Chapter 22

Debugging

“He that assures himself he never errs
will always err.”

Joseph Glanville: The Vanity of Dogmatizing, XXIII, 1661
(Cf. Nordern, ante, 1607)

“Blue is true, Yellow’s jealous,
Green’s forsaken, Red’s brazen,
White is love, And black is death.”

Author unidentified

22.1 Overview

Debugging ordinary programs is often a difficult and frustrating task. Direct3D
programs can be even more difficult to debug and lead to even more frustration.
This chapter covers techniques and advice for debugging Windows programs in
general and Direct3D programs in particular.

The best way to debug a program is to write a program with no bugs.
Naturally, this is almost impossible for all but the simplest of programs. How-
ever, there are techniques you can use to avoid common mistakes. First, we
will discuss techniques for avoiding some of the most common pitfalls of C++
applications.

The Windows operating system also provides some facilities for debugging
of applications. Using these facilities can help you obtain information about
your program while it is running and can also be used to provide information
about the execution context of your program when it encounters a fatal error.

Next, we will discuss the debugging facilities in Visual C++ 6. Detailed
information on the debugger is found in the Visual C++ documentation, while we
provide suggestions and tips for using the debugger with Direct3D applications.

789

790 CHAPTER 22. DEBUGGING

Finally, we will conclude with debugging techniques specific to Direct3D
programs and the unique challenges they present in debugging.

22.2 Version Control Systems

One of the most frustrating mistakes we can make is to accidentally delete the
very code we have been struggling to write. This sounds like the sort of thing
that you’d never do, until you realize you’ve already done it. Obviously, keeping
backups of your code during development minimizes the chance that you will
accidentally delete precious hard work.

A version control system provides for fine-grained control over the changes to
the source files in your application on a file by file basis. Using a version control
system is even better than a backup because you can associate a log message with
each change, you can “fork” your source code into two separate development
paths which may later be joined, generate differences between revisions of source
code by version number or date and much more.

A full discussion of version control systems is beyond the scope of this book,
but if you have never used a version control system before, it is strongly rec-
ommended that you do so. The CVS version control system is an open source,
well-tested version control system. Command-line and GUI based clients for
manipulating the system are available for Windows.

Using a version control system and a frequent schedule of committing changes
to the system will help guard you against accidental deletion of your working
source code. Of course, should the files used by the version control system for
storing your changes be accidentally deleted, you’ve still got a problem. For
this reason, it is recommended that you use a version control system for track-
ing changes to your source code at a fine-grained level and a regular backup
schedule to guard against accidental deletion or HW storage failure.

22.3 C+ Debugging

C++ was designed to be compatible with C. As a result, it is still possible to
code all the well-known pitfalls of C within a C++ application.

22.3.1 Dynamic Memory Allocation

The most common sort of nasty C bug results from improper use of the free
store: dereferencing NULL pointers, failing to properly free dynamically allo-
cated memory, reading memory that has been freed, freeing memory more
than once, and so-on. The easiest way to avoid free store bugs is to use
the standard container classes in the C++ Standard Library: std::vector<>,
std: :deque<>, std::1ist<>, std::set<>, std: multiset<>, std: :map<> and
std: :multimap<>.

Another way to avoid these sorts of errors in your C++ application is to only
use operator new, operator delete, operator new[] and operator deletel[]

22.3. C++ DEBUGGING 791

in the constructor and destructor of a class. Use the lifetime of the instantiated
class to control the lifetime of the dynamically allocated memory. Debugging
the use of new and delete once saves you from having to worry about their use
throughout the rest of your code.

Even with this technique, it is still possible to have bugs resulting from
inappropriate use of the free store. You may find it useful to write your own
memory allocator that replaces the global new and delete operators. Using such
an allocator allows you to obtain statistics about your allocations and perform
memory leak dumps, enter a debugger breakpoint on a specific allocation or free,
etc. There are a variety of open source memory allocators with such debugging
instrumentation available on the internet.

For the nastiest of free store problems, a commercial tool such as Bounds
Checker or Purify may be required. These industrial strength tools add instru-
mentation code directly into your executable and perform consistency checks on
the free store and other resources during the execution of your program. At the
time of this writing, both tools have free trial versions available for download
on the internet.

22.3.2 Accidental Assignments

In C and C++, the comparison operator == is almost identical to the assignment
operator =. If the left-hand side of an equality comparison is a valid lvalue, it
is easy for typing errors to create unintended assignments.

int x;
/] ...
if (x = 5)
{

/...
}

The test clause of the if statement contains an unintentional assignment
where a comparison was intended. The assignment expression is a valid value
for the if clause and this code will compile without error. If the comparison
were rewritten with the constant on the left-hand side, the typing mistake will
now cause a compilation error:

int x;
/] ...
if (6 = x)
{

/...
}

Writing constants (or const variables) on the left-hand side of an equality
assignment will prevent this mistake from going undetected.

792 CHAPTER 22. DEBUGGING

22.3.3 String Handling

Another common source of errors in applications relates to string handling.
String handling is closely related to dynamic memory allocation, as strings are
not an intrinsic data type in C or C++ and their use has traditionally been
treated as an array of characters. The std::string and std::wstring types
in the C++ Standard Library can free you from having to worry about the
memory allocations required when manipulating strings. Occasionally, when
interacting with Windows or a third party library, you may need to allocate an
explicit array of characters. This is most readily done with std: :vector<>.

22.3.4 Casts

C has only a single casting syntax for use with all manner of casting operations.
C++ introduces several casting operators to the language to allow the program-
mer to specify the intent of the cast. Use the appropriate casting operator to
indicate your intention to the compiler; this allows the compiler to identify when
the intention of the cast doesn’t make sense in context.

The const_cast<T>(X) operator should be used when the expression X needs
the const qualifier added or removed. The static_cast<T>(X) operator should
be used when you need to convert the expression X to type T and this conversion
is allowed but not assumed. The dynamic_cast<T>(X) operator can only be used
with run-time type information and virtual base classes. It is used to cast the
base class pointer X to the derived class pointer T. The reinterpret_cast<T>(X)
operator reinterprets the storage for the expression X as the type T with no other
checks by the compiler. For more information on the casting operators in C++
and their appropriate uses, a good reference on C++ should be consulted.

For situations where casting might often be required, consider using a wrap-
per class that hides the casting inside the implementation of the class. Users of
the class can forget about casting requirements and use the class in a type safe
manner.

When writing code, consider your actions carefully when you find yourself
writing casting expressions. They can lead to difficult bugs because they subvert
the ability of the type system in C++ to protect you from mistakes.

22.3.5 C+ Exceptions

As discussed in chapter 1, exceptions provide a way of encapsulating state about
an unexpected error and transferring control to an appropriate handler for the
unexpected error. Usually the right place to handle an error is at a higher level in
the program, while the unexpected condition occurred deep within a call stack.
To deal with the problem, routines are usually peppered with error checking
logic and shortcut returns and an error code indicating the failure of the called
routine. Each caller must take responsibility for checking the returned error
code and performing a shortcut return to its caller. The difficulty in ensuring
that all such called routines have their error codes checked and a shortcut return

22.4. DEBUGGING WINDOWS APPLICATIONS 793

to the caller performed results in spotty error checking at best. Exceptions allow
for a much cleaner approach to the problem of unexpected errors. While there
is some overhead for using exceptions, this overhead should be minimal when
exceptions and try, catch blocks are used properly.

The Windows APIs, COM objects, Direct3D and D3DX interfaces and func-
tions use error codes to indicate success or failure, instead of exceptions. As
discussed in chapter 1, a framework for mapping error codes to exceptions will
allow your code to be robust in its error handling without all the tedium of
checking error codes and managing the shortcut return code paths. Controlling
the lifetime of resources with classes works hand in hand with using exceptions
for error handling.

22.4 Debugging Windows Applications

Windows provides a variety of mechanisms for assisting in program debugging.
A problem with traditional Windows applications is the profusion of HANDLE
types that have distinct meanings and semantics, but the identical C++ type of
pointer to void. However, if the preprocessor symbol STRICT is defined before
the Windows header files are included, then each of the handle types will have
their own fictitious type created and a misuse of those types will result in a type
mismatch error from the compiler. For this reason, it is recommended that you
always compile your code with STRICT defined before you include any Windows
header files.

Windows 2000 provides more memory protection than Windows 9x. Win-
dows XP is based on the same OS kernel as Windows 2000 and provides the
same level of protection. To keep matters simple, we will discuss Windows 2000
with the understanding that all the same statements apply to Windows XP.
Similarly, Windows ME is based on the same kernel as Windows 9x and all the
statements in this chapter about Windows 9x apply to Windows ME.

The additional protection of Windows 2000 will catch your mistakes earlier
with less likelihood of corrupting the operating environment so that you can
continue working without rebooting. For this reason, it is recommended that
you always compile and test your code on Windows 2000, even if Windows 9x is
your target platform. For most Direct3D applications, the differences between
the Windows API on the two platforms should hardly ever come up, but it
always pays to make sure you check the availability information on Windows
API functions in the MSDN documentation.

The FAT file system used in Windows 9x wasn’t designed for the same level
of robustness as NTFS. Consequently, its possible to lose code changes when
using FAT file systems and you encounter an unexpected system hang. For this
reason, it is recommended that you use the NTFS file system for development
under Windows 2000. If this is not possible, you should at least disable write
caching on FAT file system volumes containing your source code.

794 CHAPTER 22. DEBUGGING

22.4.1 ANSI vs. Unicode

The native character environment of Windows 9x is ANSI, while the native
character environment of Windows 2000 is Unicode. ANSI applications will
work on Windows 2000, at the cost of an extra string conversion layer between
the application and the OS. If your application doesn’t do much string based
interaction with the OS, this string conversion probably won’t even be noticed.
You can avoid the conversion layer by writing your code to use the TCHAR char-
acter type facilities in the Windows header file <tchar.h>. With this facility,
you can compile both ANSI and UNICODE images from the same source base.

If you are targetting both ANSI and Unicode builds for your application,
be sure to test both build environments every time you test. It is very easy to
let an ANSI or Unicode string usage slip into one of the builds where it is not
appropriate.

22.4.2 Security Environment

At first glance, it might not seem like Direct3D applications need concern them-
selves with security. However, Direct3D applications typically access other parts
of the system and can run into security related issues during this interaction.
The best way to avoid security related bugs is to develop on Windows 2000 as
a limited access user. Windows 2000 should be used because Windows 9x does
not provide any real security. A limited access user should be used because
members of the Power Users group have more access than regular users to files,
directories and the system registry.

By using a restricted environment, you will encounter any potential security
problems during development. It is much better to find these problems during
development then after you ship your application and start receiving support
calls from users operating in a restricted environment.

If you have been developing as a member of the Administrator or Power Users
group, it is recommended you remove yourself from those groups. Fast user
switching in Windows XP will allow you to quickly become the Administrator
if necessary. Under Windows 2000, the RunAs command can be used to execute
a command as another user. This can also be used with shortcuts and Start
menu items by holding the shift key down while invoking the context menu on
the item and selecting the “Run as...” item.

22.4.3 Special Directories

A good Windows program should never assume the location of special directories
on the target system. Not every system has a system drive on volume C:, and
the names of special directories, such as Program Files may be localized to a
different string on foreign-language Windows machines. A common source of
Windows application bugs is assuming that these special folders have a fixed
location or reside on a particular drive. Attempting to store data in the wrong

22.4. DEBUGGING WINDOWS APPLICATIONS 795

CSIDL Contents and Typical Value
CSIDL_APPDATA Per-user application specific data.
C:\Documents and Settings\
username\Application Data
CSIDL_COMMON_APPDATA Application specific data for all users.
C:\Documents and Settings\
A1l Users\Application Data
CSIDL_COMMON_DOCUMENTS Documents for all users.
C:\Documents and Settings\
A1l Users\Documents
CSIDL_LOCAL_APPDATA Data files for non-roaming applications.
C:\Documents and Settings\
username\Local Settings)\
Application Data
CSIDL_PERSONAL Documents for individual users.
C:\Documents and Settings\
username\My Documents
CSIDL_PROGRAM FILES Location for programs.
C:\Program Files
CSIDL_PROGRAM _FILES COMMON Shared application components.
C:\Program Files\Common

Table 22.1: Common CSIDL values.

location can result in failure of your application to run in a secured environment,
as well. Restricted users will have very limited write access to the system.

Windows provides a function for obtaining the full path of these special
directories. A related issue is the installation directory of the application. Your
install program can write the installation location to the system registry for use
by the program. Windows Installer also provides an API to obtain installation
directories for installed components.

The : :SHGetFolderPath function retrieves the path associated with a spe-
cial folder. The special folder is identified by its CSIDL value. Common CSIDL
values and their uses are given in table 22.1. The CSIDL value should be log-
ically ored with CSIDL_FLAG_CREATE to ensure that the appropriate directories
are created if they don’t yet exist.

If the user is not meant to load, view or alter the data stored in a file, it
should be stored in CSIDL_COMMON_APPDATA if the data is per-machine or CSIDL_-
LOCAL_APPDATA if it is per-user. Per-machine data would include items such as
system configuration information, while per-user data would include items such
as keyboard bindings.

If the data is intended to be manipulated by the user, then a unique file
extension should be chosen for the data file and the application should be asso-
ciated with the file extension during installation of the application. If the data is
intended for any user, such as a shared high scores file, then it should be stored

796 CHAPTER 22. DEBUGGING

in CSIDL_COMMON_DOCUMENTS. If the data is intended only for the current user,
such as a personal high scores list, then it should be stored in CSIDL_PERSONAL.
If an application saves multiple files, it is recommended that they be stored
in a subdirectory of the special folder location returned by Windows. The
subdirectory should have a name that the user can easily associate with the
application. Users may also wish to store their user data in another location; a
good application will use the special folder locations as the default location for
individual user files and let the user select a different location if desired.

22.4.4 Output Debug Stream

The output debug stream is a facility provided by Windows to allow messages
to be sent directly to a debugger. If a process is being executed by a debugger,
the debugger will be sent an event whenever a string is written to the output
debug stream. If the debug output stream is written by a process not under
the control of a debugger and a system debugger is running, Windows sends
the string to the system debugger. If no debugger is running, then the string is
discarded.

You can write a string to the debug output stream with the : : OutputDebug-
String function. It takes a single string argument that is written to the debug
output stream. No newlines or carraige returns are appended to the string.

void OutputDebugString(LPCTSTR string) ;

When your application is run from Visual Studio, strings sent to the output
debug stream appear in the Debug tab of the Output window. If your program is
run outside of Visual Studio, then the messages sent to the output debug stream
will be discarded unless you are running a program designed to intercept these
strings. The SDK includes such a tool called dbmon.exe, a console program
that captures the output debug stream and writes the strings to the standard
output. You can use this to capture the debug output of your program to a file
for later examination.

Under Windows 2000, if you are not a member of the administrator group,
then dbmon will not receive the debug output stream. However, you can use
the RunAs command from the console to run dbmon as the administrator. More
sophisticated tools for viewing the debug output stream are freely available on
the internet.!

When using the debug output stream with C++, it would be handy if we
could use it just like the standard streams in the C++ Standard Library. The
sample code includes some code that implements a streambuf class for this
purpose. The implementation is provided as a header file ods.h for use by any
source file that writes to the output debug stream and a source file ods.cpp
that provides the implementation of the stream buffer.

To use this class, add the source file to your project and include the header
file in any source file that wants to write to the debug output stream. The global

1Such as “DebugView” from http://www.sysinternals.com.

22.4. DEBUGGING WINDOWS APPLICATIONS 797

variable g_ods represents the debug output stream as a C++ stream and the
normal operator<< method of writing output to the stream works as expected.
: : QutputDebugString will be called when the stream’s internal buffer overflows,
when std: :endl is written to the stream, or when the flush method is called
explicitly on g_ods.

For instance, the following code writes out the contents of the adjacency
array of an ID3DXMesh to the debug output stream:

std: :vector<DWORD> adj(mesh->GetNumFaces()*3);
THR (mesh->GenerateAdjacency (0, &adj[0]));
for (UINT i = 0; i < mesh->GetNumFaces(); i++)

{
g_ods << i << _T(": ") << adj[3*i + 0]
<< _T(", ") << adj[3*i + 1]
<< _T(", ") << adj[3*i + 2] << std::endl;
}

Using the debug output stream in this manner is fine if you're writing stan-
dard types with predefined operator<< insert operators. If you're writing
Direct3D types to the debug output stream (or any stream), you’ll want in-
sert operators that write text representations of those types to the stream. The
sample code includes the source files dump.h and dump.cpp containing insert
operators for many common Direct3D and D3DX types.

If a very large amount of output is sent to the debug output stream in a
short period of time, the debugger may lose part of the output. It can also
interfere with execution of the program to have the debugger handling all that
text output. The best way to avoid these problems is to limit the output to the
debug stream to only the information relevant to the problem you’re debugging.

22.4.5 Structured Exception Handling

Structured exception handling (SEH) is a mechanism similar to C++ exceptions
provided by the Windows platform. If your program should accidentally deref-
erence a NULL pointer, an access violation results. The access violation will
trigger a SEH style exception from Windows. If your program does not handle
this exception, Windows will terminate your program.

It is possible to catch an SEH style exception with a catch (...) block
after a try block. Since no information about the exception is passed to this
style of catch handler, there isn’t much you can do about the exception except
ensure that the program shuts down gracefully.

However, it is possible to turn these SEH style exceptions into C++ excep-
tion classes, including information about the context of where the SEH excep-
tion occurred. The Windows include file <eh.h> defines the function _set_se_-
translator which can be used to map SEH style exceptions into C++ exception
classes.

typedef

798 CHAPTER 22. DEBUGGING

void (_cdecl *_se_translator_function)(unsigned int code,
EXCEPTION_POINTERS *pointers);

_se_translator_function
_set_se_translator(_se_translator_function translator);

The function _set_se_translator is passed a pointer to your translation
routine and returns the previously set translation routine. The translation rou-
tine will be called when an SEH style exception occurs. The translator will be
passed the exception code and the pointers to the context of the exception.
The context pointers contain information about the stack frame and register
contents at the time the SEH style exception was thrown. The translator takes
the context information and uses it to construct a C++ exception object and
then throws a C++ exception. An enclosing catch handler can then extract the
context information for use in a stack dump, error report, etc. The following
small program illustrates the conversion method:

#include <eh.h>

struct s_structured_exception

{
s_structured_exception(DWORD code,
const EXCEPTION_POINTERS *excepts)
: m_code(code),
m_excepts (excepts)
{3
“s_structured_exception()
{3
DWORD m_code;
const EXCEPTION_POINTERS *m_excepts;
3

void _cdecl
se_translator(unsigned code, EXCEPTION_POINTERS *excepts)
{

throw s_structured_exception(code, excepts);

}

int APIENTRY WinMain(HINSTANCE hInstance,
HINSTANCE hPrevInstance,
LPSTR 1pCmdLine,
int nCmdShow)

try

22.4. DEBUGGING WINDOWS APPLICATIONS 799

_set_se_translator(&se_translator);
// force an access violation
DWORD foo = *reinterpret_cast<DWORD *>(0);

}
catch (s_structured_exception &e)
{
dump_stack(e.m_code, e.m_excepts);
}
return 0O;

22.4.6 Stack Traces

If you’re running your application in the debugger you can see the call stack of
an unexpected error. If your application is being tested by another user without
a debugger or if a bug crept into the customer release, you won’t have the luxury
of examining the call stack. However, you can obtain a call stack from Windows
and record it into a log file or a bug report.

The basic procedure for constructing a stack trace is to use the : : StackWalk
function. The first call to this function is made with the values of the instruction
pointer and stack frame pointer at the time the exception was thrown. Each
successive call to the function traverses the stack one level deeper. When the
stack has been completely traversed, the function returns FALSE.

If you're constructing a stack trace from an EXCEPTION_POINTERS structure,
the ContextRecord gives the execution context where the exception occurred as
a pointer to a CONTEXT structure. The CONTEXT structure is CPU architecture
dependent and the following discussion assumes an x86 instruction set architec-
ture. The Eip member of this structure gives the address of the instruction that
caused the exception. The Ebp member gives the stack frame address when the
exception occurred.

Walking the stack frames just gives you the addresses within your executable.
You can map these address to symbolic names using the Debug Help Library in
the Platform SDK. Using this library, you can map the addresses in your stack
frame to symbols associated with your code, or with Windows. A full explana-
tion of the Debug Help Library can be found in the MSDN documentation.

22.4.7 Mini Dumps

Even better than writing a stack trace to a text file is to collect a “minidump”.
The minidump is a subset of the information written in a complete crash dump
of Windows. The minidump is small enough that it can be sent to technical
support for further diagnosis of the problem. The minidump can be read directly
by the Visual C++ 7 debugger as well as by debugging tools in the Platform SDK.
You can also write your own tools to examine the data in a minidump file.

800 CHAPTER 22. DEBUGGING

A mini dump is created with the : :MiniDumpWriteDump function. The caller
supplies information about the context of the dump, obtained from an exception
context, and any additional data streams that should be recorded to the dump
file. These additional data streams should include any critical context informa-
tion specific to your application. They will be written to the dump file and can
be examined later for further diagnosis. For more information on minidumps
and : :MiniDumpWriteDump, consult the MSDN documentation.

22.4.8 Debugging Buffer Overruns and Underruns

Knowledge base article Q264471 in the MSDN Library describes a utility called
PageHeap that can be used to debug buffer overruns and underruns. A buffer
overrun error occurs when the application references memory past the end of an
allocated buffer. This type of bug can be particularly difficult to identify as the
problem won’t always be fatal to the execution of the program, particularly with
read overruns. A buffer underrun is similar, except that the program references
memory before the start of the allocated buffer.

The PageHeap utility writes to an access controlled portion of the registry,
so you will need Administrator rights in order to run the program succesfully.
PageHeap works by allocating memory buffers at the end of a page of virtual
memory. If the application attempts to write past the end of the buffer, it will
either corrupt guard bytes (used to align the allocated memory on an 8 byte
boundary), or will cause an immediate access violation if it writes past the end
of the page. The knowledge base article describes the use of PageHeap in more
detail.

22.4.9 Fast User Switching in XP

Windows XP provides a facility called “fast user switching”, which allows mul-
tiple users to be logged onto the machine at the same time. This can result
in a scenario where your DirectX application thinks it is still running, but the
results of its rendering will not be visible. An application can detect fast user
switching and change its behavior when the user that launched the application
is no longer the user in control of the interactive logon session.

If your application needs to know when the user is switched, you can register
to receive the WM_WTSESSION_CHANGE events with the ::WI'SRegisterSession-
Notification function. Any window that has been registered to receive these
events should be unregistered with : : WISUnRegisterSessionNotification be-
fore it is destroyed.

If you expect your application to be installed on Windows XP, it is recom-
mended that you test your application under a fast user switching scenario to
ensure that it works properly. If you need to ensure only a single instance of
your application is running in this environment, you can use a global named
mutex to see if your application is running in any session. Then, if the named
mutex was found, you can determine if your application is running in the current
session using ::FindWindow and switch to the running instance.

22.5. DEBUGGING WITH VISUAL C++ 6 801

For more information on fast user switching, see the Terminal Services doc-
umentation in MSDN.

22.5 Debugging With Visual C+ 6

A full discussion of the debugger in Visual C++ is beyond the scope of this
section, but there are a few things worth mentioning when developing Direct3D
applications. With a few simple customizations to Visual C++ you can increase
the effectiveness of the debugger for Direct3D applications.

Some of the customizations involve the files AutoExp.dat and UserType.-
dat. These files are located in the Common\MSDev98\bin subdirectory of your
Visual C++ 6 installation. The installation program in the sample code can be
used to integrate the supplied files with Visual C++ 6. The customizations may
be incorporated manually for other versions of Visual C++ that are compatible
with the data files for Visual C++ 6.

22.5.1 Decoding Direct3D HRESULTs

Visual C++ has some tools for helping decode the HRESULTs that COM applica-
tions are likely to encounter. From the Tools menu in Visual C++, you can select
the Error Lookup tool. This tool will decode most common HRESULTs into an
error string. Unfortunately, it does not understand Direct3D HRESULT errors.
However, the DirectX Error Lookup Tool provided in the SDK does understand
Direct3D HRESULT error codes. You can include an item for this program on
the Tools menu with the “Customize...” item. In the resulting dialog, select
the Tools tab and enter a new item on the list. The executable for the DirectX
error lookup tool is located in Samples\Multimedia\Misc\bin subdirectory of
the SDK installation directory.

22.5.2 Highlighting Direct3D Identifiers

With the UserType.dat file, you can categorize specific identifiers as user-
defined keywords. The text editor in Visual Studio can assign a different color
to user-defined keywords, allowing you to highlight all Direct3D and D3DX
identifiers. The sample code contains an UserType.dat file that includes all the
Direct3D and D3DX defined identifiers.

22.5.3 Expanding Direct3D Structures

The file AutoExp.dat contains directives that customize the display of structure
types in the debugger watch windows. Each line in the AutoExpand section
gives a type name, an equal sign, and a format expression for the type’s value
in the watch window. Structure members can be formatted in the expression
by surrounding them with angle brackets (<>) and providing an optional format
specifier. For example, the following line will cause the vector (1, 2.2, 3.33) to
display as 1, 2.33, 3.33 in the debugger’s watch window.

802

CHAPTER 22.

Meaning

Wi
x,X

Single character

Signed decimal integer
Signed scientific notation
Signed floating-point

General floating-point
HRESULT or Win32 error code
Long or short integer prefix
Memory dump

Unsigned octal integer

String

Unicode or ANSI string
Unicode string

Unsigned decimal integer
Window class flag

Window message number
Unsigned hexadecimal integer

DEBUGGING

Table 22.2: Format specifiers for debugger structure expansion formatting.

[AutoExpand]

_D3DVECTOR=<x,g>, <y,g>, <z,g>

The allowed format specifiers are summarized in table 22.2 and described in
detail in the Visual Studio 6 help under the title “Symbols for Watch Variables”.
The sample code contains an AutoExp.dat file that includes expansions for all
the Direct3D and D3DX structure types.

22.5.4 Limiting Step-Into

The AutoExp.dat file can also include an ExecutionControl section that lists
debugger directives for function entry points. Using this section you can prevent
the debugger from stepping into functions that are not relevant. For instance,
you can prevent the debugger from stepping into all ATL classes and functions.
The use of smart pointer classes such as CComPtr<> or STL containers then
becomes invisible to the debugger.

[ExecutionControl]

myfunctionname=NoStepInto

CFoo: :*=NoStepInto

; To ignore construction and assignment of MFC CStrings:
; (Notice the extra = in CString::operator=.)

[ExecutionControl]

CString: :CString=NoStepInto
CString: :operator==NoStepInto

22.5. DEBUGGING WITH VISUAL C++ 6 803

; To ignore all ATL calls:
[ExecutionControl]
ATL: : *=NoStepInto

The function name is specified as a fully qualified identifier, with optional
wildcards allowing for any identifier within a namespace. The sample code
contains an AutoExp.dat file that eliminates stepping into ATL classes and
functions as well as all rt classes and functions.

22.5.5 Remote Debugging

Visual C++ 6 supports the concept of remote debugging. In this scenario, the
debugger runs on one machine and the debug target runs on a separate machine.
A small monitoring process also runs on the target machine. The monitoring
process attaches to the debug target as a debugger and talks to the debugger
IDE running on the other machine using TCP /IP. Windows 2000 allows you to
connect two machines via TCP/IP over a cable via their serial or parallel ports.

For more information on remote debugging, see the Visual C++ 6 documen-
tation under “Using Visual C++, Visual C++ Programmer’s Guide, Debugging,
Debugging Specific Types of Applications, Debugging Remote Applications”.
MSDN knowledge base article Q241848 may also be helpful in configuring re-
mote debugging.

Remote debugging is the most flexible way to debug exclusive mode prob-
lems. The second computer provides a completely independent set of input
devices and display. Using the mouse and keyboard with the debugger won’t
interfere with your application’s use of the mouse or keyboard and the display
can be kept in exclusive mode while you debug.

22.5.6 Multiple Monitor Debugging

While remote debugging is the most flexible solution for debugging difficult ex-
clusive mode problems, it does require a second computer. If you can install
multiple display adapter cards in your computer, or your computer has a display
adapter supporting multiple monitors, you can debug with your Direct3D appli-
cation running on one monitor while the debugger runs on a different monitor.
Of course, you will need to share the input devices between the application and
the debugger.

This sounds great in theory; in practice you may find that multiple monitor
support is lacking in one or both of the display adapters or that you have
difficulty interacting with the debugger while your program has an adapter in
exclusive mode. Check with the THV supplying the drivers for your adapter to
determine multiple monitor support under the appropriate version of Windows
before installing additional adapters into your system.

804 CHAPTER 22. DEBUGGING

22.6 Debugging With Direct3D

C++ and Windows can help you avoid nasty problems lurking within your code,
but they are both rather ignorant of Direct3D and its particular pitfalls. There
are several important steps that every Direct3D developer should take to diag-
nose problems:

1. Install the debug runtime.

2. Check all HRESULTs for success.

3. Compare results between HAL and the reference rasterizer.

4. Ensure support for all features used in the device capabilities.

In addition to these basic steps, it is recommended that you code into your
application the ability to switch to software vertex processing and the reference
rasterizer at startup or during execution. Switching to software vertex process-
ing lets you obtain an alternative execution path from the vertex processing in
the HAL device. This can be a good way to double check problems related to
vertex processing. Similarly, the reference device provides an alternate imple-
mentation of the entire pipeline allowing you to double check problems related
to rasterization and texture processing. If you are having a problem with a par-
ticular piece of Direct3D functionality that is demonstrated in an SDK sample
program or in the sample framework, compare your code to that in the SDK.

22.6.1 Debug and Retail Runtimes

Fortunately, the SDK includes two versions of the Direct3D runtime: debug and
retail. The debug runtime includes additional input parameter validation and
the reference rasterizer. The debug runtime will catch most invalid arguments
and cause the resulting API call to fail with D3DERR_INVALIDCALL. An expla-
nation describing the cause of the failure will be written to the debug output
stream. The debug version of D3DX will also perform additional parameter
validation and send explanations of failures to the debug output stream.

Because the retail runtime performs no validation or checking of its param-
eters, its possible to send bad data to the reatil runtime without ever realizing
your mistake. This sort of mistake may succeed by accident during develop-
ment, only to fail on the customer’s machine once the application has been
shipped. Developing without the debug runtime is like running a marathon
through a minefield while blindfolded with boat anchors tied to your ankles.
While its possible to survive such an ordeal, life is so much simpler without the
self-imposed handicaps. It is recommended that you always install the debug
runtime for development. It is also recommended that testing be performed
with the debug runtime, if possible. If necessary, you can test with the retail
runtime, but you're less likely to catch problems during testing.

22.6. DEBUGGING WITH DIRECT3D 805

Of course, that extra error checking and validation comes at the cost of some
runtime performance. Therefore, if you are performing performance measure-
ment, you should switch back to the retail runtimes before performing those
measurements.

22.6.2 Checking HRESULTs

Most methods and functions in the Direct3D interfaces, the D3DX interfaces
and functions and the X file interfaces return an HRESULT error code. Each
and every one of these return codes should be checked for success. Most of
these methods and functions are expected to succeed, so its rare that you must
insert logic into your main flow of control for handling failures. However, just
because the call is not expected to fail doesn’t mean it can’t fail. Particularly
with the debug runtime, checking all HRESULTs for unexpected failure is going
to save you valuable development time on those “stupid mistakes”. The THR
macro mechanism discussed in chapter 1 is particularly helpful here as you get
information about exactly where the failure occurred in your code.

22.6.3 Reference Rasterizer

The reference rasterizer, D3DDEVTYPE_REF described in section 2.6 on page 52, is
very valuable in determining the source of errors. It is recommended that you
always provide a way to run your program on the reference rasterizer, or be able
to switch to the reference rasterizer at some point during execution. Switching
device types implies a complete destruction of the existing device and creation
a new device using the new device type. All the samples in the SDK and those
accompanying book support switching to the reference rasterizer.

As the reference rasterizer uses a software implementation of most features,
its interaction with the device driver is rather minimal and simplified. When
an unexpected rendering result is obtained on both the HAL and reference
device types, the fault is usually in the application code. If different rendering
results are obtained between the two device types, the likelihood of a driver
bug is increased, but the application cannot be completely ruled out. Since
the reference device supports all features and usually has a richer set of device
capabilities than a HAL device, the differences in rendering output may still be
the fault of the application if the device capabailities weren’t properly examined.

If the SDK isn’t installed on a machine, you won’t have access to the reference
device. In this case a “null” reference device is supplied to the application if
D3DDEVTYPE_REF is requested and no rendering will be performed, as described
in section 2.6.

22.6.4 DirectX Error Routines

If you encounter failed HRESULTs from Direct3D, D3DX or the X file interfaces,
you can use the error routines described in section 15.17 to obtain a descriptive
string for the HRESULT. The DirectX Error Lookup Tool, described in section 22.5

806 CHAPTER 22. DEBUGGING

can also be used to obtain a descriptive string from a failed HRESULT without
changing your code.

22.6.5 Reproducing Problems

In a highly interactive graphics program, such as a CAD application or a game,
it can be difficult to reproduce some problems because they may only occur in
response to a particular set of user input. The best way to reproduce these
kinds of problems is to record a script of the user input while the application
is running. Then your application can play back the input script to reproduce
the problem again and again until you find the source of the error.

Using a playback script created from user input can also be very helpful
if you need to test your program against the reference device. Since the ref-
erence device runs much more slowly than a hardware device, the additional
time spent rendering may confuse your application during playback. You can
guard against this by stopping any simulation timekeeping during the rendering
process and resuming the timekeeping once the rendering portion of your main
loop is finished.

22.6.6 Exclusive Mode Problems

The easiest way to debug an application is by running it in windowed mode.
However, sometimes you encounter problems that only occur in exclusive mode.
Since the application has exclusive control of the display, using a debugger can
be difficult. The most robust way to debug such a situation is to use remote
debugging, described in section 22.5.5. If a second computer is unavailable,
you can try using multiple monitors on a single computer as described in sec-
tion 22.5.6.

If neither additional computers nor additional monitors are available, then
the only methods left are those that involve logging internal state of the ap-
plication to a file for later inspection. The easiest way to do this is to write
logging messages to the debug output stream and capture that to a file. The
dbmon console utility included with the SDK can have its output redirected to a
file from the command line. You can start dbmon and then start your program
to generate the debug output.

22.6.7 Driver Problems

The display driver runs in the “trusted computing base” under Windows 2000,
which means that if you manage to confuse the display driver you can crash
the whole system. If you are encountering strange hangs or system crashes with
your Direct3D program, but otherwise your system is stable, you should examine
carefully the rendering data that you are sending to Direct3D. In particular, bad
indices can cause drivers to access random portions of memory. Running your
application with the reference rasterizer and performing consistency checks on

22.6. DEBUGGING WITH DIRECT3D 807

your data before you write it into index buffers should catch these errors before
they become fatal.

On systems with AGP memory, there may be problems with the AGP driver
that affect availability of AGP memory or its performance. Check the mother-
board manufacturer’s web site to ensure that you have the proper AGP driver
support for your system. In addition, there were some issues with AGP support
in versions of Windows 2000 prior to Service Pack 2. The issue did not result
in a crash, but an unexpected low level of performance. If you are experiencing
atypical performance with your card and are running Windows 2000 prior to
Service Pack 2, you should consider applying the latest service pack release.

In a perfect world, we could assume that the device driver was perfect and
free of errors. Unfortunately, in the real world errors in the drivers are encoun-
tered. However, the developer is still left with the question of whether or not
the error encountered is a result of their application or the driver. If the error
can be reproduced on the reference device, then the error is most likely in the
application. If the error does not occur on the reference device type, but only
on the HAL device type, then it is more likely that the error is in the driver.

If you encounter what you believe is an error in the driver, you should first
check to see if an updated version of the driver is available. The hardware vendor
may have already fixed the problem you encountere. If the problem persists
in the latest driver, you should file a bug report to the vendor of the driver.
Independent hardware vendor contact information is given in section 22.9.2.
See section 22.10 for the best way to file a bug report.

If you’ve identified a genuine problem with a particular driver, you may
not have the luxury of being able to wait for a fix from the hardware ven-
dor. In this situation, you can use the information returned by GetAdapter-
Identifier to identify this particular combination of hardware and driver to
trigger a workaround in the application. Ideally, the workaround involves the
use of a different algorithm or a slightly different set of device state. Unfor-
tunately thre are some operations for which no viable workaround is available.
For that situation you will have to consider whether or not you can afford to
wait for a fix from the hardware vendor.

22.6.8 Shader Problems

Debugging vertex and pixel shaders can be a difficult task, particularly for a
complex shader. NVidia has created a shader debugger that will allow you to
single step through a vertex shader and examine the contents of the registers.
This debugger is available as a free download on the the developer relations
portion of their web site, see section 22.9.2.

Without the shader debugger, you have to resort to divide and conquer
techniques for identifying the problems within a shader. In this approach, the
portion of the shader containing the problem is located by commenting out
portions of the shader and executing it. You will still need a valid result from
the shader to test the rendering, so you will probably want to comment out an
entire stage of processing as opposed to individual instructions. For instance,

808 CHAPTER 22. DEBUGGING

suppose you have a vertex shader that performs skinning followed by fog followed
by projection. If the results are totally unexpected, you might try replacing the
skinning section with instructions that simply copy the input position. If the
results are still not what was expected, the problem may not lie within the
skinning section, but elsewhere.

An alternative approach is to start with simple shaders and keep them work-
ing at all times. Incrementally adding functionality to a working shader means
that if the rendering is incorrect, there is no doubt that the fault lies in the
newly added code or as a result of some coupling to the newly added code.

In addition to these techniques, it can be helpful to execute your shaders
against the reference rasterizer. The reference rasterizer will do more checking
on shader instructions than the hardware. A hardware implementation may
allow uninitialized registers or other programming mistakes to go by unnoticed.

22.6.9 Texturing Problems

With the large amount of state that controls how textures are sampled, filtered
and rendered, they can be a source of subtle problems. You can use a divide and
conquer technique here to identify the source of the rendering error. You can
switch to point sampling and disable mipmapping if you suspect that the texture
filtering isn’t working as you expect. You can load diagnostic patterns into the
texture itself to obtain a rendering with your diagnostic texture. For instance,
loading checkerboard patterns into a texture, loading different patterns into
different mipmap levels, or tinting mipmap levels to identify how the filtering
of texels is being performed.

The file tint . cpp in the sample code contains a function to tint the mipmap
levels of an existing texture. The rt_Texture sample uses this function to
implement its tinting option for visualizing how mipmap levels are used.

22.6.10 Processor Specific Graphics Processing

Processor specific graphics processing, or PSGP, refers to the portion of the
software vertex processing pipeline supplied by a CPU vendor for use with
Direct3D. PSGP is the portion of Direct3D that uses instruction set exten-
sions? from the various CPU vendors to speed up software vertex processing.
Sometimes you may encounter a rendering problem that only occurs on spe-
cific CPUs with specific software vertex processing operations. You can disable
PSGP to validate this hypothesis. If the operation is performed correctly when
PSGP is disabled, then the odds are high that the problem is a result of a bug
in the PSGP processing for that particular processor.

The registry keys under HKLM\Software\Microsoft\Direct3D are used to
control PSGP and other CPU instruction set extensions used by Direct3D and
D3DX. For each key, a value of one disabled the corresponding CPU specific
processing, while a value of zero (or a missing registry key) enables the corre-
sponding CPU specific processing.

2Such as Intel’s SSE or AMD’s 3DNow! instruction set extensions for SIMD processing.

22.7. DIRECTX DIAGNOSTIC TOOL 809

Key Description

DisablePSGP Disables PSGP in the core runtime
DisableD3DXPSGP Disables PSGP in D3DX
DisableMMX Disables MMX processing

Table 22.3: Registry keys to disable CPU specific software processing.

22.6.11 Interfering Applications

You may experience “hiccups” in the smooth rendering of scenes in your ap-
plication if other applications are interfering with your Direct3D application.
Even a simple resource monitoring tool such as perfmon can cause stuttering in
the smooth animation of images. The stutter occurs as these other applications
wake up and request attention from the CPU. During this time, your applica-
tion is not running and is not updating its display. A common source of this
problem is the FINDFAST utility that comes with Microsoft Word (and Office).
This utility is intended to operate in the background as an indexing agent in
order to build an index of documents on your system so that relevant text within
those documents can be located quickly. You can disable this application with
a setting in Word’s options.

The NetMeeting program from Microsoft is a particular source of prob-
lems for DirectX applications. The default configuration of NetMeeting dis-
able Direct3D applications while it is running. To change the default behavior,
go to “Tools, Remote Desktop Sharing Settings” and uncheck the appropriate
checkbox.

On Windows 98 platforms, the Direct3D runtime itself uses a helper ap-
plication that can interfere with the proper execution of DirectX applications
when things go wrong (as is often the case during development). On Windows
98, the ddhelp program may be left in an orphaned state when your Direct3D
application crashes and exits. You must kill the ddhelp process in order to run
your program again.

22.7 DirectX Diagnostic Tool

The DirectX Diagnostic Tool is included with the Direct3D runtime and is
always installed. A screen shot of the dialog displayed by the diagnostic tool
is shown in figure 22.1. This tool will report the exact versions of all files
installed with DirectX as well as additional information like the OS version
and service pack level and information about the hardware configuration of
the machine. It can be started by selecting “Start, Run..., dxdiag”. The
“Save All Information...” button can be used to save all the information to a
file. This can be very helpful in identifying problematic configurations during
testing or customer support. The DirectX Files page of the dialog will show
information about every DirectX DLL file and will flag debug versions of these
files as potential performance problems.

810 CHAPTER 22. DEBUGGING

o] =0l
System | Direct Fies | Display | Sound | Music | Inpu | Network | Mers Help Syser Diteci Fis | Doy | Sound | Music | nput | Netwrk | Mere Helo
T T - o I Name [ession [Atrbutes | Language [Date| Siee| |
i toal eparts detated informalion about the Direct campanents and drivers installed on your system. |t ets you tes
functionaity, disgnose problems, and change wour system configuration to work best. & ddawdl 501.26000881 Final Debug Englch 10/30,2001 071000 467968 J
derawex. il 50021340001 Final Retail English 124741933 05.00.00 24336
A deapisps 50021340001 Finsl Debug English 12/1441998 2200.00 18852
IF Kr hat, the biem, click the te tab ab Othe . the “Mext Page’
Baton befors tviok aach poge nsauonge, T cPeRte tah aaove. Hiherwas, you cen tes the e Page dadedl 50126000861 Find Fetal Engish 10/30/2001 031000 1178624
d3dad di 5.01.2600.0881 Final Debug English 10/30/2001 0210:00 1512448
The "More Help" page lists some other tools that may help with the problem you are experiencing. didéddl 501.2600.0881 FindDebug Englih 10/16/2001 032602 693248
A d3defs.di 5.01.2600.0881 Final Debug English 10/30/2001 081000 208384
e A d3dim dI 50021460001 FinalDebug Engish 12/1441939 230000 709332
BT DEATIE: ek ey, Meveni el L 220 A dadm7o0dl 50126000881 FindDebug Ergich 10/30/2001 071000 308312
Cemprlarien: (RIREUNE A d3dret dl 50128000881 FinalDebug Engish 10/20/2001 071000 96256
=i St ettt ANEDReeare! () B M] A dadempdl 50021460001 FindDebug Ergish 12/14/1333 230000 591120
Language: English (Regional Setting: Enclich) Adidmdl 50021340001 Find Debug Engish 12/141399230000 843024
Frocessor. Intel Pentium lll, 870MHz A dadwol di 50021350001 Final Debug Engish 12/14/1933 230000 59152 =l
Memaony: 128MB RAM
(Peglls: RS) LD ety [+ Severalfles (ddrar dll drapi oo, dachef dl. oto) are debug versiors, which vl dower Thar T rekal version
Diteci Wersion: Direot 8.1 (4.08.01.0881)
DxDiag 5.01.2600.0881 Unicode Copyright © 1938-2001 Micrazoft Corporation. Al rights reserved.

Hel Save All informaton..| Esit | Help Save All Information, Ext

Figure 22.1: DirectX Diagnostic Tool. (a) The System page. (b) The DirectX
Files page.

If you should ever need to report a driver problem to a hardware vendor, or
a problem with the runtime to Microsoft, a copy of the diagnostic output should
always be included to help them reproduce the problem.

22.8 DirectX Control Panel Applet

The DirectX SDK installs a control panel applet that provides you with addi-
tional debugging tools. This control panel applet is not present in the end-user
installations of the runtime. The main and Direct3D pages of the control panel
applet dialog are shown in figure 22.2. The main page displays the version of
DirectX installed allows you to invoke the DirectX Diagnostic Tool discussed in
the previous section.

There are three groups of controls on the Direct3D page that will help you
with your debugging. The “Debug/Retail D3D Runtime” group allows you
to choose between the retail and debug runtimes if you installed the debug
runtime when you installed the SDK. If you installed the retail runtime with
the SDK, then you will not be able to select the debug runtime from the control
panel applet. For Windows XP, you should examine the readme.txt file in
the SDKDev directory of the SDK for additional instructions about installing
the debug runtime. The control panel affects only “hot switchable” runtime
components and will only affect the DirectX graphics components for Direct-
X 8. The exact files affected will be shown by the diagnostic tool. If you
need to restore the retail runtime for components that aren’t hot switchable or
components from previous versions of DirectX, then you can only change these
by uninstalling the SDK to remove the debug version of the components and
reinstalling the SDK with the retail runtime selected.

The “Debug Output Level” group allows you to change the amount of mes-
sages send to the debug output stream. Moving the slider towards “More”
results in additional messages from the debug runtime about the behavior of
your program. You can move the slider towards “Less” if the debug output

22.8. DIRECTX CONTROL PANEL APPLET 811

X x|
Directbusic | DitectPlay | DiectSound | Directusic | DiectPlay | Directsound |
Directr I Direct3l I DirectDraw I DiirecHrput Drirech? Direct3D I DirectDraw I Directinput
Directx Yersion nfarmation Debug Dutput Level Debug/Retal D3D Runtime

@ Use Debug Yersion of Direct3D
© Use Retail Version of Direct3D

@ Direct 8.1 is installed

More detailed version information is available in the

7 5 Debuggng———
Direct Diagnostic Toal. Click the DxDiag buttan ta i DaDiag.. IV il Hardiware Acceleralion I
shart this tool now: I Enumerate Ramp Rasterizer ™ Ereak on Memory Leaks
n ™ Bieak onD3D Emar
™ Epumerate Reference Rasterizer Break OnalodlD: [0

Luivers
- Direct3D HAL
Ramp Emulation
(- RGB Emulation

Mote: Only affects interfaces for
Direct< 8 and higher.

Ok I Cancel fapply aK I Cancel Lpply
(a) (b)

Figure 22.2: DirectX Control Panel Applet. (a) The DirectX page. (b) The
Direct3D page.

is producing so many messages that the debugger is spending too much time
processing the messages. The value of the slider is used by a process once it
starts; changes to the slider while the program is running won’t take effect until
the program is restarted.

The “Debugging” group instructs the runtime to transfer control to the
debugger under certain conditions. The Direct3D runtime will check for leaked
memory when the DLL is detached from the process, usually at the time the
process exits. The runtime only checks for memory that it has allocated that
has not yet been released; it does not check for leaks in other memory that may
have been allocated by the process. The “Break on Memory Leaks” check box
causes the runtime to transfer control to the debugger when the process exits
and memory allocated by the runtime has not been properly freed. A message
in the debug output will give the allocation ID of the leaked memory.

The allocation ID is a sequential number that is incremented each time the
Direct3D runtime allocates memory on behalf of the application. The first
allocation performed by the runtime will have an allocation ID of one. You
can enter an allocation ID into the “Break On Allocld” edit box to have the
runtime transfer control to the debugger when the memory corresponding to
the ID is allocated. To debug leaked memory reported by the runtime, you can
first check the “Break on Memory Leaks” box and run your program until the
breakpoint is encountered at process exit. Then, end debugging of the current
process, uncheck the “Break on Memory Leaks” box, enter the allocation ID
reported in the debug output into the “Break on Allocld” edit box and run the
application again with the same input. Now a breakpoint will be triggered when

812 CHAPTER 22. DEBUGGING

the corresponding leaked memory is allocated. You can examine the call stack
to find the place in the application where the error occurred.

The “Break on D3D Error” check box causes the runtime to trigger a break-
point whenever a failed HRESULT is returned by the runtime. Note that not all
failed HRESULTs indicate a bug in your code. For instance, a call to Check-
DeviceFormat may return a failed HRESULT to indicate no support for the sup-
plied arguments. The “Break on D3D Error” checkbox will cause a breakpoint
to be triggered in this instance. The checkbox affects only the Direct3D run-
time, but if a function or method in D3DX or another library calls a runtime
method that fails, a breakpoint will be triggered.

The “Allow Hardware Acceleration” check box will disable HAL support if it
is unchecked, leaving only the reference device type available to an application.
Both HAL and reference device types are available if it is checked.

The remaining controls on the Direct3D page are for legacy DirectDraw and
Direct3D support and have no effect on applications using the 8.1 interfaces.

22.9 Getting Help

Sometimes all we need to solve our problem is someone willing to listen to us
explaining them. Many times, we discover the reason for our difficulties once
we attempt to explain them to someone else. For more difficult problems, its
helpful to talk them over with another programmer experienced with Direct3D.
The internet has enabled large communities of physically disparate programmers
to join forces and help each other in solving their problems.

Discussion forums generally come in one of three forms on the internet:
mailing lists, usenet newsgroups and web forums. A search engine, such as
http://www.google.com, can be used to find relevant web sites and web-based
discussion forums. A mailing list works just like electronic mail between two
individuals, except that mail sent to the list is broadcast to all subscribers on
the list. Usenet newsgroups are similar to mailing lists, except that messages
are delivered by a store and forward technique among a network of servers.
Usenet client software connects to the news server to read and post messages in
the newsgroups. A sampling of relevant usenet newsgroups and mailing lists is
given in table 22.4.

Microsoft runs the LISTSERV mailing list software on the host discuss.-
microsoft.com. This machine hosts a variety of developer mailing lists. These
are not official support channels and the information is provided purely by the
grace of the participants. Microsoft staff may participate, but they are under
no obligation to answer your questions. That being said, they are generally a
friendly bunch and there are many other subscribers on the mailing lists that
are willing to help out their fellow programmer.

To subscribe to a mailing list through LISTSERV, send a mail message to
address listed in the table with the phrase “subscribe list name” in the body
of the message. The LISTSERV software will respond with a welcome message
describing the charter of the mailing list and the behavior expected of all list

22.9. GETTING HELP 813

General C++ Programming
comp.lang.c++.moderated
comp.lang.c++

General Graphics Programming
comp.graphics.algorithms
comp.graphics.visualization

General Windows Programming
microsoft.public.win32.programmer.* hierarchy

DirectX Programming
microsoft.public.win32.programmer.directx.* hierarchy
microsoft.public.win32.programmer.directx.graphics
microsoft.public.win32.programmer.directx.graphics.shaders
microsoft.public.win32.programmer.directx.video
microsoft.public.vb.directx

DirectXDev at listserv@discussms.hosting.lsoft.com
DirectXAV at listserv@discussms.hosting.lsoft.com

Table 22.4: Community newsgroup and mailing list resources.

members. For instance, sending HTML formatted email or attachments to a
mailing list is typically not allowed.

Usenet newsgroups are organized in a hierarchy by subject. Hierarchies are
named by using a shell style wildcard, such as the comp.lang.* hierarchy for
the discussion of programming in a variety of languages. The comp.* hierarchy
is for the discussion of computing in general and contains thousands of news-
groups. This hierarchy is typically carried by the news servers of an internet
service provider. Check with your provider to find out about the availability of
newsgroups in the comp. hierarchy.

Microsoft operates a usenet newsgroup server on the host news .microsoft.-
com. This server provides the microsoft.* hierarchy of newsgroups. Microsoft’s
server exchanges messages with other usenet servers, so you may be able to
access these newsgroups through the server operated by your ISP. However, you
can depend on the microsoft.* newsgroups appearing on news.microsoft.-
com.

22.9.1 Asking Smart Questions

One very important thing to remember when asking for help from the commu-
nity is that the people who can help you aren’t paid to help you. They help
others because they are the sort of person that likes helping others. When you
ask a question of the community, you want to ask a smart question that shows
you’ve tried to figure out your problem on your own, but you just need a little
help.

814 CHAPTER 22. DEBUGGING

First, you should try not to antagonize people who can help you. This means
sticking to accepted norms of posting behavior, such as using plain text encoding
on messages posted to mailing lists and usenet and avoiding HTML encodings
of your message. You should pick one forum that you think is most appropriate
for your question and ask it there. If you post a copies of your question to
multiple forums, you give people the impression that you didn’t take the time
to find an appropriate forum. This is considered rude and antagonizes people
who might help you.

Having found the appropriate forum, make sure that you include all the
relevant information in your question. Posting a long code excerpt with the
question “Why doesn’t my code work?” just makes you appear lazy expecting
other people to debug your code for you. Posts that make the author appear lazy
or demanding of others are generally ignored. Remember that you are talking
to volunteers, not slaves. They are not obligated to help you. If you're posting
code, remove any code that is not relevant to the problem at hand so that the
reader can focus on what is wrong without having to sift through many lines of
source code. Include information about what version of DirectX you are using,
what operating system you use for development and testing, and what graphics
card you are using to test your code. You should look in the documentation for
the answer you need before posting. If you haven’t found what you need in the
documentation, then mention that in your post so that the reader will know
you’ve done your homework.

I have only touched on the basics of asking a smart question. More spe-
cific and detailed suggestions on how to ask smart questions are given by Eric
Raymond in his web essay “How To Ask Questions The Smart Way”.?

22.9.2 THYV Developer Relations

Sometimes the information you need is specific to a particular video card, par-
ticularly when investigating problems that could be related to the driver. The
contact information for some IHVs is listed in table 22.5. If your hardware ven-
dor isn’t listed, then consult their web site for developer related information.
Hardware manufacturers want to help developers get the most out of their cards
and generally have a staff of engineers to assist developers. The developer areas
of their web sites often have white papers, “how to” articles and additional doc-
umentation specific to individual cards, such as vendor-specific four character
surface formats, performance tips, and special texture stage setups for achieving
special effects.

22.10 Filing Bug Reports

After investigating a problem, you may come to believe that the bug is not in
your code, but in the driver or the runtime. At this point you should file a bug
report on the problem. After filing the bug report, you can decide if you want to

Shttp://www.catb.org/~esr/faqs/smart-questions.html

22.10. FILING BUG REPORTS 815

Company Contact Information

3DLabs developer.relations@3dlabs.com
http://www.3dlabs.com/support/developer/index.htm

ATI devrel@ati.com
http://mirror.ati.com/developer/index.html

NVidia DeveloperRelations@nvidia.com
http://developer.nvidia.com

Matrox devrel@matrox.com

http://developer.matrox.com

Table 22.5: IHV Contact Information

wait for action from the vendor or if you want to attempt to code a workaround
for the bug.

The most important thing to remember about bug reports is that the recip-
ient of a bug report is a person just like yourself. Remember to be courteous
and as informative as possible in the bug report. If you had the job of assigning
priorities to bug reports, would you assign a high priority to bug reports that
were insulting or provided little useful information on how to reproduce the
bug?

The best way to file a bug report is to provide a simple program in source
code form that reproduces the bug. When you encounter a bug, first try to
write the simplest program that reproduces the problem. You can use the App-
Wizard from the SDK, or the rt_Apprentice sample application to generate
the program. Along the way you may discover that the problem was really in
your application.

Screen captures of improperly rendered output also help, but remember to
keep the file size to a minimum. Rarely do screen shots need to be pixel accurate
in order to portray the problem; converting them to JPEG format will reduce
the filesize without compromising their ability to portray the issue.

You should always include the following items in your bug report:

e OS version and service pack level.

e DirectX version.

DirectX Diagnostic Tool output.

e An accurate, step-by-step set of instructions for reproducing the problem.

A sample application that reproduces the problem, preferably as source
code.

The DirectX Diagnostic Tool includes detailed OS and DirectX version infor-
mation, but including these in the body of your bug report helps the recipient
see the relevant versions at a glance.

If you can’t reproduce the problem in a small sample program that you
can provide as source, then at least provide a copy of your program that does

816 CHAPTER 22. DEBUGGING

reproduce the problem. If the size of the program and its associated data (best
packaged as a ZIP file) is large, consider uploading the relevant package to a
web site and provide a URL for it. If a URL is provided, make sure that the
package will be available on the web site until you get feedback that the bug
has been addressed.

If you believe the bug is within the Direct3D runtime, or within the refer-
ence rasterizer, you can submit the bug to Microsoft at the address directx@-
microsoft.com. For driver bugs, you can report them to the contact address
for the hardware vendor. See section 22.9.2 for a list of contact addresses for
some popular hardware vendors. It is a good idea to send a copy of driver bug
reports to Microsoft as well, so that they can incorporate the feedback into the
Windows Hardware Quality Labs tests that validate drivers.

