles 41 and 42 is collapsed, eliminating the triangles sharing
the edge. The vertex V1 remains, allowing the edge collapse transformation to
be implemented only by an adjustment to the indices of the mesh.

float Normal;
float Tex[8];
DWORD Flags;

} D3DXWELDEPSILONS;

Each member of the D3DXWELDEPSILONS structure gives the ε tolerance for
the corresponding vertex component. The SkinWeights member gives the tol-
erance used for the vertex blend weights, Normal gives the tolerance for the
surface normal coordinates and the Tex array gives the tolerances for each tex-
ture coordinate set. The Flags member contains a combination of one or more
values from the D3DXWELDEPSILONSFLAGS enumeration.

enum _D3DXWELDEPSILONSFLAGS
{

D3DXWELDEPSILONS_WELDALL = 0x1,
D3DXWELDEPSILONS_WELDPARTIALMATCHES = 0x2,
D3DXWELDEPSILONS_DONOTREMOVEVERTICES = 0x4

};

The D3DXWELDEPSILONS WELDALL flag indicates that all vertices marked as
overlapping by their adjacency will be welded into a single vertex. The D3DX-
WELDEPSILONS WELDPARTIALMATCHES flag indicates that vertices considered equal
by the ε criteria in the structure will be modified so that components consid-
ered equal are made identical. If all components are identical, then one of the
vertices will be removed unless the D3DXWELDEPSILONS DONOTREMOVEVERTICES
flag is used.

Welding the vertices of a mesh can only reduce the number of vertices in a
mesh where they are shared between triangles. By comparison, D3DXSimplify-
Mesh performs a mesh simplification algorithm over the mesh, removing vertices
and modifying the number and topology of the triangles in the mesh while



692 CHAPTER 19. D3DX MESH OBJECTS

attempting to preserve the overall shape of the mesh. See section 19.2 for more
on the use of const in the attribute weights parameter to this function.
The function attempts to reduce the mesh to a desired number of vertices or
triangles, based on the D3DXMESHSIMP value in the options parameter.

HRESULT D3DXSimplifyMesh(ID3DXMesh *mesh,
const DWORD *adjacency,
const D3DXATTRIBUTEWEIGHTS *const attribute_weights,
const float *vertex_weights,
DWORD minima,
DWORD options,
ID3DXMesh **result);

enum _D3DXMESHSIMP
{

D3DXMESHSIMP_VERTEX = 0x1,
D3DXMESHSIMP_FACE = 0x2

};

Mesh simplification is performed by removing shared vertices in an “edge
collapse” operation, as illustrated in figure 19.4. The simplification process is
controlled by a set of weights for the vertex components that may be applied
equally to every vertex in the mesh, or combined with a set of weights for each
vertex to identify vertices that are more important. The adjacency parameter
gives the adjacency information for the input mesh as an array of three DWORDs
per triangle. The minima parameter gives the desired number of vertices or
triangles. It may be impossible for the mesh to be simplified to the desired
minima, in which case the function succeeds because the paramter is only a
desired minimum value.

The vertex weights parameter specifies a pointer to an array of floats,
one per vertex, that specify the relative importance of each vertex within the
mesh. This array can be used to designate a subset of the mesh vertices are more
important; the higher the value of the vertex weight, the more important the
vertex is considered to the mesh. Vertices with lower weights will be removed
during simplification before vertices with higher weights. If this parameter is
NULL, then all vertices are weighted equally with a value of one. The vertex
component weights are described by the D3DXATTRIBUTEWEIGHTS structure.

typedef struct _D3DXATTRIBUTEWEIGHTS
{

float Position;
float Boundary;
float Normal;
float Diffuse;
float Specular;
float Tex[8];

} D3DXATTRIBUTEWEIGHTS;



19.6. MESH 693

Rather than specify an ε comparison criteria for considering vertices equal
as in D3DXWeldVertices, this structure specifies a floating-point value that
identifies the relative importance of the vertex component during simplification.
The higher the value, the more important the component is to the appearance
of the object modelled by the mesh. If the attribute weights parameter is
NULL, then the function uses the following default values:

Position 1 Diffuse 0
Boundary 1 Specular 0

Normal 1 Tex[0...7] 0

This has the effect of preserving the shape and surface normals of the object
at the expense of changes in texture coordinates and vertex color components.
The Boundary member is used for vertices that are on the “edge” of the mesh,
i.e. vertices that are part of an edge that has no adjacent triangle.

19.6.4 Adding Mesh Data

Just as D3DX provides several functions for reducing the amount of data in a
mesh, it also provides functions for adding data to a mesh. To add new vertex
components to a mesh, the CloneMesh and CloneMeshFVF methods should be
used. If a mesh already contains a normal component, D3DXComputeNormals
can be used to compute the vertex surface normals as an average of all the face
normals for the faces containing the vertex.

HRESULT D3DXComputeNormals(ID3DXBaseMesh *mesh,
const DWORD *adjacency);

The D3DXTessellateNPatches function will tessellate the triangles in a
mesh according to the n-patch tessellation algorithm, described in subsection 5.15.2
on page 192, with a linear interpolation order for the position component. The
segments parameter corresponds to RSPatchSegments.The quadratic param- TODO: RS Patch Seg-

mentseter can be used to select between linear and quadratic interpolation order for
the normal component. If this value is TRUE, then quadratic interpolation is
used for the normal component. This function can be used as a fallback for
situations where N -patch tessellation is not supported directly by the device.
The tessellated mesh and its adjacency information are returned in the result
and adjacency out parameters. The adjacency out parameter may be NULL
if the adjacency information is not needed.

HRESULT D3DXTessellateNPatches(ID3DXMesh *mesh,
const DWORD *adjacency_in,
float segments,
BOOL quadratic,
ID3DXMesh **result,
ID3DXBuffer **adjacency_out);



694 CHAPTER 19. D3DX MESH OBJECTS

The D3DXComputeTangent function will compute the tangent-space basis
vectors for the source mesh and store them in the texture coordinate compo-
nent of the vertices in the destination mesh. The source stage parameter
gives the index of the texture coordinate set that contains the source texture
coordinates used to compute the tangent-space basis vectors. The u stage and
v stage parameters give the index of the texture coordinate set that will re-
cieve the u and v basis vectors, respectively. Either of these parameters may
be set to D3DX COMP TANGENT NONE if the corresponding basis vector is not re-
quired. The wrap parameter controls the wrapping of the texture coordinates
in the u and v directions. If the value of wrap is FALSE, then no wrapping is
performed. If the value is TRUE, then wrapping is performed. The destination
mesh parameter should be a valid ID3DXMesh interface pointer for an existing
mesh; D3DXComputeTangent does not create a new mesh for the result. The
adjacency parameter returns the adjacency of the resulting mesh. It may be
NULL if the adjacency information is not neeeded.

HRESULT D3DXComputeTangent(ID3DXMesh *source,
DWORD source_stage,
ID3DXMesh *destination,
DWORD u_stage,
DWORD v_stage,
DWORD wrap,
DWORD *adjacency);

#define D3DX_COMP_TANGENT_NONE 0xFFFFFFFF

19.6.5 Mesh Intersection Tests

The D3DXIntersect function tests the intersection of a ray with a mesh, while
D3DXIntersectSubset tests the intersection with a specific subset of a mesh.
In each case, the origin and direction of the ray are passed in and the results
of the test are returned. For D3DXIntersectSubset, the attribute parameter
indicates the subset used for the test. The hit parameter indicates whether or
not any intersection was found.

HRESULT D3DXIntersect(ID3DXBaseMesh *mesh,
const D3DXVECTOR3 *origin,
const D3DXVECTOR3 *direction,
BOOL *hit,
DWORD *face,
float *u,
float *v,
float *distance,
ID3DXBuffer **hits,
DWORD *count);



19.6. MESH 695

HRESULT D3DXIntersectSubset(ID3DXBaseMesh *mesh,
DWORD attribute,
const D3DXVECTOR3 *origin,
const D3DXVECTOR3 *direction,
BOOL *hit,
DWORD *face,
float *u,
float *v,
float *distance,
ID3DXBuffer **hits,
DWORD *count);

If an intersection was found, the face, u, v, and distance parameters will
return information about the triangle closest to the origin of the ray. The face
parameter returns the zero-based number of the intersected triangle. The u and
v arguments return the barycentric coordinates of the intersection point within
the triangle. The intersection coordinate P can be computed from the vertex
positions P1, P2, and P3 of the triangle with the following formula:

P = P1 + u(P2 − P1) + v(P3 − P1)

The distance parameter returns the distance from the origin of the ray to the
intersection point.

The ray may have intersected more than one triangle in the mesh or subset.
If all the intersections are desired, the hits parameter returns information about
each intersection and the count parameter returns the number of intersections.
If only the closest intersection to the ray origin is desired, the hits and count
parameter may be NULL. The ID3DXBuffer returned by these functions contains
an array of D3DXINTERSECTINFO structures. The FaceIndex, U, V and Dist
members of the structure correspond to the face, u, v and distance arguments
for the closest intersecting triangle.

typedef struct _D3DXINTERSECTINFO
{

DWORD FaceIndex;
float U;
float V;
float Dist;

} D3DXINTERSECTINFO, *LPD3DXINTERSECTINFO;

The intersection tests are performed in the model space of the mesh’s ver-
tices. If an intersection in world or view space is desired, transform the ray
from world or view coordinates into model coordinates by using the inverse of
the corresponding transformation matrices.

19.6.6 Mesh Conversion

A mesh may have so many vertices that DWORD indices are required, but the
device may only support WORD indices. The problem can be solved by splitting



696 CHAPTER 19. D3DX MESH OBJECTS

a single ID3DXMesh object into multiple meshes, where each of the resulting
meshes has fewer vertices so that WORD indices may be used. D3DXSplitMesh
can be used to split a single mesh into multiple meshes; see section 19.2 for more
about the use of const in the mesh parameter to this function. The input mesh
and its adjacency information are used as the source data for creating one or
more meshes, each with no more than max vertices vertices and constructed
with the given D3DXMESH options. To split a mesh into one or more meshes
suitable for use with WORD indices, use a value of 655342 for max vertices.

The number of meshes created is returned in the meshes parameter, while
the remaining ID3DXBuffer parameters return the meshes themselves and the
corresponding triangle adjacency, triangle remap, and vertex remap arrays. The
remap arrays are slightly different in the case of D3DXSplitMesh. In most
functions, the ith index in the remap array corresponds to the new location for
a vertex or triangle of the ith vertex in the source mesh. With D3DXSplitMesh,
the index corresponds to the number of the vertex or triangle in the resulting
mesh and the value in the remap array gives the number of the original vertex
or triangle in the source mesh.

HRESULT D3DXSplitMesh(ID3DXMesh *const mesh,
const DWORD *adjacency_in,
const DWORD max_vertices,
const DWORD options,
DWORD *meshes,
ID3DXBuffer **result,
ID3DXBuffer **adjacency_out,
ID3DXBuffer **face_remap,
ID3DXBuffer **vertex_remap);

The result parameter returns an array of ID3DXMesh interface pointers.
The other three buffers return an array of DWORD arrays. To store an array of
arrays in an ID3DXBuffer, the buffer first contains n DWORD pointers, one for
each of the resulting meshes, followed by the DWORD data itself. The following
code shows how to obtain the vertex remap information for vertex number three
of the second mesh.

DWORD num_meshes = 0;
ID3DXBuffer *meshes = 0;
ID3DXBuffer *adjacencies = 0;
ID3DXBuffer *new_faces = 0;
ID3DXBuffer *new_verts = 0;
THR(::D3DXSplitMesh(mesh, adjacency, 0xFFFF-1, D3DXMESH_MANAGED,

&num_meshes, &meshes, &adjacencies, &new_faces, &new_verts));
const DWORD new_vertex =

static_cast<DWORD **>(new_verts->GetBufferPointer())[2][3];

20xFFFF-1



19.6. MESH 697

Using the rt::dx buffer helper class, the casting operators and the direct
manipulation of the underlying ID3DXBuffer pointer can be eliminated.

DWORD num_meshes = 0;
rt::dx_buffer<ID3DXMesh *> meshes;
rt::dx_buffer<DWORD *> adjacencies;
rt::dx_buffer<DWORD *> new_faces;
rt::dx_buffer<DWORD *> new_verts;
THR(::D3DXSplitMesh(mesh, adjacency, 0xFFFF-1, D3DXMESH_MANAGED,

&num_meshes, &meshes, &adjacencies, &new_faces, &new_verts));
const DWORD new_vertex = new_verts[2][3];

D3DX also provides functions for converting a mesh subset into one or more
triangle strips. D3DXConvertMeshSubsetToSingleStrip generates a single tri-
angle strip for the triangles in the subset, with disjoint strips of triangles con-
nected by degenerate triangles. D3DXConvertMeshSubsetToStrips generates
one or more triangle strips for the triangles in the subset. In each case, the
attribute and mesh parameters describe the mesh subset to convert. The
result is an index buffer containing the indices of the vertices in the triangle
strips. The index buffer is created according to the flags specified in options,
which may be one or more of the D3DXMESH flags for index buffers.

HRESULT D3DXConvertMeshSubsetToSingleStrip(ID3DXBaseMesh *mesh,
DWORD attribute,
DWORD options,
IDirect3DIndexBuffer9 **result,
DWORD *num_indices);

HRESULT D3DXConvertMeshSubsetToStrips(ID3DXBaseMesh *mesh,
DWORD attribute,
DWORD options,
IDirect3DIndexBuffer9 **result,
DWORD *num_indices,
ID3DXBuffer **strip_lengths,
DWORD *num_strips);

For a single strip, the num indices parameter returns the number of indices
stored in the index buffer. The corresponding number of triangles in the strip
is one third the number of indices, including degenerate triangles connecting
disjoint triangles.

For multiple strips, the num indices parameter returns the number of in-
dices stored in the index buffer for all the strips. The number of triangles in all
the strips is one third the number of indices. The num strips parameter returns
the number of strips created from the subset. The strip lengths returns an
array of DWORDs, one per strip, giving the number of triangles in the strip.



698 CHAPTER 19. D3DX MESH OBJECTS

19.6.7 Meshes in X Files

D3DX provides functions for loading and saving triangle meshes to the X file
format. The file format and its associated interfaces are described in detail in
chapter 21. The D3DXLoadMeshFromX function opens the X file given by the
filename ANSI string argument and creates the result mesh object according
to the D3DXMESH flags given in options. This function scans the X file for Mesh
template nodes and creates a single mesh object that contains the union of all
the nodes found in the file.

HRESULT D3DXLoadMeshFromX(LPSTR filename,
DWORD options,
IDirect3DDevice9 *device,
ID3DXBuffer **adjacency,
ID3DXBuffer **materials,
DWORD *num_materials,
ID3DXMesh **result);

MeshMaterialList and Material nodes are scanned and used to divide the
mesh into subsets, one per material per mesh. The materials parameter returns
an array of D3DXMATERIAL structures containing the contents of the Material
nodes. D3DX allocates space for the texture filename strings in the ID3DX-
Buffer returned by the function. Be sure to perform a deep copy of the strings
if you release the returned buffer.

struct D3DXMATERIAL
{

D3DMATERIAL9 MatD3D;
LPSTR pTextureFilename;

};
typedef struct D3DXMATERIAL *LPD3DXMATERIAL;

As with other mesh creation functions, if the adjacency or materials are not
needed, then the corresponding parameters may be NULL.

The D3DXLoadMeshFromXInMemory and D3DXLoadMeshFromXResource func-
tions are similar to D3DXLoadMeshFromX and load meshes from X files in memory
or in a Win32 resource. The file in memory is given as a pointer to the file data
and the size of the data.

HRESULT D3DXLoadMeshFromXInMemory(BYTE *data,
DWORD size,
DWORD options,
IDirect3DDevice9 *device,
ID3DXBuffer **adjacency,
ID3DXBuffer **materials,
DWORD *num_materials,
ID3DXMesh **result);



19.6. MESH 699

An X file stored as a Win32 resource is identified by the module in which
the resource is stored, the name of the resource and the type of the resource.
::GetModuleHandle can be used to obtain the handle of the module containing
the resource. The MAKEINTRESOURCE macro can be used to construct the name
parameter for resources identified by an ordinal number.

HRESULT D3DXLoadMeshFromXResource(HMODULE module,
LPCTSTR name,
LPCTSTR type,
DWORD options,
IDirect3DDevice9 *device,
ID3DXBuffer **adjacency,
ID3DXBuffer **materials,
DWORD *num_materials,
ID3DXMesh **result);

For example, the following code snippet loads two meshes: one in a data
resource named IDR DATA1, and a second in a custom meshes resource named
foo.x. Both are stored in the module corresponding to the executable image
for the process.

CComPtr<ID3DXMesh> mesh1, mesh2;
HMODULE module = ::GetModuleHandle(NULL);
THR(::D3DXLoadMeshFromXResource(module,

MAKEINTRESOURCE(IDR_DATA1), RT_RCDATA,
D3DXMESH_SYSTEMMEM, device, NULL, NULL, NULL, &mesh1));

THR(::D3DXLoadMeshFromXResource(module,
_T("foo.x"), _T("meshes"),
D3DXMESH_SYSTEMMEM, device, NULL, NULL, NULL, &mesh2));

The D3DXLoadMeshFromXof function loads a mesh from an IDirectXFile-
Data object. A data object is obtained by using the parser interfaces described
in chapter 21 to examine the nodes individually within an X file. The data
parameter must point to a Mesh node, otherwise the function will fail.

HRESULT D3DXLoadMeshFromXof(IDirectXFileData *data,
DWORD options,
IDirect3DDevice9 *device,
ID3DXBuffer **adjacency,
ID3DXBuffer **materials,
DWORD *num_materials,
ID3DXMesh **result);

The D3DXSaveMeshToX function can be used to save a mesh template and
its associated materials to an X file; see section 19.2 for more about the use of
const in the materials parameter to this function. The mesh and adjacency
parameters give the mesh to be saved to the file. If you do not have the adja-
cency array for a mesh, you can obtain it with GenerateAdjacency, or you can



700 CHAPTER 19. D3DX MESH OBJECTS

pass NULL. If NULL is used, then no VertexDuplicationIndices node will ap-
pear in the X file. The materials and num materials parameters describe the
materials corresponding to the mesh. The array should be one larger than the
largest attribute identifier in the attribute buffer for the mesh. So if the mesh
has attribute identifiers 0, 10, 25, then the array of materials should hold 26
elements, numbered 0 through 25. Otherwise, the MeshMaterialList template
will be written out incorrectly. If you have used a sparse set of attribute identi-
fiers for your subsets, you can compact them into a contiguous set of zero-based
identifiers by locking and modifying the attribute buffer.

HRESULT D3DXSaveMeshToX(LPSTR filename,
ID3DXMesh *mesh,
const DWORD *adjacency,
const D3DXMATERIAL *const materials,
DWORD num_materials,
DWORD format);

19.7 Progressive Mesh

A progressive mesh allows for dynamic adjustments to the number of triangles
and vertices used in the mesh. Mesh simplification can be an expensive op-
eration and are generally used in non-interactive situations, while progressive
meshes are intended to be used interactively. An instance of the progressive
mesh interface can be created from an existing ID3DXMesh with D3DXGenerate-
PMesh; see section 19.2 for more about the use of const in the attribute -
weights parameter. The mesh and adjacency parameters describe the input
mesh. The attribute weights and vertex weights parameters describe the
simplification criteria for the input mesh and are as described on page 691 for
the D3DXSimplifyMesh function. The mesh is simplified to min value triangles
or vertices, depending on the D3DXMESHSIMP value in the options parameter.

HRESULT D3DXGeneratePMesh(ID3DXMesh *mesh,
const DWORD *adjacency,
const D3DXATTRIBUTEWEIGHTS *const attribute_weights,
const float *vertex_weights,
DWORD min_value,
DWORD options,
ID3DXPMesh **result);

A progressive mesh can also be created from a COM stream interface in
which the X file representation of the progressive mesh was previously written.
A COM stream interface is an I/O abstraction and is described in detail in the
MSDN documentation and books describing COM structured storage.

HRESULT D3DXCreatePMeshFromStream(IStream *stream,
DWORD options,



19.7. PROGRESSIVE MESH 701

IDirect3DDevice9 *device,
ID3DXBuffer **materials,
DWORD *num_materials,
ID3DXPMesh **result);

As an example, the following code opens a COM structured storage on the
file tmp.pm, obtains the stream interface for the stream named CONTENTS. The
stream is used to create the progressive mesh in system memory, ignoring any
mesh materials. In this example, a file was used, but a stream can also be
created on a chunk of memory allowing you to create a progressive mesh from
a resource by obtaining a pointer to the resource’s data in memory. It is also
possible to implement your own stream object on any internal data source, such
as a network connection.

CComPtr<IStorage> storage;
THR(::StgOpenStorageEx(L"tmp.pm",

STGM_READ | STGM_SHARE_EXCLUSIVE | STGM_DIRECT,
STGFMT_DOCFILE, 0, NULL, NULL, IID_IStorage,
reinterpret_cast<void **>(&storage)));

CComPtr<IStream> stream;
THR(storage->OpenStream(L"CONTENTS", NULL,

STGM_READ | STGM_SHARE_EXCLUSIVE | STGM_DIRECT, 0,
&stream));

CComPtr<ID3DXPMesh> pmesh;
THR(::D3DXCreatePMeshFromStream(stream, D3DXMESH_SYSTEMMEM,

m_pd3dDevice, NULL, NULL, &pmesh));

The progressive mesh interface is summarized in interface 19.3. ID3DXPMesh
derives from ID3DXBaseMesh, described in section 19.5. The GetMinFaces, Get-
MaxFaces, GetMinVertices and GetMaxVertices methods describe the range of
dynamic simplification provided by the progressive mesh. To change any of these
values, the mesh must be destroyed and recreated with the new desired minimum
and maximum. The progressive mesh uses the methods of ID3DXBaseMesh to
expose any number of triangles and vertices within the range described by its
read-only properties. When the progressive mesh is initially created, it uses the
minimum number of its vertices and triangles.

Interface 19.3: Summary of the ID3DXPMesh interface.

ID3DXPMesh

Read-Only Properties
GetAdjacency Triangle adjacency information
GetMaxFaces Maximum number of triangles
GetMinFaces Minimum number of triangles
GetMaxVertices Maximum number of vertices
GetMinVertices Minimum number of vertices



702 CHAPTER 19. D3DX MESH OBJECTS

Write-Only Properties
SetNumFaces Set the level of detail as the number of triangles
SetNumVertices Set the level of detail as the number of vertices

Methods
ClonePMeshFVF Make a copy of the mesh with an FVF code
ClonePMesh Make a copy of the mesh
Optimize Make an optimized copy of the mesh
OptimizeBaseLOD Optimize the base level of detail of the mesh
Save Write the progressive mesh to a COM stream
TrimByFaces Change the level of detail range as a number of

triangles
TrimByVertices Change the level of detail range as a number of

vertices

interface ID3DXPMesh : ID3DXBaseMesh
{

// read-only properties
HRESULT GetAdjacency(DWORD *adjacency);
DWORD GetMaxFaces();
DWORD GetMaxVertices();
DWORD GetMinFaces();
DWORD GetMinVertices();

// write-only properties
HRESULT SetNumFaces(DWORD value);
HRESULT SetNumVertices(DWORD value);

// methods
HRESULT ClonePMesh(DWORD options,

const DWORD *declaration,
IDirect3DDevice9 *device,
ID3DXPMesh **resuilt);

HRESULT ClonePMeshFVF(DWORD options,
DWORD fvf,
IDirect3DDevice9 *device,
ID3DXPMesh **result);

HRESULT Optimize(DWORD flags,
DWORD *adjacency_out,
DWORD *face_remap,
ID3DXBuffer **vertex_remap,
ID3DXMesh **result);

HRESULT OptimizeBaseLOD(DWORD flags,
DWORD *face_remap);



19.7. PROGRESSIVE MESH 703

HRESULT Save(IStream *stream,
D3DXMATERIAL *materials,
DWORD num_materials);

HRESULT TrimByFaces(DWORD minima,
DWORD maxima,
DWORD *face_remap,
DWORD *vertex_remap);

HRESULT TrimByVertices(DWORD minima,
DWORD maxima,
DWORD *face_remap,
DWORD *vertex_remap);

};

The GetAdjacency method returns the adjacency array for the current num-
ber of triangles in the mesh, but the size of the array must be large enough to
hold the adjacency information for the maximum number of triangles in the
mesh. The entire array contents will be overwritten, but only the triangles in
the current level of detail will contain useful information. For instance, if the
maximum number of triangles in the mesh is 100 and the current level of detail
is 50 faces, then the adjacency array passed to GetAdjacency must be at least
300 DWORDs in size and the first 150 DWORDs will contain the adjacency for the
50 triangles in the current level of detail and the remaining DWORDs will contain
0xFFFFFFFF.

The write-only properties of the mesh are used to set the number of active
triangles and vertices. The range of allowed values is restricted to the minimum
and maximum number of triangles or vertices, as reported by the read-only
properties of the mesh. The number of triangles after this call may be off by
one since an edge collapse transformation may remove one or two triangles, as
shown in figure 19.4.

The ClonePMesh and ClonePMeshFVF create a copy of the entire progressive
mesh, using the new vertex declaration or FVF code, respectively, for the ver-
tices of the new progressive mesh. This is in contrast to the CloneMesh and
CloneMeshFVF methods of the base interface ID3DXBaseMesh which would only
clone the set of active vertices and triangles.

The Optimize method performs similarly to the Optimize method of ID3DX-
Mesh. The OptimizeBaseLOD optimizes the mesh for the number of triangles
currently selected as the base level of detail for the mesh. The flags argument
is one or more D3DXMESHOPT flags indicating how the mesh should be optimized.
Indices are moved within the index buffer so that the currently selected triangles
can be rendered as fast as possible. The face remap parameter describes how
the triangles were moved within the index buffer and consists of one DWORD per
triangle, giving the new position for each triangle. The remap array should be
large enough to contain one DWORD for the maximum number of triangles in the
mesh.

The TrimByFaces and TrimByVertices methods adjust the level of detail
range for the mesh. In each case the minima and maxima parameters give the



704 CHAPTER 19. D3DX MESH OBJECTS

new range for the number of triangles or vertices in the progressive mesh, re-
spectively. The new values must be within the current minimum and maximum
values. This function can only restrict the existing range of values to a tighter
range, it cannot broaden the range. The face remap and vertex remap pa-
rameters return information on how the triangles and vertices were rearranged
within the index and vertex buffers of the mesh. Each of these parameters
should point to an array of DWORDs, one per triangle or vertex for the maximum
number of each in the mesh.

The Save method writes the progressive mesh data structures to a COM
stream interface as a binary X file. The progressive mesh can be reconstituted
from this data with the D3DXCreatePMeshFromStream function. The following
code shows how to write a progressive mesh to a COM structured storage.

CComPtr<IStream> stream;
CComPtr<IStorage> storage;
THR(::StgCreateStorageEx(L"tmp.pm",

STGM_READWRITE | STGM_SHARE_EXCLUSIVE | STGM_CREATE |
STGM_DIRECT, STGFMT_DOCFILE, 0, NULL, 0,
IID_IStorage, reinterpret_cast<void **>(&storage)));

THR(storage->CreateStream(L"CONTENTS",
STGM_READWRITE | STGM_SHARE_EXCLUSIVE | STGM_CREATE |
STGM_DIRECT, 0, 0, &stream));

THR(pmesh->Save(stream, NULL, 0));

19.8 Simplification Mesh

The simplification mesh interface is used as a factory for creating plain and
progressive meshes and is intended for use in offline tools or during initializa-
tion. The ID3DXSPMesh interface derives directly from IUnknown and provides
no means for rendering its mesh data. An instance of this interface is created
with the D3DXCreateSPMesh function; see section 19.2 for more about the use
of const in the attribute weights parameter. The mesh and adjacency pa-
rameters give the input mesh that is the source of the vertex data used by
ID3DXSPMesh. The attribute weights and vertex weights parameters give
the simplification criteria used to simplify the mesh, as described on page 691
for D3DXSimplifyMesh. The interface is summarized in interface 19.4.

HRESULT D3DXCreateSPMesh(ID3DXMesh *mesh,
const DWORD *adjacency,
const D3DXATTRIBUTEWEIGHTS *const attribute_weights,
const float *vertex_weights,
ID3DXSPMesh **result);



19.8. SIMPLIFICATION MESH 705

Interface 19.4: Summary of the ID3DXSPMesh interface.

ID3DXSPMesh

Read-Only Properties
GetDeclaration The vertex shader declaration for the

mesh vertices
GetDevice The associated device
GetFVF The FVF code for the mesh vertices
GetMaxFaces The maximum number of triangles in the

simplification mesh
GetMaxVertices The maximum number of vertices in the

simplification mesh
GetNumFaces The number of triangles in the simplifica-

tion mesh
GetNumVertices The number of vertices in the simplifica-

tion mesh
GetOptions The mesh options for the simplification

mesh when it was created
GetVertexAttributeWeights The per-vertex attribute simplification

weights
GetVertexWeights The per-vertex simplification weights

Methods
CloneMesh Clone the mesh using a vertex shader

declarator
CloneMeshFVF Clone the mesh using an FVF code
ClonePMesh Clone a progressive mesh using a vertex

shader declarator
ClonePMeshFVF Clone a progressive mesh using an FVF

code
ReduceFaces Reduce the number of triangles
ReduceVertices Reduce the number of vertices

interface ID3DXSPMesh : IUnknown
{

// read-only properties
HRESULT GetDeclaration(DWORD value[MAX_FVF_DECL_SIZE]);
HRESULT GetDevice(IDirect3DDevice9 **value);
DWORD GetFVF();
DWORD GetMaxFaces();
DWORD GetMaxVertices();
DWORD GetNumFaces();
DWORD GetNumVertices();
DWORD GetOptions();



706 CHAPTER 19. D3DX MESH OBJECTS

HRESULT GetVertexAttributeWeights(
D3DXATTRIBUTEWEIGHTS *value);

HRESULT GetVertexWeights(float *value);

// methods
HRESULT CloneMesh(DWORD options,

const DWORD *declaration,
IDirect3DDevice9 *device,
DWORD *adjacency,
DWORD *vertex_remap,
ID3DXMesh **result);

HRESULT CloneMeshFVF(DWORD options,
DWORD fvf,
IDirect3DDevice9 *device,
DWORD *adjacency,
DWORD *vertex_remap,
ID3DXMesh **result);

HRESULT ClonePMesh(DWORD options,
const DWORD *declaration,
IDirect3DDevice9 *device,
DWORD *vertex_remap,
ID3DXPMesh **result);

HRESULT ClonePMeshFVF(DWORD options,
DWORD fvf,
IDirect3DDevice9 *device,
DWORD *vertex_remap,
ID3DXPMesh **result);

HRESULT ReduceFaces(DWORD faces);
HRESULT ReduceVertices(DWORD vertices);

};

The GetDevice method returns the device associated with the mesh. The
vertex declaration and FVF code are returned by the GetDeclaration and Get-
FVF methods, respectively. The mesh only handles vertices that can be described
by FVF codes and the declaration property is just a convenience. The D3DX-
MESHOPT flags for the mesh are returned by the GetOptions method and are
identical to the D3DXMESHOPT flags used to create the source mesh.

The maximum number of triangles and vertices are given by the GetMax-
Faces and GetMaxVertices methods, respectively. This number can be reduced
through mesh simplification, and the number of triangles and vertices currently
set on the mesh are returned by the GetNumFaces and GetNumVertices meth-
ods, respectively.

The GetVertexAttributeWeights method returns the simplification weights
of the vertex components in a D3DXATTRIBUTEWEIGHTS structure. The Get-
VertexWeights method returns the simplification weights associated with each
vertex. The value parameter should point to an array of floats, one for each



19.9. SKIN MESH 707

vertex in the original mesh.
The CloneMesh and CloneMeshFVF methods create an ID3DXMesh interface

corresponding to the currently selected number of triangles and vertices in the
simplification mesh. The new mesh is created with the D3DXMESH flags in the
options parameter and associated with the device given in the device parame-
ter. The adjacency parameter returns the adjacency of the created mesh. The
vertex remap parameter returns an array of DWORDs, one for each vertex in the
original mesh, describing how the original vertices were copied into the vertex
buffer of the clone. The ClonePMesh and ClonePMeshFVF methods function
similarly to the CloneMesh and CloneMeshFVF methods, but create the clone as
an ID3DXPMesh instead of an ID3DXMesh.

The ReduceFaces and ReduceVertices methods simplify the mesh. Once
the number of faces or vertices has been reduced, it cannot be increased again.
Plain meshes cloned from a simplification mesh with a reduced face or vertex
count will also have a correspondingly reduced face or vertex count. Progressive
meshes cloned from a simplification mesh with a reduced face or vertex count
will have a minimum face or vertex count that corresponds to the reduced count
and a maximum face or vertex count corresponding to the original counts.

19.9 Skin Mesh

D3DX provides the ID3DXSkinInfo interface as a factory for creating meshes
that contain vertex blending weights and associated “bones”. Each bone in the
mesh describes a mapping between the model coordinate space of the vertex
positions and the world coordinate space, as described in chapter 5. A skin
mesh may be created with up to 256 bones and a vertex may be influenced by
an arbitrary subset of the bones. The influence, or weighting, of each bone on a
vertex within the mesh is given by a floating-point value. All the bone influences
for any given vertex must sum to one.

The skin mesh can’t be drawn directly from its interface. It must first be
converted to an ID3DXMesh that uses vertex blending or indexed vertex blending.
During conversion, a skin mesh attempts to map its arbitrary number of bones
and vertex influences to the capabilities of the device. In the typical case, each
vertex within the mesh is affected by only a small number of bones. Such a
mesh is converted by splitting the mesh into subsets where each of the triangles
within the subset fit within the vertex blending capabilities of the device. For
cases where a vertex is influenced by more bones than is supported by a device,
bones with the smallest influence on a vertex are dropped until the triangle
containing the vertex can be rendered.

An ID3DXMesh can also be generated that does not use vertex blending. In
this case, the resulting mesh vertices have been transformed and blended into
the pose defined by the bone influences currently set on the skin mesh. The pose
can be changed by either using the same bone transformations and changing the
bone influences on the vertices or changing the bone transformation matrices.
The generated ID3DXMesh can then be updated with the vertices of the new



708 CHAPTER 19. D3DX MESH OBJECTS

pose.
An empty skin mesh can be created by describing the vertex format with a

declaration or an FVF code with the D3DXCreateSkinInfo and D3DXCreate-
SkinInfoFVF functions, respectively. In each case, the num faces parameter
gives the number of triangles that will be needed for the mesh, the options
parameter gives one or more D3DXMESH flags used for the mesh’s index and
vertex buffers created on the associated device. The num bones parameter
gives the total number of unique bones used by the mesh.

HRESULT D3DXCreateSkinMesh(DWORD num_faces,
DWORD num_vertices,
DWORD num_bones,
DWORD options,
const DWORD *declaration,
IDirect3DDevice9 *device,
ID3DXSkinMesh **result);

HRESULT D3DXCreateSkinMeshFVF(DWORD num_faces,
DWORD num_vertices,
DWORD num_bones,
DWORD options,
DWORD fvf,
IDirect3DDevice9 *device,
ID3DXSkinMesh **result);

A populated skin mesh can be created from an existing mesh with the D3DX-
CreateSkinInfoFromBlendedMesh function. The vertex, index and attribute
buffers of the source mesh are shared with the skin mesh. Modifying the buffer
contents of either mesh affects both meshes. Space for num bones bones is
allocated in the skin mesh, but the application must still fill in the bone influence
weights for each bone.

HRESULT D3DXCreateSkinMeshFromMesh(ID3DXMesh *mesh,
DWORD num_bones,
ID3DXSkinMesh **result);

All three functions return an ID3DXSkinInfo interface, which derives directly
from IUnknown. The interface is summarized in interface 19.5.

Interface 19.5: Summary of the ID3DXSkinInfo interface.

ID3DXSkinInfo

Read-Only Properties
GetMaxFaceInfluences ...
GetMaxVertexInfluences ...
GetNumBoneInfluences ...



19.9. SKIN MESH 709

GetNumBones ...

Properties
GetBoneInfluence
SetBoneInfluence

...

GetBoneName
SetBoneName

...

GetBoneOffsetMatrix
SetBoneOffsetMatrix

...

GetBoneVertexInfluence
SetBoneVertexInfluence

...

GetDeclaration
SetDeclaration

...

GetFVF
SetFVF

...

GetMinBoneInfluence
SetMinBoneInfluence

...

Methods
Clone Clone the skin information
ConvertToBlendedMesh Copy to a blended mesh
ConvertToIndexed-
BlendedMesh

Copy to an indexed blended mesh

FindBoneVertex-
InfluenceIndex

...

Remap ...
UpdateSkinnedMesh Update the bone information

interface ID3DXSkinMesh : IUnknown
{

// read-only properties
HRESULT GetDeclaration(DWORD value[MAX_FVF_DECL_SIZE]);
HRESULT GetDevice(IDirect3DDevice9 **value);
DWORD GetFVF();
HRESULT GetIndexBuffer(IDirect3DIndexBuffer9 **value);
HRESULT GetMaxFaceInfluences(DWORD *value);
HRESULT GetMaxVertexInfluences(DWORD *value);
DWORD GetNumBoneInfluences(DWORD bone);
DWORD GetNumBones();
DWORD GetNumFaces();
DWORD GetNumVertices();
DWORD GetOptions();
HRESULT GetOriginalMesh(ID3DXMesh **value);
HRESULT GetVertexBuffer(IDirect3DVertexBuffer9 **value);



710 CHAPTER 19. D3DX MESH OBJECTS

// read-write properties
HRESULT GetBoneInfluence(DWORD bone,

DWORD *vertices,
float *value);

HRESULT SetBoneInfluence(DWORD bone,
DWORD num_influences,
const DWORD *vertices,
const float *value);

// methods
HRESULT ConvertToBlendedMesh(DWORD options,

const DWORD *const adjacency_in,
DWORD *adjacency_out,
DWORD *num_bone_combinations,
ID3DXBuffer **bone_combinations,
DWORD *face_remap,
ID3DXBuffer **vertex_remap,
ID3DXMesh **result);

HRESULT ConvertToIndexedBlendedMesh(DWORD options,
const DWORD *const adjacency_in,
DWORD palette_size,
DWORD *adjacency_out,
DWORD *num_bone_combinations,
ID3DXBuffer **bone_combinations,
DWORD *face_remap,
ID3DXBuffer **vertex_remap,
ID3DXMesh **result);

HRESULT GenerateSkinnedMesh(DWORD options,
float min_weight,
const DWORD *const adjacency_in,
DWORD *adjacency_out,
DWORD *face_remap,
ID3DXBuffer **vertex_remap,
ID3DXMesh **result);

HRESULT LockAttributeBuffer(DWORD flags, DWORD **data);
HRESULT LockIndexBuffer(DWORD flags, BYTE **data);
HRESULT LockVertexBuffer(DWORD flags, BYTE **data);
HRESULT UnlockAttributeBuffer();
HRESULT UnlockIndexBuffer();
HRESULT UnlockVertexBuffer();
HRESULT UpdateSkinnedMesh(const D3DXMATRIX *bone_transforms,

const D3DXMATRIX *bone_inverse_transforms,
ID3DXMesh *mesh);

};
TODO: xsiGetOptions

The format of the vertices in the mesh are returned by the GetDeclaration



19.9. SKIN MESH 711

and GetFVF methods. Skin meshes only support vertices in a format compatible
with FVF codes. The D3DXMESH flags used to create the skin mesh are returned
by the xsiGetOptions method. TODO: xsiGet-

NumFaces, xsiGet-
NumVertices,
xsiGetIndexBuffer,
xsiGetVertexBuffer,
GetOriginalMesh

The number of triangles and vertices in the skin mesh are returned by the
xsiGetNumFaces and xsiGetNumVertices methods. The underlying index and
vertex buffers can be directly manipulated by obtaining their interface point-
ers with the xsiGetIndexBuffer and xsiGetVertexBuffer methods. A copy
of the vertices and indices stored in the skin mesh can be obtained with the
GetOriginalMesh method. The vertices will not contain blend weights, nor will
they have been transformed by any bone influences. The resulting mesh is called
the “original pose” of the skin mesh. TODO: xsiLockVer-

texBuffer, xsiUn-
lockVertexBuffer,
xsiLockIndexBuffer,
xsiUnlockIndexBuffer,
xsiLockAttribute-
Buffer, xsiUnlockAt-
tributeBuffer

The vertex, index and attribute data defining the original pose of the skin
mesh can be accessed directly with the xsiLockVertexBuffer, xsiUnlockVertexBuffer
xsiLockIndexBuffer, xsiUnlockIndexBuffer, xsiLockAttributeBuffer, and
xsiUnlockAttributeBuffer methods. The usage of these methods is identical
to that of ID3DXMesh and ID3DXBaseMesh. Creating helper locking classes for
the buffers of a skin mesh will ensure that matched pairs of lock and unlock
methods are always called. Rather than create separate locking helper classes
for each of the ID3DXBaseMesh, ID3DXMesh and ID3DXSkinInfo interfaces, we
can use a template parameter in the helper class to specify the base interface
for the lock. The helper classes in the sample code use this technique.

As with vertex blending, described in section 6.7, each vertex in a skin
mesh is influenced by a number of bones. Each bone influence on a vertex is
described by a floating-point weight that describes how much of an influence
the corresponding bone transformation has on the final position of this vertex.

The number of bones in the skin mesh is returned by the GetNumBones
method. The number of vertices in the mesh influenced by a bone is returned
by the GetNumBoneInfluences method when the bone parameter is a valid
bone number, or zero otherwise. The maximum number of bones influencing
any vertex in the mesh is returned by GetMaxVertexInfluences.

The maximum number of bones influencing any of the triangles in the mesh
is returned by the GetMaxFaceInfluences method. This value is used in con-
junction with the D3DXBONECOMBINATION structure returned by the conversion
methods. This is determined by looking at the bones influencing each of the
three vertices in each triangle in the mesh. If the maximum number of bones
influencing a triangle in the mesh is smaller than the MaxVertexBlendMatrices
member of D3DCAPS9, then the mesh can be rendered as a blended mesh using
all the defined bones. If the number is larger, then the mesh may be rendered as
an indexed blended mesh, depending on the device support for indexed vertex
blending.

The GetBoneInfluence and SetBoneInfluence methods expose the influ-
ence each bone has on the vertices of the skin mesh as a read/write property.
To set the bone influences, pass the bone number, the number of influences, an
array of DWORDs, one per influence, giving the vertices affected by the bone,
and an array of floats, one per influence, giving the blend weight for each ver-
tex. When obtaining the bone influences, the arrays passed in the weights and



712 CHAPTER 19. D3DX MESH OBJECTS

vertices parameters must be large enough to hold one value for each vertex in
the skin mesh.

For example, the following code sets the influences for bone one on vertices
15 and 20 to 1.0 and 0.5, respectively.

const float weights[2] =
{

1.0f, 0.5f
};
const DWORD vertices[2] =
{

15, 20
};
THR(skin_mesh->SetBoneInfluence(1, 2, &weights[0], &vertices[0]));

This code obtains the influences for bone zero of the skin mesh. The C++

standard vector class is used to allocate the appropriate storage for the vertex
numbers and their associated floating-point weights.

std::vector<float> weights(skin_mesh->GetNumVertices());
std::vector<DWORD> vertices(skin_mesh->GetNumVertices());
THR(skin_mesh->GetBoneInfluence(0, &vertices[0], &weights[0]));

Once a skin mesh has been loaded with vertex data and all the bone influ-
ences for all the vertices have been set, it can be converted to an ID3DXMesh for
rendering. The ConvertToBlendedMesh method creates a mesh that uses non-
indexed vertex blending for the skinning, while ConvertToIndexedBlendedMesh
uses indexed vertex blending. For the indexed case, the palette size param-
eter gives the number of vertex blend matrices to use in the indexed blended
mesh. The remaining parameters to each of these functions are treated identi-
cally. See section 19.2 for more on the use of const in the parameters to these
methods.

The resulting mesh is created according to the D3DXMESH flags in the options
parameter. Adjacency information for the skin mesh is passed to the method
and the adjacency information for the created mesh is returned to the caller.
The face and vertex remap arrays return DWORDs identifying how the triangles
and vertices in the skin mesh were mapped onto the triangles and vertices of
the created mesh. These arrays have one DWORD for each triangle or vertex in
the created mesh.

The num bone combinations parameter returns the number of D3DXBONE-
COMBINATION structures returned in the bone combinations array. Each struc-
ture describes how the skin mesh was subdivided to accommodate the blending
limitations of the device associated with the skin mesh.

typedef struct _D3DXBONECOMBINATION
{

DWORD AttribId;



19.9. SKIN MESH 713

DWORD FaceStart;
DWORD FaceCount;
DWORD VertexStart;
DWORD VertexCount;
DWORD *BoneId;

} D3DXBONECOMBINATION, *LPD3DXBONECOMBINATION;

The AttribId member gives the attribute ID associated with this bone
combination. The face and vertex members describe the range of triangles and
vertices in the created mesh governed by this combination of bones. The BoneId
member points to an array of DWORDs giving the bones influencing this range
of triangles. The array size is the number of maximum bone influences for any
face in the skin mesh.

To render the resulting ID3DXMesh, the bone combination structure indicates
the bones used for each blended piece. The matrix for the first bone listed in
the structure should be set as the first world matrix, the matrix for the second
bone listed in the structure should be set as the second world matrix, and so-on. TODO: Generate-

SkinnedMeshAnother approach is to perform the vertex blending entirely on the CPU and
draw a plain mesh after the blending has been performed. For this approach, the
application first calls GenerateSkinnedMesh to create a mesh in the initial pose.
See section 19.2 for more on the use of const with the adjacency parameter to
this method. The min weight parameter gives a minimum weight below which
bone influences for any particular vertex will be ignored.

The mesh is created according to the D3DXMESH flags specified in the options
parameter. The adjacency of the skin mesh is passed into the method with
the adjacency in parameter and the adjacency of the created ID3DXMesh is
returned in the adjacency out parameter. The face remap and vertex remap
parameters return arrays defining the mapping of triangles and vertices from
the skin mesh into the created mesh. If the adjacency or remap information for
the created mesh are not required, the parameters may be NULL.

To change the pose, the application calls UpdateSkinnedMesh with the mesh
created by the generate method and the matrices for each bone in the mesh. The
initial pose uses the identity matrix for all bones. The application passes two
arrays of D3DXMATRIX structures, each array containing one matrix per bone.
The first array is the forward transformation matrices that map model coordi-
nates to bone coordinates and the second array contains the inverse matrices
of the first array. When the method returns, the mesh parameter has had its
vertices updated to reflect the new transformation matrices for each bone.

19.9.1 Skin Meshes in X Files

D3DX provides a function for reading skinned meshes from X files. This function
reads the mesh data and the information contained in the XSkinMeshHeader and
SkinWeights templates to obtain the necessary bone and vertex weight data.

HRESULT D3DXLoadSkinMeshFromXof(IDirectXFileData *data,



714 CHAPTER 19. D3DX MESH OBJECTS

DWORD options,
IDirect3DDevice9 *device,
ID3DXBuffer **adjacency,
ID3DXBuffer **materials,
DWORD *num_materials,
ID3DXBuffer **bone_names,
ID3DXBuffer **bone_transforms,
ID3DXSkinMesh **result);

The data parameter should be an X file node containing a Mesh template.
The options parameter contains a combination of D3DXMESH flags that describe
the skin mesh’s underlying vertex and index buffers created on the device. The
adjacency parameter returns an ID3DXBuffer containing the adjacency infor-
mation for the mesh, as an array of three DWORDs for each triangle in the mesh.
The materials parameter is an ID3DXBuffer containing an array of D3DX-
MATERIAL structures. The size of the array is returned in the num materials
parameter. The names of the bones are returned in the bone names parameter
as an ID3DXBuffer containing an array of ANSI strings, one for each bone in the
skin mesh. Similarly, the bone transforms parameter returns the bone trans-
formations as an ID3DXBuffer containing an array of D3DXMATRIX structures,
one for each bone in the skin mesh.

19.10 rt D3DXSphere Sample Application

The rt D3DXSphere sample application demonstrates the use of the D3DX prim-
itive construction functions D3DXCreatePolygon, D3DXCreateBox, D3DXCreate-
Cylinder, D3DXCreateSphere, D3DXCreateTorus and D3DXCreateTeapot. You
can interactively adjust the parameters for these shapes from the keyboard. The
source to the application is located in the sample code accompanying this book.

19.11 SDK Samples

Almost every sample in the SDK uses a D3DX mesh object for loading models
and scenes. The following samples demonstrate mesh functionality specifically,
as opposed to using a mesh object to demonstrate another feature.

EnhancedMesh The enhanced mesh sample demonstrates N -Patch tessella-
tion on a mesh. You can load an arbitrary X file into the sample from the
menu.

OptimizedMesh The optimized mesh sample demonstrates the improvement
in rendering performance by using the Optimize method to reorder trian-
gles and vertices. You can select the mesh optimization options and load
an arbitrary X file into the sample from the menu.



19.12. FURTHER READING 715

ProgressiveMesh The progressive mesh sample demonstrates the dynamic
level of detail feature provided by ID3DXPMesh. The number of vertices in
the mesh can be changed with the keyboard and an arbitrary X file can
be loaded into the sample from the menu. The knot.x file in the SDK
works particularly well with this sample, although generating the initial
progressive mesh can take some time, even on a fast CPU.

SkinnedMesh The skinned mesh sample is the most advanced mesh sample in
the SDK. This sample demonstrates how to parse an X file node by node
so that the coordinate frame hierarchy stored in the file can be replicated
by program data structures. It also parses animation information from
the X file to create an animated rendering. The skin mesh information is
read from the file and an ID3DXSkinInfo is constructed. The skin mesh is
used to create meshes for rendering the model using one of the following
four methods.

1. non-indexed vertex blending

2. indexed vertex blending

3. software skinning

4. vertex shader based indexed skinning

In addition to the samples in the SDK that use meshes, tutorial 6 in the SDK
documentation demonstates the basics of the ID3DXMesh object in the context
of a very simple program.

19.12 Further Reading

Research in meshing algorithms have received a great deal of attention in the
past few years. Work in this area continues to be published in the proceedings
of the SIGGRAPH conference, among others. The mesh simplification used in
D3DX is based on the Garland-Heckbert quadric error metric, with refinements
by Hugues Hoppe to accommodate normal and attribute space metrics.

Surface Simplification Using Quadric Error Metrics, by Michael Garland and
Paul S. Heckbert. SIGGRAPH 1997 Conference Proceedings, Annual
Conference Series, pp. 209-216, Addison Wesley, August 1997.

Hugues Hoppe’s home page contains links for his papers on meshes.
http://research.microsoft.com/∼hoppe/

The Origins of the Teapot, IEEE Computer Graphics and Applications, 7(1),
pp. 8-19, January 1987.



716 CHAPTER 19. D3DX MESH OBJECTS




