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Overview and Summary 
 
This document is intended as a generic guide for the use of bipolar coordinates. These 2D coordinates 
serve as a simple example of general curvilinear coordinates in n dimensions and allow one to see how 
the underlying tensor machinery operates. In addition, bipolar coordinates can be represented as an 
analytic mapping from Cartesian coordinates, an aspect which can only occur with 2D coordinates. The 
electrostatics problem of two infinite, parallel, conducting cylinders provides a real-world application of 
the use of bipolar coordinates, but the reader uninterested in that subject may ignore Sections 10 and 11. 
With the addition of an azimuthal third variable, bipolar coordinates become either toroidal or bispherical 
coordinates, but the essence of these two 3D coordinate systems lies in the bipolar coordinates from 
which they are constructed by azimuthal rotation. If bipolar coordinates are simply extruded in the z 
direction, the resulting 3D system is called bi-cylindrical coordinates.  
 
 Section 1 reviews polar coordinates, then Section 2 discusses the bipolar coordinates we call ξ and u 
with respect to their level curves -- certain red and blue circles. The forward transformation is stated.  
 
 Section 3 displays the metric tensors and scale factors for both polar and bipolar coordinates.  
 
 Section 4 states the bipolar inverse transformation.  
 
 Section 5 shows how 2D bipolar coordinates are related to 3D toroidal, bi-spherical and bi-cylindrical 
coordinates.  
 
 Section 6 gives geometric interpretations of the bipolar coordinates ξ and u.  
 
 Section 7 discusses a certain "circle angle" θ for the blue circles relative to their centers.  
 
 Section 8 calculates some differential operators in bipolar coordinates using Ref [3] templates.  
 
 Section 9 shows how the Laplace equation is separable in bipolar coordinates but the Helmholtz 
equation is not.  
 
 Section 10 states and then solves the electrostatics problem of two infinite, parallel, conducting 
cylinders using bipolar coordinates. The potential φ is first obtained, and from it the electric field E. From 
that the surface charge n is computed and then integrated to get the total charge q (per length of cylinder). 
This yields an expression for the capacitance (per unit length) for the two-cylinder problem. The surface 
charge density is expressed first in terms of bipolar coordinate u and then in terms of the circle angle θ, 
and finally plots of n(θ) are shown for various values of bipolar coordinate ξ.  
 
 Section 11 fills in some extra details of the two-cylinder problem. It is first shown how to relate the 
bipolar coordinate parameters a, ξ and u to the radii Ri and center-separation b of the cylinders. This 
allows the capacitance to be expressed in terms of R1, R2 and b. The last sections discuss the cylinder-
over-plane and concentric cylinders versions of the problem.  
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 Section 12 shows how to compute the metric tensor and scale factors for an arbitrary transformation 
connecting Cartesian to curvilinear coordinates in n dimensions. The metric tensor and scale factors are 
then computed for polar and bipolar coordinates with some assistance from Maple.  
 
 Section 13 discusses conformal mapping and then analyzes both polar and bipolar coordinates in 
terms of their conformal maps w = f(z) where f(z) is analytic. For bipolar coordinates the mapping is 
drawn in some detail showing how the w-plane maps to the z-plane. The last section revisits the two-
cylinders problem and shows how it can be instantly solved using conformal mapping (and that fact that 
analytic mappings of harmonic functions are harmonic functions).  
 
 Section 14 derives certain facts quoted earlier. The bipolar inverse transformation is obtained from 
the forward transformation. The equations for the circles of the bipolar level curves are derived. Finally, 
the geometric interpretation of bipolar angle u is verified.  
 
 Section 15 compares our bipolar coordinates ξ and u and those of other sources, with special 
emphasis on Morse and Feshbach.  
 
 Appendix A does a Fourier analysis of the surface charge density on a two-cylinder capacitor.  
 
 A few References are then provided.  
 
 When equations are restated, their equation numbers are put into italics. 
 
  SI units are used throughout. 
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1. Reminder of regular polar coordinates 
 
Polar coordinates r and θ can be taken to have these ranges 
 
 0 ≤ θ ≤ 2π   0 ≤ r ≤ ∞ .       (1.1) 
 
The relationship between polar coordinates and the usual Cartesian coordinates x and y is,  
 
 x = rcosθ 
 y = rsinθ           (1.2) 
 
which we refer to as "the forward transformation".  
 For curvilinear coordinates {x'i} in n dimensions, the "level surface for coordinate x'i" is a surface 
on which the coordinate x'i is constant and all the other coordinates vary. A level surface has dimension 
n-1. For example, in spherical coordinates the level surfaces for coordinate r are a set of spheres. In two 
dimensions the level surfaces are just curves, and we shall refer to them as "level curves".  
 In polar coordinates as shown below, the level curves for r are the blue circles centered at the origin, 
while the level curves for θ are the red rays emanating from the origin.  
 

                (1.3) 
 
No special work is required to find an "interpretation" of the meaning of r and θ:  r is the radius of one of 
the blue circles, θ is the angle of one of the rays. Whereas θ is dimensionless, dim(r) = meters.  
  
Having defined above the notion of a level surface (a level curve in 2D), we must now mention the 
distinct notion of a "coordinate line". For curvilinear coordinates {x'i} in n dimensions, the "coordinate 
line for coordinate x'i" is a curve on which the coordinate x'i varies while all other coordinates stay fixed. 
For example, in spherical coordinates, a radial ray is a coordinate line, since on such a ray r varies while 
both θ and φ are constant. Thus, in the drawing above, each θ level curve (red ray) is an r coordinate line 
(r varies on a ray), and vice versa.  It is just terminology, but we shall need it below.  
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2. Bipolar Coordinates 
 
There are several different ways to define bipolar coordinates. In this document, the two coordinates will 
be called ξ and u with the following ranges 
 
 -∞ ≤ ξ ≤ ∞   0 ≤ u ≤ 2π  // both ξ and u are dimensionless   (2.1) 
 
The Greek letter ξ ("xi") is pronounced "zeye" in English.  
 
The relation between bipolar coordinates u and ξ and the Cartesian coordinates x and y is given by this 
forward transformation,  
 
 x  =  a shξ/(chξ - cosu)         (2.2) 
 y  =  a sinu/(chξ - cosu) 
 
where a is an arbitrary positive real number. Notice that there is no such extra number like "a" in polar 
coordinates as shown in (1.2). That is because polar coordinates has only one "pole" whereas bipolar 
coordinates has two poles, and 2a tells how far apart these poles lie.  
 
The level curves for ξ and u are considerably more complicated than they are for polar coordinates. Here 
they are (taken from wiki) 

     (2.3) 
 
            http://en.wikipedia.org/wiki/Toroidal_coordinates 

http://en.wikipedia.org/wiki/Toroidal_coordinates�
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Very close to each pole, the level curves look like those of polar coordinates in Fig (1.3).  
  
There are perhaps 20 things to be said about this picture, and we just have to start somewhere and 
eventually get everything stated.  
 
The blue circles  [ the ξ  level curves ]  
 
The blue level curves are all perfect circles, but they are not concentric circles! These circles have the 
historical name Circles of Apollonius (of Perga) who discovered their interesting properties around 230 
BC. One can see that the blue circles on the right form a set of circles which are zeroing in on the right 
"focal point" which is located at (x,y) = (a,0). Each of these blue circles is labeled by a value of 
coordinate ξ. Circles which are very tight around the focal point on the right have large positive values of 
ξ with +∞ as the limit. As the circles move away from the focal point and get larger, they have smaller 
values of ξ. Eventually the blue circles get very large and have a limiting circle which is in effect the y 
axis. This limiting circle has value ξ = 0+ε and has an infinite radius and one imagines it curving off to 
the right after a few miles of hugging the y axis. The full set of blue circles on the right then has ξ in 
(0,∞).  
 The blue circles on the left are mirror images of the blue circles on the right. If a circle on the right 
has a label ξ = +3, then the mirror image circle on the left has label ξ = -3. The limiting circle on the left 
which has shrunk around the left-side focal point has ξ = -∞.  The huge circle with infinite radius with ξ = 
0-ε one imagines runs up the y axis and eventually curves off to the left to form that huge circle. The full 
set of blue circles on the left has ξ in (-∞,0).  
 We show in Section 14 that the blue level curves really are circles with the following equation,  
 
 (x - xc)2 + y2 = R2   xc = a/thξ  R = a/|shξ|   (2.4) 
 
and this equation applies to both the left and right set of blue circles. On the right ξ > 0 so the circle center 
lies at xc > 0. On the left, ξ < 0 and the circle center lies at xc < 0. In either case R > 0 of course. The 
abbreviations are sh for sinh and th for tanh, the hyperbolic functions. No blue circle ever crosses the y 
axis. To see this on the right, one need only show that xc > R, and this follows from (2.4) since chξ > 1.  
 So hopefully at this point the reader has a good understanding of how the blue circles are labeled with 
the coordinate ξ.  A blue circle is a locus of constant ξ. It is a ξ level curve.  
 
Here we have Maple generate some blue circles for selected values of ξ  using a = 5:  
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      (2.5) 
 
If one were to double a to a = 10, the blue circles would look exactly the same except the x and y axis 
numbers would all be doubled. So parameter ξ really determines the "shape" of a blue circle with respect 
to the focal point.  
 
The red circles   [ the u level curves ] 
 
We show in Section 14 that the red level curves in Fig 2.3 lie on circles with this equation,  
 
 x2 + (y- yc)2 =  R2   yc = a /tanu  R = a/|sinu|  .   (2.6) 
 
To verify that these circles all pass through the two focal points (x,y) = (±a,0), we evaluate: 
 
 x2 + (y- yc)2 =  R2 

 a2 + (yc)2 =  R2   ? 
 a2 + a2 /tan2u  =  a2/sin2u  ? 
 1 + cos2u / sin2(u)  =  1/sin2u ? 
 sin2u + cos2u = 1   ?  yes!  
  
The red circles are more complicated than the blue circles for several reasons. A key reason is that the u 
level curves are not really the red circles, they are truncated red circles. The truncation is along the line 
between the two focal points. Each red circle in effect forms two truncated circles, and each of these 
truncated circles has a different value of u !!  By truncated circle we mean a circle which has one piece 
removed -- a partial circle ( a "segment" seems to be the 2D interior of a partial circle).  
 
In these examples, the truncated circles are shown in red:  
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       (2.7) 
 
 
Because every circle is truncated at the two focal points, it is a simple fact that all these circles touch the 
two focal points, as Fig (2.3) shows. 
 A second complication is the manner in which the truncated-circle level curves are labeled. One is 
free to set the range to be (-π,π) or (0,2π) or something else (as long as the range is 2π wide), and one is 
also free to set the angle at which the coordinate is zero. In the following, we choose the range (0,2π) and 
we set u = 0 for points on the x axis which have |x| > a.  Other choices are discussed in Section 15.  
 First, here is a selection of upper truncated-circle u level curves, each with a u label :  

   (2.8) 
 
The coordinate u is an angle, but we have yet to show any interpretation of this angle -- that is coming 
soon. Right now we want to show how different values of u label the different truncated circles. We can 
start with a truncated circle which would be a straight red line joining the two focal points (which in this 
picture are drawn at ± 1 instead of ± a). This red line has u = π. Then as we move "up" a little bit, we get 
to the relatively "shallow" truncated circle which is marked by u = (7/8)π. As these truncated circles 
become "fuller", the u value drops off. At u = π/8 the truncated circle has a very large radius. The limiting 
case is an infinite circle with u = 0 which, if drawn above, would occupy the two regions of the x axis 
(-∞,-1) and (1,∞).  
 To summarize, the red truncated circles for y ≥ 0 have u values in range (0,π) and the general way this 
works is shown in Fig (2.8).  
 We now look at some of the lower truncated circles:  
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   (2.9) 
 
We start again with the focal point connector line u = π. Then as the truncated circles become fuller going 
downward, the u value increases. By the time we have reached u = (15/8)π, the truncated circle is very 
large. The limiting case here is what we might call u = 2π-ε and this is the same "truncated circle" as the 
case u = 0 described above. That is to say, it occupies the two regions  (-∞,-1) and (1,∞).  
 
The following drawing attempts to show the range of u on the two sides of the coordinate diagram,  
 

   (2.10) 
 
A particular red circle is highlighted, and it's upper part has the value u indicated in the drawing. 
 The astute reader might notice that the angle u appears to be the angle which is tangent to the heavy 
red circle as it passes through the left or right focal points. This observation is in fact correct and will be 
discussed below. If one were to zoom close in around the right focal point, for example, one would find 
that the emanating red lines are exactly the rays of a polar coordinate system (like Fig 1.3) centered at the 
focal point, and u is in fact just the standard polar angle θ of that zoomed-in system.  
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 When we select (0,2π) to be the range for coordinate u, we find that there is a discontinuity where we 
have to jump from u = 0 to u = 2π on the ray from the right focal point to x = +∞ ( and similarly on the 
ray from the left focal point to x = -∞). If one were interested mainly in the region of space generally 
between the focal points, this discontinuity would be of no concern. However, suppose one were 
interested in computing the 2D electrostatic potential everywhere for the upper truncated portion of the 
heavy red circle shown in Fig (2.10), and suppose the heavy red circle had coordinate u = u0. In this case, 
if one uses range (0,2π) for u, one finds a discontinuity in u right in the middle of the space of interest. It 
is much better in this case to use (u0, u0+2π) as the range for u, since that puts the discontinuity right on 
the red circle (u = u0) so it does not interfere with the surrounding region where we want to compute the 
potential. That choice is indicated here:  

    (2.11) 
 
 Hopefully at this point the reader has a good understanding of how the red truncated circles are 
labeled with the coordinate u  A red truncated circle is a locus of constant u. It is a u level curve.  
 Although we have hinted at an "interpretation" of the coordinate u, nothing has been said yet about 
interpreting the coordinate ξ. We shall return to the subject of interpretation in Section 6 below, but first 
some supporting facts will be developed.  
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3. The metric tensor, scale factors, distance, and the Jacobian  
 
Once again, it is helpful to think first of polar coordinates, then come back to bipolar coordinates.  
 
Polar Coordinates 
 
The polar coordinate system is an orthogonal system. This means that at any given point in the x-y plane, 
the two level curves passing through that point are at right angles. This is quite obvious looking at the 
little graph of concentric circles and rays shown in Fig 1.3 above. Orthogonality of a curvilinear 
coordinate system is directly connected to the fact that the "metric tensor" is diagonal, and its diagonal 
elements are the squared "scale factors".  For example, as shown in Section 12, the metric tensor for polar 
coordinates r and θ has this form 
 

 metric tensor ḡ'ij  =  ⎝
⎛

⎠
⎞ grr  0 

 0 gθθ   =  ⎝
⎛

⎠
⎞ hr2  0 

 0 hθ2    =  ⎝
⎛

⎠
⎞ 1  0 

 0  r2    hr = 1  hθ = r 

 
 Jacobian = hrhθ = r  so dA = dxdy = rdrdθ      (3.1) 
 
In the polar coordinates case, the scale factors are hr = 1 , hθ = r. The Jacobian is the thing that appears in 
the "volume element"  dxdy = Jdrdθ  and we are used to this volume (actually area) element as rdrdθ.  
 We shall have more to say about metric tensors in Section 12. The significance of the metric tensor is 
that it describes differential Cartesian distance ds in terms of coordinate differentials. For example,  
 
 (ds)2 = (dx)2 + (dy)2  // Cartesian coordinates, x1 = x, x2 = y 
 
 (ds)2 = ΣkΣm ḡ'km dx'k dx'm       // the x'k are some non-Cartesian coordinates (perhaps x'1= r) 
 
 (ds)2 = Σk ḡ'kk (dx'k)2   =  Σk h'k2 (dx'k)2  // for a diagonal metric tensor,  h'k  = ḡ'kk  
 
 (ds)2 =  hr2 (dr)2  +  hθ2(dθ)2  = (dr)2 + r2(dθ)2 // for polar coordinates: x'1 = r, x'2 = θ (3.2) 
 
This last result is familiar if one draws a little right triangle with edges dr and (rdθ).  
 Imagine a general curvilinear coordinate system with n coordinates, the sth coordinate of which is 
called α. One could define a differential vector dx' = (0,0,....dα, 0,0....). The length of vector dx' in 
Cartesian space would then be ds = hαdα. This is the meaning of the "scale factors" like hα. In more 
detail,  
 
 (ds)2 = |dx'|2 = dx' • dx'  = ΣkΣm ḡ'km dx'k dx'm  =  ḡ'ss (dα)2 =  hα2 (dα)2  =>    ds = hα dα 
 
Notation: In our notation, the xi are Cartesian coordinates like (x,y) while x'i are some curvilinear 
coordinates like (r,θ), and the prime is needed to distinguish them. The primes are maintained while 
indices are numeric, but are dropped when the specific coordinate is used, as for example in h'1 = hr = 1 
for polar coordinate r. Then  ḡij = δi,j is the Cartesian metric tensor while  ḡ'ij is the curvilinear metric 
tensor. The overbar indicates that  ḡij is a covariant tensor, while the lack of overbars indicate that the x'k 
are contravariant vector components. See Section 12 in brief and Ref [3] for much detail.  
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Bipolar Coordinates 
 
These coordinates are also orthogonal. A careful inspection of Fig (2.3) shows that each intersection of a 
red line with a blue line is a right angle intersection. The metric tensor for bipolar coordinates is of course 
diagonal, and it happens that the two scale factors hξ and hu are exactly the same (see Section 12),  
 

 metric tensor  ḡ'ij  =  ⎝
⎛

⎠
⎞ gξξ  0 

 0 guu  =  ⎝
⎛

⎠
⎞ hξ2  0 

 0 hu2    hξ = hu  = a/(chξ–cosu)  ≡  h  

 
 Jacobian = hξhu = h2 = a2/(chξ–cosu)2   so dA = dxdy  = [a2/(chξ–cosu)2]dξdu . (3.3) 
 
The reason hu and hξ are the same is explained in Section 13:  2D scale factors are always the same when 
2D curvilinear coordinates arise from an analytic transformation of the Cartesian coordinates (that is to 
say,  a conformal map).  
 The differential distance is determined by the above metric tensor to be 
 
 (ds)2  =  Σk h'k2 (dx'k)2  =  [a2/(chξ–cosu)2] [ (dξ)2 + (du)2]   .    (3.4) 
 
 
4. The inverse transformation  
 
The forward transformation from (ξ,u) to (x,y) was given above as 
 
 x  =  a shξ/(chξ - cosu)         (2.2) 
 y  =  a sinu/(chξ - cosu)  . 
 
We show in Section 14 that the inverse transformation is given by  
 
 ξ = tanh-1[2ax/(x2+ y2 +a2)] 
 u = tan-1[ 2ay/(x2+y2- a2)]  .        (4.1) 
 
However, it turns out that the second equation has a certain ambiguity which is resolved by this sequence 
of steps to compute (ξ,u) from (x,y): 
 
 1. Compute ξ = tanh-1[2ax/(x2+ y2 +a2)]   // first line of (4.1) 
 2. Compute cosu = chξ - (a/x)shξ    // solve first line of (2.2) for cosu 
 3. Compute sinu = (y/x)shξ.      // ratio of lines in (2.2) 
 4. Compute u = arctan2Pi(sinu,cosu)    // get tan-1 in range (0,2π) 
 
Here arctan2Pi(y,x) is meant to return an angle in the range (0,2π). Notice that the sign of ξ is determined 
by the sign of x in step 1. Maple code for arctan2Pi(y,x) appears in (7.12) below.   
 
The inverse expression for ξ can be written in a different manner using the following identity,  
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 tanh-1 z  =  (1/2) ln (
1+z
1-z  )   |z| < 1  Spiegel Handbook 8.57 . (4.2) 

 
Our intention is to set z = 2ax/(a2+ x2+ y2) in this identity, but we first make sure that |z| < 1 : 
 
 |2ax/(a2+ x2+ y2)|  < 1 ? 
 2a|x| < a2+ x2+ y2  ? 
 -y2 < (a - |x|))2  ?     yes! 
 
Then 

 tanh-1 [2ax/(a2+ x2+ y2)]   =  (1/2) ln [
1 + 2ax/(a2+ x2+ y2)
 1 - 2ax/(a2+ x2+ y2)  

  =  (1/2) ln [
a2+ x2+ y2 + 2ax
 a2+ x2+ y2 - 2ax ]  =  (1/2) ln [

(x+a)2 + y2

(x-a)2 + y2  ] 

 
so we then have this alternate form for the ξ inversion formula: 
 

 ξ =  (1/2) ln [
(x+a)2 + y2

(x-a)2 + y2  ] .        (4.3) 

 
Taking a preliminary look at Fig 6.1 below we see these distances defined 
 
 s12 = | x + a |2  =  (x+a)2 + y2   since a = (a,0) 
 
 s22 = | x - a |2   =  (x-a)2 + y2 .        (4.4) 
 
Thus, our inversion formula (4.3) can be written 
 

 ξ  =  (1/2) ln(
s12

s22 )  =  ln (
s1
s2 )        (4.5)  

or 

 
s1
s2   = eξ  .           (4.6) 

 
This is the key property that Apollonius noticed with regard to the blue circles:  on any blue circle, this 
distance ratio is a constant and here we see that the constant happens to be eξ.  
 



  15 

5. Connection to Toroidal and Bispherical Coordinates 
 
Suppose we relabel the y axis of Fig 2.3 to be the z axis, and then rotate the right half of Fig 2.3 (ξ ≥ 0) 
360o about this new z axis to form a 3D figure. This rotation creates a third azimuthal coordinate φ in 
(0,2π) which is the amount of rotation about this newly named z axis. The blue circles become toroids, 
which is why this system is called toroidal coordinates. The two focal points become a ring, and this 
ring is not at the center line of the toroids, just as the focal point in 2D is not at the center of the blue 
circles. Meanwhile, the red truncated circles become spherical "bowls" some of which are shallow and 
some of which are very large and deep with a relatively small round opening. The opening of each 
spherical bowl is the disk of radius a which is formed by the rotation of the segment joining the two foci. 
The bowl for u = π is degenerate and is just this disk -- an extremely shallow bowl. The shallow bowls are 
sometimes used to model a liquid droplet lying on a flat surface (a "sessile droplet"). Recall the two 
extremal truncated circles at u = π and u = 0.  In the 3D toroidal system the one at u = π becomes a disk of 
radius a as just noted, while the one at u = 0 (or 2π) becomes an infinite plane with a radius-a hole in the 
center -- an "iris". For toroidal coordinates in this parameterization one has 
 
 x  =  a cosφ shξ/(chξ - cosu)  ρ  = a shξ/(chξ - cosu)   = x2+y2  
 y  =  a sinφ shξ/(chξ - cosu)  hξ = hu = a/(chξ - cosu) 
 z  =  a sinu/(chξ - cosu)  hφ = a shξ/(chξ - cosu)     (5.1) 
 
where the scale factors may be found using the method of Section 12. The hξ and hu scale factors are just 
those of the bipolar coordinates as shown in (3.3). The reader can find a general discussion of toroidal 
coordinates (ξ,u,φ) in Ref [4] along with a discussion of toroidal harmonics and the associated Mehler-
Fock transform.   
 
On the other hand, we can instead relabel the x axis of Fig 2.3 to be the z axis, and then proceed to rotate 
the top half of Fig 2.3 (0 ≤ u ≤ π) 360o about this new z axis to form a 3D figure, once again adding a 
third azimuthal coordinate. The blue circles in this case become spheres (non-concentric!), and this dual 
set of blue spheres provides the name of this system: bi-spherical coordinates. Meanwhile, the truncated 
red circles become strange objects of revolution. The shallower red truncated circles become American 
"footballs" while the fuller red truncated circles become fat donuts with no hole which have a center line 
of length 2a. The degenerate u = π truncated circle -- which is just the line segment joining the two foci -- 
remains that line segment in 3D. The u = 0 (or 2π) extremal donut is in fact all space except for the line 
segment joining the foci. One might use these limiting cases to model a "needle" or a 3D space with a 
needle-shaped cavity.  
 
Finally, if we simply extrude the bipolar coordinates into the plane of paper, direction z, we obtain a 3D 
coordinate system known as bi-cylindrical coordinates. These are the implicit coordinates used below in 
the treatment of the two cylinders (Section 10).  
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6. Interpretation of the coordinates ξ and u 
 
Consider the following marked up version of Fig (2.3), 
 

 
             (6.1) 
Interpretation of ξ 
 
Let x = (x,y) be some point as shown. Let the distances from this point to the two focal points be s1 and s2 
as shown, where s1 is the distance to the left focal point. The magic property of the blue Circles of 
Apollonius is that on any blue circle, one has s1/s2 = constant. We have in fact just proven this fact in 
(4.6) where we found that s1/s2 = eξ . Since ξ is a label for the blue circle, ξ is certainly constant on the 
blue circle, so s1/s2 = eξ is then constant over the blue circle ξ. So ξ = ln(s1/s2) is then one "interpretation" 
of the bipolar coordinate ξ. Notice that for points on the right, s1 > s2 so the ratio s1/s2 is > 1 which means 
ln(s1/s2) is positive, confirming our earlier comment that ξ > 0 for blue circles on the right side. If the 
point x were on the y axis, we would have s1 = s2 and ξ = ln(1) = 0, also in agreement with earlier 
comments. And if we zoom in on a tiny blue disk surrounding the right focal point, it will have s2 → 0 
and then ξ = ln(s1/s2) → +∞.  A tiny blue circle on the left then has ξ → -∞.  
 
Interpretations of u 
 
In Fig (6.1), as the point x moves along the red truncated circle labeled u, an ancient theorem about circles 
(the "inscribed angle theorem" see wiki) says that the angle we have marked as u -- whatever it is -- 
remains constant. As shown in Section 14,  this angle is exactly the bipolar coordinate u.   
 A second interpretation for u is obtained by moving the point x of Fig (6.1) down its red circle so it 
approaches the focal point (through which that red circle must pass). In this limit, the s1 line becomes 
nearly horizontal and then there are two equal "alternate interior angles" which are then both u.  
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       (6.2) 
 
Thus one can interpret u as the angle at which the red circle labeled by u intersects the x axis. This allows 
one to get a rough idea of the value u a given red circle has. In the Fig (6.2) perhaps u = 45o = π/4, in 
which case the entire red circle of interest has u = π/4. As noted earlier, u is the normal polar angle in 
range (0,2π) of the red circles which become "rays" when one zooms in close to the focal point.  
 As another example, we move point x to the shallowest upper truncated red circle: 
 

              (6.3) 
 
Again in the limit that point x approaches the focal point, we have equal alternate interior angles both 
equaling u, and in this case perhaps u = (5/6)π. One more example shows what happens for truncated red 
circles below the x axis:  
 

               (6.4) 
 
Here perhaps u = (7/6)π.  
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7. The circle angle θ 
 
For a blue circle on the right (label ξ > 0) we define the ordinary polar angle θ as shown here : 
 

     (7.1) 
 
In the capacitor problem broached in Section 9, we shall be interested in the surface charge on the 
surfaces of blue circles (cross sections of cylinders) in terms of angle θ. We would therefore like to know 
how θ is related to ξ and u. From (2.2) and (2.4) we write,  
 

 cosθ  =  sign(ξ) 
x-xc

R   =  sign(ξ) 
a shξ/(chξ - cosu) - a/thξ

 a/|shξ|     =   
a shξ/(chξ - cosu) - a/thξ

 a/shξ   

 

         =  
 sh2ξ/(chξ - cosu) - chξ

1    =  
 sh2ξ - chξ(chξ-cosu)

 chξ-cosu     =  
 chξ cosu - 1
 chξ-cosu     (7.2) 

 

 sinθ =  
y
R   =  

a sinu/(chξ - cosu)
 a/|shξ|    =  

|shξ| sinu
 chξ - cosu       (7.3) 

 

 tanθ = 
sinθ
cosθ  =  

|shξ| sinu
chξ cosu - 1  .        (7.4) 

 
The inverse equations are then provided by Maple,  
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which we rewrite as 
 

 cosu = 
chξcosθ+1
chξ + cosθ           (7.5) 

 

 sinu = 
|shξ|sinθ

chξ + cosθ           (7.6) 

 

 tanu = 
|shξ|sinθ

 chξcosθ+1           (7.7) 

 
where the last Maple result says  
 

 chξ - cosu = 
sh2ξ

chξ + cosθ  .         (7.8) 

     
Holding ξ fixed and differentiating with respect to u gives 
 
 sinu du = sh2ξ d(chξ+cosθ)-1 = - sh2ξ(chξ+cosθ)-2 [ -sinθ dθ ]  = sh2ξ sinθ (chξ+cosθ)-2dθ 
 
or, using sinu from above, 
 

 
|shξ|sinθ

chξ + cosθ du  =  sh2ξ 
1

(chξ + cosθ)2 sinθdθ 

or 

 du = 
|shξ|

chξ + cosθ dθ  => 
du
dθ   = 

|shξ|
chξ + cosθ      (7.9) 
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All results can then be summarized in a box:  
 
          

    Relations between θ and (ξ,u)    
du
dθ   = 

shξ
chξ + cosθ     (7.10) 

  

 sinθ = 
|shξ| sinu

 chξ - cosu   sinu = 
|shξ| sinθ

chξ + cosθ   chξ - cosu  = 
sh2ξ

chξ + cosθ  

 

 cosθ  = 
 chξ cosu -1
 chξ-cosu   cosu = 

chξ cosθ+1
chξ + cosθ    

1
chξ - cosu   = 

chξ + cosθ
sh2ξ   

 

 tanθ  =  
|shξ| sinu

chξ cosu - 1  tanu = 
|shξ| sinθ

 chξcosθ+1   h  =  
a

chξ - cosu   = a 
chξ + cosθ

sh2ξ   

 
 
Algebra can always use some checking. From the above we find 
 

 ds = hudu  = [h][du] = [a 
chξ + cosθ

sh2ξ  ][ 
|shξ|

chξ + cosθ dθ]  = 
a

|shξ| dθ  = Rdθ  = hrdθ  = ds . 

 
We can do two other quick checks. When u = 0, we expect to get θ = 0 : 
 

 cosθ = 
 chξ -1
 chξ-1   = 1  sinθ =  0 tanθ = 0   . 

 
A final check: as ξ → ∞, we expect θ = u since θ is then the same as the tangent angle to the red truncated 
circles, as shown for example in Fig (6.2): 
 

 cosθ =  
 chξ cosu

 chξ   = cosu  sinθ =  
|shξ| sinu

 chξ  = sinu  tanθ = 
|shξ| sinu

chξ cosu - 1   = tanu  . 

 
Here for selected values of ξ are plots of θ = θ(u) based on (7.4),  
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           (7.11) 
 
For ξ ≥ 3 say (tiny blue circles), the plot is basically θ = u, but for smaller values of ξ (larger blue circles) 
the plot is non-linear. In the case ξ = 0.1, for example, almost the entire range of u maps into a small 
region near θ = π. This is caused by the large blue circles flattening against the y axis where many u lines 
are encountered for a small range of θ near π.  
 Arctan2Pi is a custom Maple procedure designed to return an angle in the range (0,2π) : 
 

 (7.12) 
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8. Some Differential Operators in Bipolar Coordinates 
 
We shall use some general formulas from Ref [3], but first some strange notation needs explaining. In the 
subject of curvilinear coordinates treated from a correct tensor viewpoint, there exist three different kinds 
of "basis vectors" we call en, en and ên associated with a particular curvilinear system. All these vectors 
are vectors in Cartesian space. A vector B in Cartesian space can be expanded in three ways using these 
basis vectors, and we include a fourth expansion onto Cartesian components :  
 
 B = Σn Bn en Bn  = the contravariant components of vector B 
 B = Σn Bn en Bn  = the covariant components of vector B 
 B = Σn Bn ên Bn  = the unit-vector components of vector B 
 B = Σn Bn n̂ Bn = the Cartesian components of vector B .    (8.1) 
 
Notice the need for four different notations for the components!  In the last Cartesian line the unit vector 
notation  n̂  is  1̂  = x̂,  2̂  = ŷ  etc. The first and third expansions are related in a simple manner,  
 
   en  = hn ên  Bn  = (1/hn) Bn  => Bn en = Bn ên   (8.2) 
 
where hn is the scale factor for coordinate n. It turns out that hn is the length of basis vector en and that is 
why ên is a unit vector. Since unit vectors are convenient to use, we will use the B = Σn Bn ên expansion.  
 
The unit vector ên (or en) at some point x is always tangent to the coordinate line for coordinate x'n which 
passes through point x (the en are called "tangent base vectors" in Ref. [3] ),  and ên (or en) always points 
in the direction in which the coordinate x'n increases.  
  
The notation above applies in any number of dimensions, but our interest is two dimensions.  
 
First, on familiar turf, for polar coordinates with 1 = r and 2 = θ one might write. 
 
 ê1  =  êr  = r̂  ê2  =  êθ  = θ̂       (8.3) 
 
and then these unit vectors appear as shown at a particular point indicated by a black dot:  
 

                (8.4) 
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The curvilinear unit vectors are different at different points in space! The unit vector r̂  points in the 
direction of increasing r, while θ̂ points in the direction of increasing θ. A vector B is expanded this way,  
 
 B  =  B1 ê1 + B2 ê2   =  Br r̂ + Bθ θ̂   =  Br r̂  + Bθθ̂ .     (8.5) 
 
Here we finally "relax" our notation and write Br = Br and Bθ =  Bθ since at this point everything is 
unambiguous and we can thus avoid the use of fancy fonts. However, if we talk about B1 and B2, things 
are again ambiguous since these could refer to Br and Bθ or to the Cartesian Bx and By. Thus, we will 
generally avoid the notations B1 and B2.  
 
For bipolar coordinates, we choose 1 = ξ and 2 = θ, so then 
 

 ê1   =  êξ  =  ξ̂  ê2   =  êu  =  û .       (8.6) 
 
Here is how these unit vectors appear in our bipolar coordinates drawing at some arbitrary points of 
interest,  
 
 

 
             (8.7) 
 

For blue circles on the right, ξ̂ points into the circle interior (recall ξ = +∞ at the focal point), while û 
points counterclockwise around the blue circle (since u increases in that direction). On the left things are 

reversed:  on the left, ξ̂ points away from the circle interior, while û points clockwise. Notice that the unit 
vectors are tangent to the coordinate lines passing through the point of interest. Since bipolar coordinates 
are an orthogonal coordinate system (like polar coordinates), the unit vectors are at right angles to each 
other at any point.  
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Our bipolar expansion of a vector B is then 
 

 B = B1 ê1 + B2 ê2   =  Bξ ξ̂ + Bu û   =  Bξξ̂ + Buû .      (8.8) 
 
where we again relax the formal notation and use components Bξ and Bu.   
 Another notation we shall use below is this: 
 
 ∂1 = ∂ξ ≡ ∂/∂ξ ∂2 = ∂u ≡ ∂/∂u .       (8.9) 
 
These are "covariant" (not contravariant) derivatives as described in Ref [3].  
 
Having done all this preparation, we can now express div B in bipolar coordinates. We first quote the 
general curvilinear template form from Section 14 of Ref [3], then simplify the notation as noted above,  
 
divergence orthogonal: 
 
 [div B](x)  = [1/(Πihi)] ∂n [(Πihi) Bn / hn]    B = Bn ên 
 
   = [1/(hξhu)] { ∂ξ [hξhu Bξ /hξ]  +  ∂u [hξhu Bu /hu] } .    (8.10) 
 
In bipolar coordinates we had from (3.3) 
 
 hξ = hu  = a/(chξ–cosu)   ≡  h  .        (3.3) 
 
Since the scale factors are the same, we will just refer to either one as "h". Then we continue above 
 
 [div B](x) =  h-2 { ∂ξ [h Bξ] +  ∂u [h Bu] } .      (8.11) 
 
Before doing more, one should note that components like Bξ are really Bξ(ξ,u), that is, they are functions 
of the curvilinear coordinates, just as on the left side Bx = Bx(x,y).  B is a "vector field".  
 In (8.11) the object on the left is div B in Cartesian coordinates. What is on the right is this same div 
B  "expressed in bipolar curvilinear coordinates". There is only one div B object, but one can express it in 
any coordinate system one wants.  
 We could leave the result as stated above, but we shall continue on : 
 
 [div B](x)  =  h-2 { (∂ξh) Bξ +  (∂uh) Bu  + h ∂ξBξ + h ∂uBu }    (8.12) 
 
Compute 
  
 (∂ξh)  = ∂ξ [ a(chξ–cosu)-1] = -a (chξ–cosu)-2 shξ   = -(h2/a) shξ 
 

 (∂uh)  = ∂u [ a(chξ–cosu)-1] = -a (chξ–cosu)-2 sinu =  -(h2/a) sinu    (8.13) 
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so then 
 
  [div B](x) =  h-2 {  -(h2/a) shξ Bξ  -  (h2/a) sinu Bu  + h ∂ξBξ + h ∂uBu } 
 
  = -(1/a) [ shξ Bξ + sinu Bu ] + (1/h) [∂ξBξ + h ∂uBu] 
 
  = -(1/a) [ shξ Bξ + sinu Bu ] + (1/a) (chξ–cosu)  [∂ξBξ + ∂uBu] 
 
  = (1/a) {  (chξ–cosu) (∂ξBξ + ∂uBu)  - shξ Bξ - sinu Bu }   .    (8.14) 
 
 This is the final result. Notice how very different it is from the Cartesian coordinates expression,  
 
  [div B](x)   = ∂xBx + ∂yBy .        (8.15) 
 
If we assume the vector field B is dimensionless, then from (8.15) we know div B has dimensions 1/m. 
This dimension is provided in (8.14) by the leading 1/a factor. Everything else is dimensionless!  In 
particular, the coordinates ξ and u are dimensionless and then (chξ–cosu) ≥ 0 is dimensionless.  
 
Here Maple checks our algebra in moving from (8.11) to (8.14) :  
 

 
 
and one sees with some effort that this is the same as (8.14).  
 
Next on our list of differential operators is the gradient. We quote again from Section 14 of Ref. [3],  
 
gradient orthogonal:  
 
 [grad f](x)  =  (1/hi) (∂if ) êi        (8.16) 
 
The notional detail here is that 
 
 f(x,y) = f (ξ,u) .           (8.17) 
 
We use an italic f on the right because, as a function of two variables, f and f are different functions! One 
could write for example,  
 
 f (ξ,u)  = f(x,y) = f(a shξ/(chξ - cosu), a sinu/(chξ - cosu))     (8.18) 
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and it is pretty obvious that f and f are different functions of their respective variables.  
 Having now said this, we again "relax" our notation and get rid of the italic f. Then the function name 
f is "overloaded" and its meaning is determined by the implied argument list. So : 
 
 [grad f](x)  =  (1/hi)  (∂if ) êi 
 
  = (1/h1)(∂1f ) ê1  + (1/h2)(∂2f ) ê2  
 
  = (1/h) [ (∂1f ) ê1  + (∂2f ) ê2 ]  
   

  = (1/h) [ (∂ξf ) ξ̂  + (∂uf ) û ]  
 

  = (1/a) (chξ - cosu)  [ (∂ξf ) ξ̂  +  (∂uf ) û ] 
 

  = (1/a) (chξ - cosu)  [ 
∂f(ξ,u)
∂ξ  ξ̂  +  

∂f(ξ,u)
∂u   û ]  .      (8.19) 

 
There is only one grad f and on the right here we have expressed it in bipolar coordinates. It is of course a 
vector quantity and so is a linear combination of the bipolar unit vectors. The Cartesian form is simpler,  
 
 [grad f](x)  = ∂xf(x,y)  x̂  +  ∂yf(x,y)  ŷ  .       (8.20) 
 
If f is dimensionless, then grad f has dimensions 1/m  and again this is provided by the leading factor (1/a) 
in (8.19).  
 
There is no "curl" in 2D, and we shall ignore the "vector Laplacian" so our only remaining differential 
operator is the scalar Laplacian. Again we relax things and write f as f. From Section 14 of Ref [3], 
 
(scalar) Laplacian orthogonal:   
 
 [lap f](x)  = [1/(Πihi)]  ∂m[ (Πihi) (1/hm2) (∂mf ) ]  // orthogonal   (8.21) 
 
where [lap f](x) is the same as [∇2f](x) . So: 
 
 [∇2f](x)  =  [1/(Πihi)]  ∂m[ (Πihi) (1/hm2) (∂mf ) ] 
 
         = h-2 { ∂1[ h2 (1/h2) ∂1f  + ∂2[ h2 (1/h2) ∂2f  } 
 
         = h-2 { ∂1[∂1f  + ∂2[∂2f  } 
 
         = h-2 { ∂ξ2f  + ∂u2f  } 

         = (1/a2) (chξ–cosu)2 ( 
∂2f(ξ,u)
∂ξ2  + 

∂2f(ξ,u)
∂u2  ) .     (8.22) 
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This result is not too much more complicated that the Cartesian form 
 
 [∇2f](x) = ∂x2f(x,y)  + ∂y2f(x,y)  .             (8.23) 
 
The result (8.22) appears on the current wiki bipolar coordinates page as follows,  
 

 
 
where their τ and σ are our ξ and u.  
 
We can now summarize our three results in bipolar coordinates:  
 
 
   Some differential operators expressed in bipolar coordinates    (8.24) 
 
 div B = (1/a) {  (chξ–cosu) (∂ξBξ + ∂uBu)  - shξ Bξ - sinu Bu }   (8.14)   
 

 grad f = (1/a) (chξ–cosu)  [ (∂ξf ) ξ̂  +  (∂uf ) û ]  =  (1/h)  [ (∂ξf ) ξ̂  + (∂uf ) û ] (8.19) 
 
 ∇2f  =  (1/a2) (chξ–cosu)2 [ ∂ξ2f  + ∂u2f ] =  (1/h2) [ ∂ξ2f  + ∂u2f ]   (8.22) 
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9. Separability of the Laplace equation in Bipolar Coordinates 
 
The Laplace equation is trivially separable in bipolar coordinates just as it is in Cartesian coordinates:   
 
 ∇2f  = 0  => [ ∂ξ2f  +  ∂u2f ]  = 0  .   // from (8.22)  (9.1) 
 
Try  
  f(ξ,u) = f1(ξ)f2(u)  // a "separated" form     (9.2) 
 
then 
  ∇2f  =  ∂ξ2[f1(ξ)f2(u)] + ∂u2[f1(ξ)f2(u)]  = 0 
or 
  f2(u) ∂ξ2f1(ξ) + f1(ξ) ∂u2 f2(u)  = 0 
or 

 
∂ξ2f1(ξ)

 f1(ξ)    +  
∂u2f2(u)

 f2(u)    =  0  // has form F(ξ) + G(u) = constant   (9.3) 

 
so then 
 

 
∂ξ2f1(ξ)

 f1(ξ)    = k2 

 
∂u2f2(u)

 f2(u)    = -k2          (9.4) 

 
where k2 (k can be complex) is the separation constant. For k2 > 0 the atomic forms are 
 
 f1(ξ)  = [sh(kξ), ch(kξ)]  or [ekξ , e-kξ] 
 f2(u)  = [sin(ku), cos(ku)]   or [eiku, e-iku ] .      (9.5) 
 
If a problem of interest has a full range for coordinate u, then k gets quantized to an integer so that the 
function f2(u) is single valued in u. In any event, the harmonics are then 
 
 [sh(kξ), ch(kξ)] [sin(ku), cos(ku)]   k2 > 0  .    (9.6) 
 
If k2 < 0 then the trig and hyperbolic function roles are switched in (9.5). If k2 = 0, the solutions are 
 
 f1(ξ)  = [1, ξ]   // meaning f1(ξ) = α1 + βξ  = α + βξ 
 f2(u)  = [1, u]  .          (9.7) 
 
A general solution has the form ( we allow arbitrary non-zero k in the sum ) 
 
 f(ξ,u) = Σk≠0 [ Aksh(kξ) + Bkch(kξ) ] [ Cksin(ku) + Dkcos(ku)] 
 
   + (A0 + B0ξ)(C0 + D0u)       (9.8) 
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where in principle the sum could be discrete and/or continuous depending on the problem.  
 Suppose we know for some reason that f(ξ,u)  = f(ξ), independent of u. Then we have to rule out all 
contributions of the form shown on the first line of (9.8) since they all have u dependence. In fact, the 
only possible solution in this case is f(ξ) = A + Bξ . If we further know that f(0) = 0, then f(ξ) = Bξ is the 
only possible solution. This situation will arise in the next section.  
 For the Helmholtz equation (∇2 + λ)f = 0 this separation fails because the (chξ–cosu) factor cannot be 
thrown out as for the Laplace equation. That is to say, one has 
 
 (1/a2) (chξ–cosu)2 [ ∂ξ2f  + ∂u2f ]  + λ f  = 0       (9.9) 
 
and trying f(ξ,u) = f1(ξ)f2(u) gives 
 

 [ 
∂ξ2f1(ξ)

 f1(ξ)    +  
∂u2f2(u)

 f2(u)  ]   =  -λa2 
1

 (chξ–cosu)2       (9.10) 

 
which cannot be written as F(ξ) + G(u) = constant.  
 Not surprisingly, for toroidal or bispherical coordinates the result is the same:  Laplace is separable, 
Helmholtz is not.  
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10. The Two-Cylinder Capacitor Problem Part I 
 
(a) Statement of the Problem 
 
The canonical "capacitor problem" involving bipolar coordinates concerns two parallel and infinitely long 
cylindrical conductors. The problem is to find the capacitance per unit length C. Due to the nature of the 
geometry, the problem can be treated solely in cross section as a 2D potential theory problem: 
 
 ∇2φ(x,y)  =  0  =>  ∇2

2D φ(x,y)  = 0  ∇2 = ∇2D
2 + ∂z2   .  (10.1)  

 
The opening step is to imagine that the conductor cross sections are arranged so as to align with two of 
the blue circles in the bipolar coordinates drawing. This can certainly be done by a suitable rotation of the 
conductors so their center lines both lie on the x axis followed by a selection of parameter "a" so that the 
conductors then line up with some ξ2 > 0 blue circle on the right, and some other blue circle ξ1 < 0 on the 
left. We assume that this part of the problem is carried out (see Section 11 (a) below), and we now have 
this situation:  
 

    (10.2) 
 
Both cylinders are first neutral, then we attach a battery of voltage V such that C1 has positive charge and 
therefore positive potential V1. Some charge Q flows onto the left conductor, and this same charge is 
extracted from the right conductor, so the conductors then have equal and opposite charges:  Q on the left,  
-Q on the right. The conductors settle at some potential values V1 and V2 which are at this point 
"unknowns" of the problem. What is known is V, a, ξ1 and ξ2. The symbol q refers to charge per unit 
length of the left cylinder.  
 
Comment: For infinite cylinders, a very large battery would be needed!  We can assume that the two 
conductors are restricted so they are only 100 miles long, and then the total required Q is finite.  
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(b) Finding the Potential 
 
This capacitor problem is a boundary value problem as follows:  
 
 ∇2D

2φ  = 0  φ(C1) = V1  
    φ(C2) = V2  
    φ(∞) = 0  φ(C1) - φ(C2)  =  V  =  V1-V2 .  (10.3) 
 
There are four boundary conditions specified. The first three boundary conditions specify that the solution 
potential must be a constant on three "surfaces" (2D curves). These three conditions specify the potential 
on all surfaces enclosing the dielectric region of this capacitor problem, and such a specification makes 
this a "Dirichlet problem". The fourth boundary condition says that the potential difference between the 
two cylinders must be V. In potential theory, a Dirichlet problem always has a solution, and that solution 
is always unique. Note that we have a Dirichlet problem even though we don't yet know what V1 and V2 
are.  
  
In order to meet the first two boundary conditions φ(C1) = V1 and φ(C2) = V2, we know that the potential 
solution must have the form φ(ξ,u) = φ(ξ).  This is so because each conductor has a ξ label, and we know 
all points on a blue circle have the same value of ξ, since in fact these circles are surfaces of constant ξ  
(level curves) of the bipolar coordinate system. According to the third last paragraph of the previous 
section, that Laplace solution must have the form φ(ξ) = A + Bξ.  Recall now that ξ ≈ 0 describes huge 
blue circles which run up the y axis and basically bend off to infinity either to the right or left (ξ = ± 10-8 
say). On portions of these circles far from the conductors, we know that ξ ≈ 0. But on these distant 
portions of the circles we are supposed to have φ(∞) = 0.  Thus we have φ(ξ) = Bξ since φ(0) = 0.  
 
Aside:  It is not exactly clear what happens on the portions of these huge ξ = ± 10-8 circles that are close 
to the conductors on the y axis in the region between the conductors. We know that if φ = 0 on a distant 
section of a huge blue circle, it must also be 0 on that portion of the huge circle which passes down the y 
axis between the conductors, because all points on a blue circle have the same φ. One interpretation of 
this fact requires a bit of work: one can show that the surface charge on each of our capacitor blue circles 
acts as if it were concentrated at the focal point, and since these charges are q and - q, that explains why φ 
= 0 on the y axis (the center of charge is computed in (d) below).  
 
The solution to our capacitor problem then can be taken as, 
 
 φ(ξ,u)  =  φ(ξ)  = - c ξ  ,          (10.4) 
 
where c is a constant. This certainly is a simple form, and it certainly is a solution of the Laplace equation  
 
  ∂ξ2φ  +  ∂u2φ  = 0.           (9.1) 
 
It also meets the first three of our four boundary conditions, as noted above. The fourth boundary 
condition will determine the constant c as well as the values of V1 and V2. We know that 
 
 φ(ξ2)   = - c ξ2  = V2   = the potential on conductor C2 

 φ(ξ1)   = - c ξ1  = V1   = the potential on conductor C1     (10.5) 
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Therefore, since V = V1 - V2,  we have 
 
 V = - c ξ1 + c ξ2  = c(ξ2-ξ1)         (10.6) 
 
so c is then given by 
 
 c = V / (ξ2-ξ1)  = V / (ξ2+ |ξ1|)    > 0  .       (10.7) 
 
The solution potential is then 
 

 φ(ξ) = - 
ξ

ξ2-ξ1 V          (10.8) 

 
from which one finds that 
 

 V2 = - 
ξ2

ξ2-ξ1 V   =  - 
ξ2

ξ2+|ξ1| V    <  0 

 V1  = - 
ξ1

ξ2-ξ1 V   =  + 
|ξ1|

ξ2+|ξ1| V   >  0  .       (10.9) 

 
This is all fine and well, but we still have not computed the capacitance of our capacitor!  
 
(c) Finding the Charge q and therefore the Capacitance C = q/V 
 
The plan here is to first find the electric field from the potential, then find the conductor surface charge 
density from the electric field, and then integrate that to get q, and then capacitance is C = q/V.  
 
In bipolar coordinates using summary box (8.24) the electric field at an arbitrary point outside the 
conductors shown in Fig (10.2) is given by 
 
 E = -gradφ  = - (1/h) [ (∂ξφ) ξ̂  +  (∂uφ) û ]   (1/h) = (chξ–cosu)/a   > 0 
 

    = - (1/h) [ (∂ξ[- 
ξ

ξ2-ξ1 V] ) ξ̂  = (V/h) 
1

ξ2-ξ1 ξ̂   = (V/h) 
1

ξ2+|ξ1| ξ̂ 

    = (V/a) (chξ–cosu) 
1

ξ2+|ξ1| ξ̂ .        (10.10) 

 
The first observation is that this E field always points in the ξ̂ direction. Looking at Fig (8.7) this means 
that the electric field always points along the red level curves, so these lines are in fact the "electric field 
lines" for the capacitor. Since the blue circles are orthogonal to these field lines, the blue circles must be 
equipotentials for the capacitor problem, something we already know from (10.8). Thus, we are spared 
the task of drawing the electric field and equipotential lines for our problem since the bipolar coordinate 

system provides these lines. The fact that E = (positive quantity) ξ̂ is consistent with the left conductor 
having positive charge as shown in Fig (10.2). As expected, at each conductor surface the electric field is 
normal to the surface. This is always the case in electrostatics.  
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 The surface charge density n on a conductor surface is related to the normal electric field evaluated 
just above the surface according to  n = εEn, where ε is the dielectric constant of the medium between the 
conductors (which we assume is non-conducting). Since dim(ε) = farad/m and dim(En) = volt/m, the units 
of n are dim(n) = farad-volt/m2 = coulomb/m2 as expected. On the left in Fig 8.7 we may identify the 

outfacing normal unit vector n̂  = ξ̂  so En =  (V/h) 
1

ξ2-ξ1 . Thus 

 

 n1(ξ1,u)  =   ε  
V

h(ξ1,u) 
1

ξ2-ξ1   // surface charge density on the left conductor C1 

             (10.11) 

 n2(ξ2,u)  = - ε  
V

h(ξ2,u) 
1

ξ2-ξ1  // surface charge density on the right conductor C2  

 
For the right conductor C2, h is evaluated with ξ = ξ2 and the minus sign arises because on the right we 

have the different situation n̂  = - ξ̂ , as in Fig (8.7).  
 We now wish to integrate the surface charge density to obtain the total charge q. Consider then a tiny 
patch of area on the left conductor which has dimension ds along the perimeter and dz into the plane of 
paper, so dA = dsdz. Going along the perimeter, ξ = constant so dξ = 0. From (3.4) then ds = hdu. This is 
of course the meaning of a scale factor in the first place, ds = hudu gives distance ds as u is varied du with 
ξ fixed . Compare to polar coordinates ds = hθdθ  = rdθ as θ varies with r fixed.  Thus,  
 
 dAi = dsidz = hu(ξi,u)dudz  = h(ξi,u)dudz  .      (10.12) 
 
We then rewrite (10.11) as [ dim(dQi) = charge on area patch of dAi ] ,  
 

 dQ1(ξ1,u)  =  n1(ξ1,u)dA1 =    [ε 
V

h(ξ1,u) 
1

ξ2-ξ1 ]dA1    =  ε 
V

ξ2-ξ1 du dz 

 

 dQ2(ξ2,u)  =  n1(ξ2,u)dA2 =  - [ε 
V

h(ξ2,u) 
1

ξ2-ξ1 ]dA2   = - ε 
V

ξ2-ξ1 du dz  .   (10.13) 

 
Notice that the scale factor h has canceled out and that the dQ values are still equal and opposite.  
 
The total charge Q1 on a ring of depth dz of conductor C1 on the left is then given by   
 

 Q1 = ∫ dQ1(ξ1,u)   =   ∫
0

 2π  [ε 
V

ξ2-ξ1 du dz]   =  ε 
V

ξ2-ξ1 dz ∫
0

 2π du  =  2πε 
V

ξ2-ξ1 dz  .  (10.14) 

 
In the u integral around the left blue circle in Fig (10.2) the bipolar coordinate varies from u = 0 on the 
left edge going up, reaches u = π on the focal line, then reaches u = 2π when the circle is completed. Thus, 
the charge per unit length in z is given by 
 

 q = q1 = 2πε 
V

ξ2-ξ1           (10.15) 

 
and of course we will find that q2 = - q due to the minus sign in the second line of (10.13).  
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 The capacitance per unit length of the two-cylinder capacitor is then given by 
 

 C = q/V   =  2πε 
1

ξ2-ξ1   .   dim(ε) = farad/m    (10.16) 

 
We will verify this result in Section 11 with external sources.  
 If we use (10.15) to replace V by q in the potential (10.8) we find 
 

 φ(ξ) = - 
ξ

ξ2-ξ1 V   = - 
ξ

ξ2-ξ1 
q
C   = - 

ξ
ξ2-ξ1 q  

ξ2-ξ1
2πε   =  -  

q
2πε ξ   .    (10.17) 

 
This is the solution of a differently-stated capacitor problem. Imagine that we load up the two conductors 
with charges q and -q using the mechanism of (10.2) and then we disconnect the battery. We then vary the 
size of the two conductors by changing ξ1 and/or ξ2. The charge on conductor C1 of course remains q as 
this happens. We see that the potential between the conductors is always φ(ξ) =  -(q/2πε) ξ !  When stated 
in this manner with q fixed, the potential is independent of ξ1 and ξ2.  
 Using (4.3) we can write our two potential forms in Cartesian coordinates:  
 

 φ(ξ) = - 
ξ

ξ2-ξ1 V  = - 
V

2(ξ2-ξ1)  ln [
(x+a)2 + y2

(x-a)2 + y2  ]    =   - 
V

2(ξ2-ξ1)  ln [
s12

s22 ] (10.8)  (10.18) 

 

 φ(ξ) = -  
q

2πε ξ    =  -  
q

4πε  ln [
(x+a)2 + y2

(x-a)2 + y2  ]   = -  
q

4πε  ln [
s12

s22 ]  (10.17)  (10.19) 

 
which can be restated without minus signs in this way,  
 

 φ(ξ) = 
V

2(ξ2-ξ1)  ln [
s22

s12 ]    = 
V

2(ξ2-ξ1)  ln[ 
(x-a)2 + y2

(x+a)2 + y2 ]      (10.18a) 

 

 φ(ξ) = 
q

4πε  ln [
s22

s12 ]   =  
q

4πε  ln[ 
(x-a)2 + y2

(x+a)2 + y2 ]  .      (10.19a) 

 
In Chapter 5 of Ref [5] we define a dimensionless transverse potential φt by,  
 

 φ(x,y,z) = 
1

4πε  q(z) φt(x,y)         Ref [5] (5.1.1) 

 
and comparison with (10.19a) shows that (using also (4.5) above),  
 

 φt(x,y) = ln [
s22

s12 ]  = ln[ 
(x-a)2 + y2

(x+a)2 + y2 ]   =  -2ξ      (10.20) 

 
where the first form is in agreement with (6.1.2) of Ref [5]. The new fact is that φt  = -2ξ in bipolar 
coordinates which is a very simple result for the transverse potential. Also from Ref [5], the system for φt 
is 
 



  35 

 ∇t
2 φt(x,y)  = 0 φt(C1)   = K1 φt(C2)  = K2  K1-K2 = K   Ref [5] (5.4.3) 

 
so we find that 
 
 K1 = -2ξ1  K2 = -2ξ2 K = K1-K2  = 2(ξ2-ξ1)     (10.21) 
 
where K is a certain parameter which determines transmission line parameters. This expression for K 
appears in the form K = 2(B2-B1) in Ref [5] (6.3.2) where the bipolar coordinate ξ is B (and where ξ is 
used for the complex dielectric constant, totally unrelated to ξ here).  
 
(d) Surface charge density versus angle θ and the Center of Charge 
 
In terms of the circle angle θ, distance along the circle C1 is given by 
 
 ds1 = hθdθ  = R1dθ           (10.22) 
 
and the area element (for thinking about charge density) is 
 
 dA1 = ds1 dz  = R1dθ dz  .         (10.23) 
 
From (10.13) we then have 
 

 dQ1(ξ1,θ) =  n1(ξ1,u) dA1 =  [ε 
V

h(ξ1,u) 
1

ξ2-ξ1 ] [dA1]   =  [ε 
V

h(ξ1,θ) 
1

ξ2-ξ1 ] [R1dθ dz] 

 

  = ε V 
sh2ξ1

a(chξ1+cosθ) 
1

ξ2-ξ1 ( a/|shξ1| ) dθ dz  =  ε V 
1

ξ2-ξ1  
|shξ1|

chξ1+cosθ   dθ dz // (2.4) for R1 

 

  = 
1

2π  [2πε 
V

ξ2-ξ1 ] 
|shξ1|

chξ1+cosθ  dθ dz   =  
q

2π  
|shξ1|

chξ1+cosθ  dθ dz   // q from (10.15)  . (10.24) 

 
As a check on this result, we integrate over dθ,  
 

 ∫ dQ1(ξ1,θ)  =  
q

2π |shξ1| dz   ∫
0

 2π dθ
chξ1+cosθ   =   

q
2π |shξ1| dz  

2π
|shξ1|  =  q dz   (10.25) 

 
where the integral is provided by Maple,  
 

    (10.26) 
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The conclusion is that the total charge in a ring of depth dz over the C1 perimeter is q dz, which is correct.  
 We have obtained then these expressions for the two conductors' charge densities,  
 

 dQ1(ξ1,θ)  = n1(ξ1,θ)dA1  =    
q

2π  
|shξ1|

chξ1+cosθ   dθ dz 

 dQ2(ξ2,θ) = n2(ξ2,θ)dA1  =  -  
q

2π  
|shξ2|

chξ2+cosθ   dθ dz .     (10.27) 

 
It is convenient now to define,  
 

 n1(ξ1,θ)  =  dQ1(ξ1,θ)/[dθdz]  =      
q

2π  
|shξ1|

chξ1+cosθ  

 n2(ξ2,θ)  =  dQ2(ξ2,θ)/[dθdz]  =   -  
q

2π  
|shξ2|

chξ2+cosθ       (10.28) 

 
where these italic n's are angular charge densities, per unit length of conductor. Then from (10.25), 
 

  ∫
0

 2π n1(ξ1,θ) dθ =  q  

  ∫
0

 2π n2(ξ2,θ) dθ = - q  .         (10.29) 

 
Fact: When the total charges (per unit length) are specified as q and -q on the two conductors, the angular 
surface charge density n1(ξ1,θ) on conductor C1 is independent of both the focal parameter a and the ξ2 
value of conductor C2. If one were to vary ξ2 from C2 being very small to very large, n1(ξ1,θ) would not 
change.             (10.30) 
 
We see this explicitly in (10.28) and it follows from (10.17) which says the potential for fixed q is 
independent of a, ξ1 and ξ2. We could take conductor C2 to be a thin wire at the focal point (ξ2 = ∞), or 
the plane at x=0 (ξ2= 0), n1(ξ1,θ) is always given by the first line of (10.28).  
  
We can now compute the "center of charge" for the right blue circle having parameter ξ2. Just for the 
purposes of this calculation, we center the blue circle at x = 0,  
 

                (10.31) 
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The center of charge is given by  
 

 <x>   =  

 ∫
0

 2π  n2(ξ2,θ) x dθ

  ∫
0

 2π  n2(ξ2,θ) dθ
  .        (10.32) 

    
From (10.29) the denominator integral -q  . The numerator is  
 

   ∫
0

 2π  n2(ξ2,θ) (R2 cosθ) dθ  =  ∫
0

 2π [ -  
q

2π  
|shξ2|

chξ2+cosθ ]  (R2 cosθ) dθ 

  

      = -  
q

2π  shξ2 R2  ∫
0

 2π dθ 
cosθ

chξ2+cosθ    // ξ2 > 0    (10.33) 

 
so then 
 

 <x> =   
1

2π  shξ2  R2  ∫
0

 2π dθ 
cosθ

chξ2+cosθ    =  
a

2π   ∫
0

 2π dθ 
cosθ

chξ2+cosθ     (10.34)  

 
since R2 = a/shξ2  from (2.4). Maple does the integral,  
 

   (10.35) 
so then 
 

 <x> = 
a

2π  2π ( -chξ2 + shξ2)/shξ2 = a ( -1/th(ξ2)  + 1)  = -a/th(ξ2) + a   = - xc + a 

 
       = - (xc - a)  < 0          (10.36) 
 
 
But looking at Fig (7.1), the quantity xc - a > 0 is the distance from the focus to the circle center. It seems 
fairly obvious that <y>  = 0 since n is symmetric about the x axis. Therefore we have just proven:  
 
Fact:  For a capacitor made of two cylinders, the center of charge for each cylinder cross section lies 
exactly at the bipolar coordinate system focal point.       (10.37) 
 
We only showed this on the right side, but the reader will no doubt accept it as true on the left as well 
since it is just the mirror image situation.  
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Implication: The 2D potential outside two conducting rings holding charge q on the left and -q on the 
right is the same as the 2D potential of a point charge q at the left focus and a point charge -q at the right 
focus.             (10.38a) 
        
Implication: The 3D potential outside two infinite parallel conducting cylinders holding charge/m q on 
the left and -q on the right is the same as the 3D potential of a line charge/m q on the left focal line and a 
line charge/m -q on the right focal line.         (10.38b) 
 
In 2D potential theory, the potential of a unit positive point charge is (1/2πε) ln(1/s) where s is the 
distance from the charge to the observation point. Therefore, if we superpose the potential of our two 
focal point charges we get, looking at Fig (6.1),  
 
 φ  =  (q/2πε) ln(1/s1)    -  (q/2πε) ln(1/s2)   =   (q/2πε)ln(s2/s1)  =   (q/4πε)ln(s22/s12) 
 

  =  -  
q

4πε  ln [
s12

s22 ] .         (10.39) 

 
This agrees with our earlier calculation of the potential shown in (10.19).  The result is of course no big 
surprise, since we already found in (10.17) that 
 

 φ(ξ)  =  -  
q

2πε ξ  ,          (10.16) 

 
so that the potential (for the problem of fixed charges q and -q) doesn't even know about ξ1 and ξ2 and 
must therefore be valid for ξ1 = -∞ and ξ2 = +∞ which "circles" are the focal points.  
  
In closing this section, we generate some plots of angular surface charge versus θ for various values of ξ. 
These will be made using (10.28),  
 

 n1(ξ1,θ)  =   
q
2π  

|shξ1|
chξ1+cosθ  .        (10.28) 

 
In the following Maple code the factor q/2π  is set to 1 :  
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             (10.40) 
Since each n1(ξ1,θ) has the same area q, each curve above has the same area 2π.  
 
In the figure below, the large conductor pair has ξ = ±0.25 and would exhibit the most strongly peaked 
charge distribution shown above. Most of this distribution lies in the range ±40o from 180o, as marked by 
the red curve: 
 

      (10.41) 
 
The tiny conductor pair has ξ  = ±3 and for that pair the charge distribution is very close to uniform at all 
angles, as shown by the ξ1 = -3 curve in Fig (10.38).  
 
Appendix A calculates the Fourier "moments" of the angular charge distribution n1(ξ1,θ) .  
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11. The Two-Cylinder Capacitor Problem Part II 
 
Here we fill in some of the pieces omitted in Part I.  
 
(a) Aligning the Cylinders 
 
Consider again Fig (10.2) which shows the two cylinders. We know the radii and center locations of the 
two cylinders from (2.4),  
 
 (x - xc)2 + y2 = R2   xc = a/thξ  R = a/|shξ|   (2.4) 
 
so that 
 
 R2 = a/|shξ2|  xc2 = a/thξ2 
 R1 = a/|shξ1|  xc1 = a/thξ1  .       (11.1) 
 
The distance between the cylinder centers we shall call b,  
 
 b = xc2 - xc1  = a/thξ2 - a/thξ1 .        (11.2) 
 
We wish to compute the parameters a, ξ1 and ξ2 in terms of R1,R2 and b. There are three equations in 
three unknowns, 
 
 R2 = a/|shξ2| 
 R1 = a/|shξ1| 
 b = a( cothξ2 - cothξ1) .         (11.3) 
 
In Fig (10.2) ξ2 > 0 and ξ1 < 0. To make our algebra investment below a little more general, we assume 
that sign(ξ2) = +1 but sign(ξ1) = σ1, allowing ξ1 to have either sign. From (11.1),  
 
 1/thξ2  = cothξ2  =   1 + 1/sh2ξ2   =      1 + (R2/a)2  
 1/thξ1 = cothξ1 = σ1 1 + 1/sh2ξ1   =  σ1 1 + (R1/a)2 .     (11.4) 
 
Then 
 
 b = xc2 - xc1  = a ( 1 + (R2/a)2  - σ1 1 + (R1/a)2  )   =  ( a2+R2

2   - σ1 a2+R1
2 ) .  (11.5) 

 
Square to get 
 
 b2 = (a2+R2

2) + (a2+R1
2) - 2σ1 a2+R2

2 a2+R1
2  

or 
 (b2-2a2-R2

2-R1
2) = - 2σ1 a2+R2

2 a2+R1
2 .      (11.6) 

 
Square again to get 
 
 (b2-2a2-R2

2-R1
2)2 = 4(a2+R2

2) (a2+R1
2) .       (11.7) 
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Maple solves this equation for a = a(b,R1,R2) as follows,  
 

 
 
The last line may be written [ b2- (R1+R2)2] [ b2- (R1-R2)2] so we conclude that 
 
 a = (1/2b) b2 - (R2+R1)2 b2 - (R2-R1)2  .      (11.8) 
 
Given this expression for a, the other two unknowns in (11.3) are,  
 
 shξ2 =    (a/R2) => ξ2 =     sh-1 (a/R2)  =     ln[ (a/R2) + 1+(a/R2)2 ] 
 shξ1 = σ1(a/R1) => ξ1 = σ1sh-1 (a/R1)  = σ1 ln[ (a/R1) + 1+(a/R1)2 ] ,  (11.9) 
 
so our solution for a, ξ2 and ξ1 in terms of R1, R2 and b is then,  
 
 a  =  (1/2b) b2 - (R2+R1)2 b2 - (R2-R1)2  
 
 ξ2  =  sh-1 (a/R2) 
  
 ξ1 =  σ1sh-1 (a/R1) .         (11.10) 
 
As an example, we measure from Fig (10.2) that b = 6 cm, R2 = 3.5 cm, R1 = 1.3 cm, and σ1  = -1 so 
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(b) Capacitance in terms of R1, R2 and b 
 
Consider now: 
 
 ch(ξ2 - ξ1)  = ch(|ξ2| - σ1|ξ1|)  =  ch|ξ2| ch|ξ1|  - σ1 sh|ξ2| sh|ξ1| // Spiegel  8.21 
 
   = 1+sh2ξ2 1+sh2ξ1  - σ1 sh|ξ2| sh|ξ1|    
 
  =  1+(a/R2)2 1+(a/R1)2  - σ1 (a/R2) (a/R1)   // from (11.9) 
 
  = (1/R1R2) a2+R2

2 a2+R1
2  - σ1 (a/R2) (a/R1) 

 
  = (R1R2)-1 [ a2+R2

2 a2+R1
2  - σ1a2 ]   .     (11.11) 

 
But from (11.6) we know that 
 
 a2+R2

2 a2+R1
2  = (b2-2a2-R2

2-R1
2)/(-2σ1)  = -σ1(b2-2a2-R2

2-R1
2)/2   (11.12) 

 
Inserting this into (11.11) gives 
 
 ch(ξ2 -ξ1)  =  (R1R2)-1[-σ1(b2-2a2-R2

2-R1
2)/2 -σ1a2] 

 
  = (2R1R2)-1 σ1[-(b2-2a2-R2

2-R1
2) -2a2] 
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  = (2R1R2)-1 σ1[-b2+2a2+R2

2+R1
2 -2a2] 

 
  = (2R1R2)-1 σ1[-b2+R2

2+R1
2] , 

 
where a has vanished. We then have 
 

 ξ2-ξ1  = ch-1 [ σ1 
-b2+R2

2+R1
2

 2R1R2
 ]   = ch-1 [

σ1
2  (  - 

b2

R1R2
  + 

R2

R1
  + 

R1

R2
  ) ]  .   (11.13) 

 
From (10.15), one may therefore express the capacitance per unit length as 
 

 C =  2πε 
1

ξ2-ξ1   =   
2πε

 ch-1 [
σ1
2  (  - 

b2

R1R2
  + 

R2

R1
  + 

R1

R2
  ) ]

    .     (11.14) 

 
In particular, for Fig (10.2) we have σ1 = - 1 so this says 
 

 C =  2πε 
1

ξ2-ξ1   =   
2πε

 ch-1 [ 
1
2 (   

b2

R1R2
  - 

R2

R1
  - 

R1

R2
  ) ]

  .     (11.15) 

 
This result agrees with Ref [5] (4.11.30) which states C = 4πε/K along with (6.3.10) for K,  
 
 K = 2 ch-1 { (1/2) [  (b2/a1a2) - (a1/a2) -  (a2/a1)]  }  .    Ref [5]  (6.3.10) 

  
(c) The Cylinder Over Plane Case 
 
If in Fig 10.2 one takes the limit ξ1 → 0, the blue circle on the left becomes the vertical y axis, and the 
situation is then that of a cylinder lying over a ground plane, as indicated here (dielectric is gray),  
 

           (11.16) 
In this limit,  
 

 φ(ξ) = - 
ξ
ξ2 V          (10.8) 

  
 V2 = - V 
 V1 = 0           (10.9) 
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 E = (V/a) (chξ–cosu) 
1
ξ2 ξ̂         (10.10) 

 

 n(ξ1,u)  =   ε 
V

h(0,u) 
1
ξ2   // surface charge density on the left conductor C1 (y axis) 

             (10.11) 

 n(ξ2,u)  = - ε 
V

h(ξ2,u) 
1
ξ2   // surface charge density on the right conductor C2  

 

 q = q1 = 2πε 
V
ξ2           (10.14) 

 

 C = q/V  =  2πε 
1
ξ2           (10.15) 

 

 φ(ξ) =  -  
q

2πε ξ   .   // no change      (10.16) 

 
The capacitance can be expressed alternatively as follows. Consider from (2.4),  
 
 x2c = a coth ξ2 = a chξ2/shξ2          
 R2 = a/sh(ξ2)           (2.4) 
 

Therefore 
 
 x2c/R2 = chξ2 => ξ2 = ch-1(x2c/R2) . 
 
But xc2 being the center of the ξ2 blue circle is the height h of that center above the plane, so 
 
 ξ2 = ch-1(h/R2)  =  ln [ (h/R2) + (h/R2)2 + 1 ]   ≈  ln (2h/R2) if  h >> R2  .  (11.17) 
 

The capacitance for the radius R2 cylinder with center line h above the plane is then 
 

 C = 2πε 
1
ξ2  = 

2πε
 ch-1(h/R2)  =   

2πε
 ln [ (h/R2) + (h/R2)2 + 1 ]

      (11.18) 

 
which agrees with (6.3.19) of Ref [5] along with C = 4πε/K.  
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(d) The Offset Coaxial Cylinders Case 
 
If in Fig (10.2) the small blue circle with ξ1 < 0 is replaced by its mirror image blue circle with ξ1> 0, one 
obtains an offset coaxial capacitor, where again the dielectric is gray,   
 

          (11.19) 
 
The "math" for this case is the same as done in Section (b) above, except now σ1 = +1 instead of -1. The 
parameter b is still the distance between the two cylinder centers b = xc2-xc1. The quantity (ξ2-ξ1) is now 
negative since ξ1 > ξ2.  We just read off the results from above,  
 

 φ(ξ) = - 
ξ

ξ2-ξ1 V          (10.8) 

 

 V2 = - 
ξ2

ξ2-ξ1 V   > 0 

 V1  = - 
ξ1

ξ2-ξ1 V  > 0          (10.9) 

 

 E(ξ,u)  = (V/h(ξ,u)) 
1

ξ2-ξ1 ξ̂         (10.10) 

 

 n(ξ1,u)  =   - ε 
V

h(ξ1,u) 
1

ξ2-ξ1  > 0 // surface charge density on the inner conductor C1 

             (10.11)' 

 n(ξ2,u)  =   ε 
V

h(ξ2,u) 
1

ξ2-ξ1  < 0 // surface charge density on the outer conductor C2  

 
Both normals have flipped around causing new minus signs in (10.11). Finally,  
 

 C = q/V   =  2πε 
1

ξ2-ξ1   dim(ε) = farad/m     (10.15) 

 φ(ξ)  =  -  
q

2πε ξ  .   // no change      (10.16) 

 
The capacitance C can be expressed in terms of b, R1 and R2 using (11.14) with σ1 = +1, so 
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 C =  2πε 
1

ξ2-ξ1   =   
2πε

 ch-1 [
1
2 (  - 

b2

R1R2
  + 

R2

R1
  + 

R1

R2
  ) ]

  .     (11.20) 

 
which agrees with (6.3.13) of Ref [5] along with C = 4πε/K.  
 
For the perfectly centered coaxial cable we set b = 0  (no offset of centers). In this case  
 

 ch-1 [
1
2 (

R2

R1
  + 

R1

R2
  )]  = ln [

R2

R1
 ]   // an identity for R2 > R1  (11.21) 

 
so then 
 

 C = 
2πε

ln(R2/R1)           (11.22) 

 
The identity (11.21) can be proven using ch-1x = ln(x + x2+1 )  for x ≥ 1.  
 
One might well wonder how this centered case can be reached since Fig (11.19) above seems to indicate 
that the two cylinders can never have a common center. We do know that the centers become "more 
common" for larger values of ξ1 and ξ2, something visible in Fig (2.5) for example. There the ξ = 2 and ξ 
= 3 circles are pretty close to concentric, but not quite.  
 To resolve this mystery, we consider equations (11.10) from above,  
 
 a  =  (1/2b) b2 - (R2+R1)2 b2 - (R2-R1)2  
 
 ξ2  =    sh-1 (a/R2) 
  
 ξ1 =  σ1sh-1 (a/R1) .         (11.10) 
 
If b becomes very small, the first line above says 
 
 a  =  (1/2b)(R2+R1)(R2-R1) 
 
so as b→0 one has a → ∞.  With σ1 = +1, the next two equations say 
 
 ξ2  = sh-1 (a/R2)  ≈ ln(2a/R2)  → ∞ 
 ξ1  = sh-1 (a/R1)  ≈ ln(2a/R1)  → ∞ 
 
so as b→0, both ξ1 and ξ2 become very large and then the circles are concentric in the limit.  
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12. The Metric Tensor with Application to Bipolar Coordinates 
 
The notation used in this section is the "non-standard" notation used in the first 6 chapters of Ref [3].   
 
The defining (non-linear) transformation for bipolar coordinates was given in (2.2),  
 
 x  =  a shξ/(chξ - cosu)       (2.2)  (12.1) 
 y  = a sinu/(chξ - cosu) . 
 
It is useful to think of 
 
 x = (x1, x2) = (x,y)  Cartesian coordinates 
 
 x' = (x'1, x'2) = (ξ,u)  bipolar coordinates  .      (12.2) 
 
The non-linear transformation (12.1) is then a special case of 
 
 x  = F-1(x')            (12.3) 
 
where in general x and x' each have n components, while our example has n = 2. For curvilinear 
coordinates, the transformation is always invertible, so one can also write,  
 
 x' = F(x) .           (12.4) 
 
We think of this transformation as being a mapping from x-space to x'-space, where x-space is Cartesian 
space and x'-space is "the space of some curvilinear coordinates" called x'n :  
 

                 (12.5) 
 
In general the transformations F and F-1 are non-linear, but if we look in the neighborhood of a specific 
point x in x-space (corresponding to point x' in x'-space) we can define the following two linear 
transformations ( that is, matrix transformations) , 
 
 dx'i  =  Σk(∂x'i/∂xk) dxk   =  Σk Rik dxk   Rik  ≡  (∂x'i/∂xk) 
 dxi   =  Σk( ∂xi/∂x'k) dx'k =  Σk Sik dx'k   Sik  ≡  (∂xi/∂x'k)    (12.6) 
 
which we can then write as 
 
 dx' =  R(x) dx Rik(x)  ≡  (∂x'i/∂xk)  R = S-1  // dx'i = ΣjRij dxj 
 dx  =  S(x') dx' Sik(x')  ≡  (∂xi/∂x'k)  S = R-1  // dxi = ΣjSij dx'j  . (12.7) 
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Thus, at a specific point in space, the transformation F has a linearized form which is described by either 
matrix R or matrix S. These are just matrices of derivatives as shown, and RS = 1 by the chain rule.  
 Any vector which transforms in this manner, in going from x-space to x'-space,  
 
 V' = RV           (12.8) 
 
is called a contravariant vector. It is a vector that transforms the way dx transforms. 
 On the other hand, any vector which transforms this way 
 
 V̄'  =  ST V̄           (12.9) 
 
is called a covariant vector. Matrix ST is the transpose of matrix S. We annotate covariant vectors and 
other tensors with an overbar, whereas contravariant objects get no overbar. It is easy to show that the 
velocity of a particle transforms as a contravariant vector, whereas the gradient of a scalar function 
transforms as a covariant vector, just to give two examples.  
 The covariant metric tensor ḡ'ij is a square matrix which determines the length ds  in Cartesian space 
of a differential vector dx' in x'-space. Cartesian space (which is x-space) has ḡij = δi,j . We put a prime 
on ḡ'ij to make clear it is the metric tensor for x'-space, while ḡij is the metric tensor for x-space. We 
then write for Cartesian coordinates,  
 
 (ds)2 = Σij ḡij dxidxj = Σij δi,j dxidxj =  Σi (dxi)2  = (dx1)2 + (dx2)2 + .....  (12.10) 
 
For "some other" (that is, some curvilinear) coordinates x' we have instead 
 
 (ds)2 = Σij ḡ'ij dx'idx'j .         (12.11) 
 
The distance (ds)2 in either case is the square of distance in real physical Cartesian space. In (12.11) this 
distance is expressed in terms of the curvilinear coordinates.  
 
Recall now from (12.7) that  
  
 dxi = ΣkSik dx'k .  
 
We can insert this twice into the (12.10) to get 
 
 (ds)2 = Σij ḡij dxidxj  =  Σij ḡij [ΣkSik dx'k] [ΣsSjs dx's] 
 
  =  Σks [Σij ḡij SikSjs ] dx'k dx's  .       (12.12) 
 
We now rename the indices in this sequence 
 
 i → m 
 j→ n 
 k → i 
 s → j 
 
to get 
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 (ds)2 = Σij [Σmn ḡmn SmiSnj ] dx'i dx'j       (12.13) 
 
But comparison with (12.11) shows that 
 
 ḡ'ij = Σmn ḡmn SmiSnj   = Σmn δm,n SmiSnj  = Σm SmiSmj  = Σm STimSmj  = [STS]ij  .  (12.14) 
 
Thus we have shown that 
 
 ḡ'  = STS           (12.15) 
 
and this then tells us how to compute the metric tensor for any transformation x' = F(x) ! 
 
Note:  As shown in Ref. [3], in the "standard notation" one writes (12.12) in this way 
 
 (ds)2 = Σij gij dxidxj   = Σij gij [ΣkSik dx'k] [ΣsSjs dx's] 
 
  = Σks [Σij gij SikSjs ] dx'k dx's       (12.12) 
 
where upper indices are contravariant and lower indices are covariant. For our purposes here, this notation 
seems overkill and we prefer the simpler "college calculus" notation described above where all indices are 
"down", overbars mark pure covariant tensors, while no-overbar means a pure contravariant tensor. 
  
Example 1:  Polar coordinates 
 
Here we happen to choose θ = 1 and r = 2, it does not matter how this is done. So:   
 
 x  = (x1, x2 ) = (x,y)    
 x' = (x'1, x'2) = (θ,r)  
 
 x = F-1(x')   ↔ x = rcos(θ)  x1 = x'2 cos(x'1) 
    y = rsin(θ)  x2 = x'2 sin(x'1) 
 
 S11 = (∂x/∂θ) = -rsinθ 
 S12 = (∂x/∂r) = cosθ    Sik  ≡  ( ∂xi/∂x'k) 
 S21 = (∂y/∂θ) = rcosθ 
 S22 = (∂y/∂r) = sinθ  
so 

 S = ⎝
⎛

⎠
⎞-rsinθ  cosθ 

 rcosθ  sinθ            (12.16) 

 
 ḡ'  =  STS   
 
To avoid making errors, we call upon Maple to compute ḡ' 
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Thus we find that  
 

 ḡ'  =  ⎝
⎛

⎠
⎞gθθ  gθr 

grθ grr   =  ⎝
⎛

⎠
⎞r2  0 

0 1    =>  hθ = gθθ = r     // scale factors  (12.17) 

      =>  hr = grr = 1  
 
Had we been lazier, we could have had Maple do the whole thing, soup to nuts (xp means x' ):  
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Example 2:  Bipolar Coordinates 
 
Here we let Maple do it all, following the model shown above: 
 

  
 
We thus arrive at the result 
 

 ḡ'   =  ⎝
⎛

⎠
⎞gξξ  0 

0 guu   gξξ = guu  = 
a2

(chξ-cosu)2  => hξ = hu = 
a

(chξ-cosu)  . (12.18) 

 
Thus is derived the metric tensor quoted in (3.3) above. As a fringe benefit, the reader has a quick way to 
compute the metric tensor for any curvilinear coordinate system in n dimensions.  
 As shown in Ref [3] Section 5 (j), the metric tensor ḡ' is related to the tangent base vectors en in this 
manner,  
 
 ḡ'mn  =  em • en   =  hmhn êm • ên        (12.19) 
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where, for example, in the polar coordinates above one has ê1 = θ̂  and  ê2 = r̂ . Therefore, if the base 
vectors are orthogonal, then ḡ' is a diagonal matrix (and vice versa). In Cartesian coordinates,  
  
 ḡmn   =  m̂ • n̂  = δm,n   where 1̂  = x̂,  2̂  = ŷ  etc   (12.20) 
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13.  Bipolar Coordinates as a Conformal Map 
 
(a) Basic Conformal Mapping Facts 
 
Some fundamental theorems about conformal maps are easy to show (see e.g. Ahlfors p 73).  
 Suppose w = f(z) where f(z) is any function analytic near z = z0.  Let z(t) be a path in the complex z-
plane that maps into some path w(t) in the complex w-plane, where t is some real parameter which labels 
points on the paths. Then,  
 
 dw/dt  = df/dz * dz/dt =>  w'(t) = f '(z) z'(t) .     (13.1) 
 
Here w'(t) is tangent to the path in w-space, while z'(t) is tangent to the path in z-space. Then 
 
 arg w'(t)  = arg f '(z) + arg z'(t) .        (13.2) 
 
If z0 = z(t0) this says 
 
 arg w'(t0)  = arg f '(z0) + arg z'(t0)  .        (13.3) 
 
Now let z1(t) and z2(t) be two paths which pass through z0, and let w1(t) and w2(t) be the corresponding 
paths in w-space which pass through w0 = f(z0). Then 
 
 arg w1'(t0)  = arg f '(z0) + arg z1'(t0) 
 
 arg w2'(t0)  = arg f '(z0) + arg z2'(t0)  . 
 
Subtract to get 
 
 arg w1'(t0) - arg w2'(t0)  = arg z1'(t0) - arg z2'(t0) .      (13.4) 
 
This says that whatever the angle is between the two paths in z space, the angle is the same between the 
two corresponding paths in w space. So: "angles are preserved". The fact that f(z) is analytic near z0 
means that f(z) and f '(z) are both perfectly well defined at z0 and f '(z0) is the same regardless of the 
direction from which one approaches z0 in the complex z plane. All normal functions are analytic where 
they don't have poles, branch points, or obscure "essential singularities".  
 Now go back to w = f(z) and write 
 
 dw = f '(z) dz  => |dw| = |f '(z)| |dz|      
or 
 |dw(t0)| = |f '(z0)| |dz(t0)|         (13.5) 
 
  |dz(t0)| is the length of a differential piece of the path z(t) in z-space touching z0  
  |dw(t0)| is the length of a differential piece of the path w(t) in w-space touching w0.  
 
In general one won't have  |f '(z0)| = 1 so the differential segments won't have the same length. In fact, the 
length  |dz(t0)| is scaled up or down going to |dw(t0)| by some real number k =  |f '(z0)|. The thing to notice 
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is that |dw(t0)| = k |dz(t0)| applies for any path z(t) passing through z0, regardless of its angle at z0. If we 
swing this little vector dz(t0) to lots of different angular positions in z-space, the length of the resulting 
paths dw(t0) is always the same -- it is just the length of the z-space dz times k. Thus, under an analytic 
mapping, differential distance at some point z0 may be scaled, but it is scaled the same in all directions, so 
"scaling is the uniform over direction".   
 Recall that for 2D orthogonal coordinates, where the metric tensor is diagonal, we have 
  
 (ds)2 = Σij ḡ'ij dx'idx'j   =  Σi ḡ'ii (dx'i)2   =  h12 (dx'1)2  +  h22 (dx'2)2 
 
  =  hu2 (du)2  +  hv2 (dv)2 where we give names (u,v) = (x'1,x'2)  .   (13.6) 
 
If the transformation arises from a conformal map w = f(z) such that 
 
 u + iv   =  f (x + iy)  that is  w = f(z)   ,     (13.7) 
 
then we know two facts:  
 (1) At a point z0 in z-space, if two level curves are at right angles, then they will also be at right 
angles in w-space, since angles are preserved. Thus, (u,v) is an orthogonal coordinate system.  
 (2) the scale factors hu and hv must be the same, since distance is scaled equally in all directions. In 
fact, looking at (13.5) and (13.6) we identify ds = |dz| and so |f '(z0)| = |dw|/|dz| = |du|/|ds|  = 1/hu, so 
 
 h = hu = hv  = 1/ |f '(z0)|         (13.8) 
 
which allows the scale factors to be computed directly from f(z).  
 A final conformal mapping fact is Riemann's mapping theorem (see e.g., Spiegel, Complex 
Variables, p201) which says that there always exists an analytic function which provides a 1-to-1 
conformal mapping between a 2D region bounded by any simple (that is, non-self-intersecting) curve and 
the unit disk, where the curve itself maps into the disk perimeter. The implication is that any two arbitrary 
simple regions of 2D space are connected by some unique analytic mapping:  let analytic f1(z) map region 
1 to the unit disk and f2(z) map region 2 to the unit disk, then f12(z) ≡ f2-1( f1(z) ) maps region 1 to 
region 2 and the concatenation of two analytic functions is analytic.  
 
(b) Example: Polar Coordinates in (u,θ) format 
 
Consider this analytic mapping (if a mapping is analytic, so is its inverse, away from singularities),  
 
 w = ln(z) = f(z) => z = ew  .    // f'(z) = 1/z   (13.9) 
 
Then write z = ew as 
 
 x + iy  = e(u+iv) = eu eiv   = eu (cosv + isinv) 
so 
 x = eu cosv 
 y = eu sinv .          (13.10) 
 
Rename v→θ and leave u as is 
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 x = eu cosθ 
 y = eu sinθ .          (13.11) 
 
Compute the metric tensor as earlier,  
 

 
 
Sure enough, hθ = hu = eu. The scale factors are equal because the transformation is treated properly as a 
conformal map. We used variables (u,θ). If one sets eu = r, that is fine, but (r,θ) are then not related to 
(x,y) by a conformal map, so that is why hr ≠ hθ  (hr = 1, hθ = r).  
  
Alternatively, using (13.8), one finds that h =  |f '(z)|-1 = |1/z|-1 = |z| = |ew| =  |eu+iv|  = eu . 
 
(c) Example: Bipolar Coordinates as a Conformal Map 
 
Consider this analytic mapping of the form w = f(z),  
 

 w = - i ln [ 
z+a
z-a  ]  = f(z) => eiw = 

z-a
z+a  .  // f'(z) = 2ia/(z2-a2)  (13.12) 

 
To find the inverse mapping,  
 
 eiwz + eiwa = z - a  => z(eiw-1) = -a(eiw+1) 
so 

 z = -a 
eiw+1
eiw-1    =  -a 

eiw/2+e-iw/2

eiw/2- e-iw/2   = -a 
2 cos(w/2)
2i sin(w/2)  = ia 

cos(w/2)
sin(w/2)  = ia cot(w/2)  (13.13) 
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where ( here we define ξ ≡ v ),  
 
 z = x+iy w   = u + iv    = u + iξ   
   w* = u -  iv    = u  - iξ  w*- w = -2iξ w* + w  = 2u .  (13.14) 
 
Now write (13.13) as 
 

 x + iy = ia 
cos(w/2)
sin(w/2)  = ia  

sin(w*/2)
sin(w*/2)  

cos(w/2)
sin(w/2)  .      (13.15) 

 
Evaluating the top and bottom using standard trig identities,  
 

sin(w*/2)cos(w/2) = (1/2){sin[
w*-w

2 ] + sin[
w*+w

2 ]} = (1/2){sin[-iξ]  + sin[u] } = (1/2){-ishξ + sinu} 

sin(w*/2)sin(w/2) = (1/2){cos[
w*-w

2 ] - cos[
w*+w

2 ]} = (1/2){cos[-iξ] -cos[u] } = (1/2){chξ - cosu} 

             (13.16) 
gives 
 

 x + iy = ia  
-ishξ + sinu
 chξ - cosu   = a 

shξ + isinu
 chξ - cosu .       (13.17) 

 
Therefore our analytic (conformal) mapping separated into components is given by.  
 
 x = a shξ/(chξ-cosu) 
 y = a sinu/(chξ-cosu)         (13.18) 
 
and these are the equations (2.2) used to define bipolar coordinates. Since this transformation arises from 
a conformal map, we expect the two scale factors to be the same. Compute h from (13.8) : 
 

 h = 
1

 |f'(z)|   = 
|z2-a2|

2a    =  
| -a2cot2(w/2) - a2|

2a   = (a/2) |csc2(w/2)|  =  
a

2 sin(w/2)sin(w*/2)  

 
    =  a/( chξ - cosu)  // using (13.16)       (13.19) 
 
which agrees with (3.3) 
  
Here then is what the conformal mapping (13.18) looks like going from the w-plane to the z-plane,  
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             (13.20) 
The focal points on the right map back to ξ = ±i∞ on the left. 
 
(d) A Final Visit to the Two-Cylinder Capacitor Problem 
 
The region inside the infinite vertical gray strip on the left in Fig (13.20) maps into the entire z plane on 
the right. If one imagines the w-plane as made up of an infinite number of side by side vertical strips, each 
of those strips maps into an identical copy of the entire z plane (so-called Riemann sheets). So imagine 
that we go ahead and draw all the strips on the left. One could then think of the resulting two infinite blue 
horizontal lines on the left as being the cross section of a "parallel plate capacitor" (in w-space) having 
plate separation ξ2 - ξ1. Now take just the section of width 2π which is shown in the above figure. 
Imagine that this capacitor has depth L going into the plane of paper. Normally there would be an edge 
effect problem, but since the plates go on forever left and right, the electric field is vertical between the 
blue plates, so the plates don't have to be "closely spaced".  Thus we have area A = 2π*L.  
  
Review of the Parallel Plate Capacitor 
 
The capacitance of a parallel plate capacitor with plate area A and plate separation s is well known to be,  
 

 C = ε 
A
s     ε = dielectric constant      (13.21) 

 
If the plates are horizontal and the vertical direction is y, and if the lower plate (at y1) has positive charge 
(negative charge on the upper), then between the plates there will be a constant electric field directed up 
with magnitude E, so that Ey = E > 0. The potential between the plates will be V = Es > 0 (lower plate +). 
The electrostatic potential between the plates is minus the line integral of E so we get φ(y) = -E y + 
constant. Setting the potential to 0 at y = 0, we find φ(y) = - E y. Since V = Es, the potential between the 
plates is given by,  
 

  φ(y) = - 
V
s  y  .          (13.22) 
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Finally, straddling the lower plate with a tiny "Gaussian box" of area dA tells us that σdA = εEdA where 
σ is the surface charge density on the lower plate. Thus,  
 
 E = σ/ε but   E = V/s  so    V/s = σ/ε => V = σs/ε .   (13.23) 
 
Parallel Plate Capacitor Example 
 
We now apply these equations to the capacitor with the blue plates shown on the left side of (13.20). The 
variable playing the role of y is ξ which increases going up. The plate separation is s = ξ2-ξ1 and the area 
is A = 2π*L. The capacitance per unit length of the blue parallel plates is then, from (13.21),  
 

 C = C / L =  ε 
A
s  

1
L  =  ε 

2πL
ξ2- ξ1 

1
L   =  

2πε
ξ2- ξ1        (13.24) 

  
and the potential between the parallel blue plates is, from (13.22),  
 

  φ(ξ) = - 
V
s   ξ   =  - 

V
 ξ2- ξ1  ξ   .        (13.25) 

 
The surface charge density is σ = Q / (2π*L) since 2πL is the area of a plate. The charge per unit length 
(into paper) is given by q = Q/L so then σ = q/2π,  Thus, from (13.23),  
 

 V = σs/ε  = 
q

2πε (ξ2-ξ1) .         (13.26) 

 
Since q = CV, one finds C = q/V = 2πε /(ξ2-ξ1), consistent with (13.24) (just a check). Using (13.26) for 
V in (13.25) we then find,  
 

  φ(ξ)  =   - 
V

 ξ2- ξ1  ξ  = - 
q

2πε ξ  .        (13.27)  

 
So far, all these equations are related to the parallel plate capacitor on the left of (13.20). We have run 
through a first-year E&M treatment of this capacitor.  
 
Statement of the Conformal Mapping Theorem 
 
Now, a famous theorem of conformal mapping (see e.g. Spiegel p 233 Theorem 2) says that if φ(ξ,u) is a 
solution of the Laplace equation in w-space where φ takes constant values on an enclosing set of 
boundary surfaces σw, then  
 
 Φ(x,y) ≡ φ(ξ(x,y),u(x,y))         (13.28) 
 
is a solution of the Laplace equation in z-space where Φ takes those same constant values but on the 
boundary set σz which is the mapping of σw. Recall that such Laplace solutions are unique. 
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Application of this theorem to the conformal map of Figure (13,20) 
 
Applying this theorem we conclude that the potential between the parallel cylinders on the right side of 
(13.20) is 
 

  Φ(x,y) ≡ φ(ξ(x,y),u(x,y)) =  φ(ξ)  =  - 
q

2πε ξ    =  - 
q

4πε  ln [ 
(x+a)2 + y2

(x-a)2 + y2  ]    (13.29) 

 
where we have used the inverse relationship (4.3) for ξ(x,y). The capacitance of the two cylinders can be 
found from q = CV where now in z-space we have 
 
 V =  Φ(1) - Φ(2)  =  φ(1) - φ(2)   // from (13.29)      
 

     = - 
q

2πε ξ1 + 
q

2πε ξ2    = 
q

2πε (ξ2- ξ1)  .  // from (13.27)     (13.30) 

 
Then from q = CV we find that the capacitance of the parallel cylinders is given by  
 

 C = q/V  = q / [
q

2πε (ξ2- ξ1)] = 2πε/ (ξ2- ξ1)       (13.31) 

 
which is of course the same as the capacitance of the parallel plate capacitor in w-space. Since V and q 
are the same in both spaces, C must also be the same in both spaces.  
 
Thus, by doing no real work at all, we have solved a very complicated problem : find the potential and 
capacitance between two parallel cylinders of bipolar coordinate ξ1 and ξ2 surrounded by dielectric 
constant ε and holding charge q and -q per unit length. All we had to do was figure out the basics for a 
parallel plate capacitor, then apply the conformal mapping theorem.  
 
Equations (13.27), (13.29) and (13.31) agree with (10.17), (10.19) and (10.16) obtained without the use of 
conformal mapping.  
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14.  Inverse Transformation, Bipolar Circles and the Interior Angle u 
 
(a) Finding the Inverse Bipolar Transformation 
 
The "forward" bipolar transformation is the defining set of equations (2.2),  
 
 x  =  a shξ/(chξ - cosu)         (14.1) 
 y  = a sinu/(chξ - cosu) . 
 
To obtain the inverse transformation, we start by dividing the above two equations,  
 
 x/y = shξ/sinu  =>  sin2u = sh2ξ (y/x)2  .    (14.2) 
 
Solving the first equation of (14.1) for cosu gives 
 
 cosu = chξ - (a/x)shξ =>  cos2u = (chξ - (a/x)shξ)2  .   (14.3) 
 
Then just do the algebra line by line,  
 
 sin2u + cos2u = 1 
 
 sh2ξ (y/x)2 + (chξ - (a/x)shξ)2 = 1 
 
 sh2ξ (y/x)2 + ch2ξ  - 2 (a/x)chξshξ + (a/x)2sh2ξ  - 1  = 0 
  
 sh2ξ (y/x)2 + sh2ξ  - 2 (a/x)chξshξ + (a/x)2sh2ξ   = 0 
 
 shξ (y/x)2 + shξ  - 2 (a/x)chξ + (a/x)2shξ   = 0 
 
 shξ y2 + x2shξ  - 2axchξ + a2shξ   = 0 
  
 shξ( y2 + x2 + a2) = 2axchξ 
 
 thξ  = 2ax/(x2+y2+ a2) 
 
 ξ = tanh-1 [2ax/(x2+y2+ a2)]         (14.4) 
 
which is the claim of the first line of (4.1).  
 Now we repeat the same set of steps, more or less. Write (14.2) as 
 
 shξ = sinu (x/y)  =>   sh2ξ = sin2u (x/y)2 .      (14.5) 
 
Then solve the second of equations (14.1) for chξ 
 
 chξ = cosu +(a/y) sinu => ch2ξ = (cosu +(a/y) sinu)2 .    (14.6) 
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Then comes similar algebra: 
 
 ch2ξ - sh2ξ  = 1 
  
 (cosu +(a/y) sinu)2 - sin2u (x/y)2  = 1 
 
 cos2u + 2(a/y) sinu cosu + (a/y)2 sin2u   - sin2u (x/y)2 - 1 = 0 
 
 - sin2u + 2(a/y) sinu cosu + (a/y)2 sin2u   - sin2u (x/y)2 = 0 
 
 - sinu + 2(a/y) cosu + (a/y)2 sinu   - sinu (x/y)2 = 0 
 
 - sinu y2 + 2ay cosu + a2 sinu   - sinu x2 = 0 
 
  sinu(x2 + y2 - a2) =  2ay cosu 
 
 tanu =  2ay/ (x2 + y2 - a2) 
 
 u = tan-1[2ay/ (x2 + y2 - a2)]         (14.7) 
 
which is the claim of the second line of (4.1).  
 
(b) Equations for the circles 
 
Blue Circles of constant ξ (Apollonius): 
 
Start with (14.4) which says 
 
 x2+ y2+ a2  = 2ax cothξ 
 
 x2 - 2axcothξ + y2  = -a2 
 

 x2 - 2axcothξ + a2coth2ξ+ y2  = -a2 + a2coth2ξ  
 

 (x - acothξ)2 + y2  = a2(coth2ξ-1) = a2/sh2ξ 
 
  (x - xc)2 + y2  = a2(coth2ξ-1) = R2   xc = a/thξ R = a/|shξ|  (14.8) 
 
which is the claim of (2.4). 
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Red Circles of constant u: 
 
Start with (14.7) which says 
 
 y2 + x2 - a2  = 2ay cotu 
 
 y2 - 2ay cotu +  x2  = a2 

 
 y2 - 2ay cotu  + (a cotu)2 +  x2  = a2  + a2 cot2u 
 
 (y - a cot u)2 +   x2  = a2(1 +cot2u) = a2/sin2u 
 
 (y - yc)2 + x2 = R2     yc = a/tanu R = a/|sinu|  (14.9) 
 
which is the claim of (2.6).  
 
(c) Interior angle u 
 
In the following picture we label the interior angle of interest u' and shall show that u' = u, the bipolar 
coordinate.  
 

            
             (6.1) 
 
We make use of the two right triangles shown above where  u' = (β - α) and 
 
 tanα = (x-a)/y  
 tanβ = (x+a)/y . 
 
Then 

 tanu' =  tan(β-α) = 
tanβ - tanα
1+tanα tanβ  =  

y2tanβ - y2tanα
y2+ytanα ytanβ   =  

y(x+a) - y(x-a)
y2+(x-a)(x+a)   =  

2ay
y2+x2-a2  

so 

 u' = tan-1[ 
2ay

y2+x2-a2 ] .         (14.10) 

 
But the inversion formula (14.7) says the right side of (14.10) is u, and therefore u' = u.  
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15.  Bipolar and Toroidal Coordinates treated in other Sources 
 
(a) Morse and Feshbach Bipolar System  
 
Morse and Feshbach treat bipolar coordinates in Vol II page 1210 using our same ξ coordinate. However, 
in place of our angle u for the second coordinate, they use a different angle θ. The relationship between 
these two angles is illustrated in the following schematic drawing,  
 

        (15.1) 
  Morse & Feshbach bipolar coordinate θ  Our bipolar coordinate u 
  θ increases CW, range 0 to 2π        u increases CCW, range 0 to 2π  
 
Whereas our angle u is measured in a rather conventional manner (counterclockwise starting at the 
positive side x axis), the M&F angle θ is measured clockwise from the x-axis between the poles. The 
heavy lines show the location of the angle discontinuity -- where the angle jumps from 2π to 0. It is clear 
that for a truncated circle in the upper half plane one has u+θ = π. However, in the lower half plane where 
both angles are larger than π, the rule is u+θ = 3π, as illustrated below (try u = 359o),  
 

      (15.2) 
 
The clumsy relationship between these angles can therefore be expressed as 
 

 u =  
⎩
⎨
⎧  π-θ            0 ≤ θ < π

3π-θ          π < θ ≤ 2π
0 or 2π      θ = π

  or     θ =  
⎩
⎨
⎧  π-u            0 ≤ u < π

3π-u          π < u ≤ 2π
0 or 2π      u = π

    (15.3) 

 
Usually we are only interested in trig functions, in which case the distinction between π and 3π goes away 
and we find that 
 
 sin(u)  = sin(π-θ) = + sin(θ)  =>  tan(u) = - tan(θ)  .   (15.4) 
 cos(u) = cos(π-θ) = – cos(θ)  
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The effect on various expressions of changing from u to θ can be summarized by 
 
 sin(u) →  +sin(θ)  
 cos(u) → -cos(θ)  
 tan(u) → - tan(θ)  
 du  →  - dθ   
 ∂u  → - ∂θ 
 û  → - θ̂    // unit vector pointing to increased parameter value as in Fig (8.7) 

 Bu → -Bθ  // (8.5):   B =  Bξ ξ̂ + Bθ θ̂   =  Bξξ̂ + (-Bu)(-û) =  Bξξ̂ + Bu û   (15.5) 
 
For example, here are some of our earlier equations converted from u to θ  using the above rules:  
 
 x  =  a shξ/(chξ + cosθ)     // defining equations      (2.2) 
 y  =  a sinθ/(chξ + cosθ) 
 
 x2 + (y- yc)2 =  R2  yc = - a /tanθ    R = a/|sinθ|  .  // red circles  (2.6) 
 
 θ = - tan-1[ 2ay/(x2+y2- a2)]  .        (4.1) 
 
 hξ = hθ  = a/(chξ +cosθ)   ≡  h  . // scale factor      (3.3)  
 
 [div B](x) =  (1/a) {  (chξ +cosθ) (∂ξBξ + ∂θBθ)  - shξ Bξ + sinθ Bθ }     (8.14) 
 

 [grad f](x)  = (1/a) (chξ + cosθ)  [ 
∂f(ξ,u)
∂ξ  ξ̂  +  

∂f(ξ,θ)
∂θ   θ̂ ]  .     (8.19) 

 

 [∇2f](x)   = (1/a2) (chξ+cosθ)2 ( 
∂2f(ξ,u)
∂ξ2  + 

∂2f(ξ,θ)
∂θ2  )      (8.22) 

 
(b) Morse and Feshbach Rotated Bipolar Systems 
 
When it comes time to rotate the bipolar coordinate grid to make toroidal coordinates (see (5.1) and text 
above), Morse and Feshbach stop using the θ coordinate described above and revert to our u-style 
coordinate which they call η. They use ξ but rename it μ. In other words, to obtain the M&F toroidal 
equations from our (5.1), one would make this replacement: 
 
 (ξ,u,φ)  →  (μ,η,φ) .          (15.6) 
 
Here are a few toroidal equations taken from M&F page 1301 : 
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The reader may compare these equations with our (5.1) replicated below, thinking (ξ,u,φ) ↔ (μ,η,φ), 
 
 x  =  a cosφ shξ/(chξ - cosu)  ρ  = a shξ/(chξ - cosu)   = x2+y2  
 y  =  a sinφ shξ/(chξ - cosu)  hξ = hu = a/(chξ - cosu) 
 z  =  a sinu/(chξ - cosu)  hφ = a shξ/(chξ - cosu) .    (5.1) 
 
For a worker using toroidal or bispherical 3D coordinates, it is extremely important to understand the 
bipolar coordinate system since this system is simply rotated to make these two 3D systems. It is 
therefore rather unfortunate that Morse and Feshbach presented their page 1210 bipolar coordinate 
discussion using the θ angle which they then jettison in favor of the u = η angle in their discussion of both 
toroidal (p 1301) and bispherical (p 1298) coordinate systems.  
 
(c) Some Other Sources 
 
In each case, we show how our bipolar and toroidal coordinates map into their coordinates.  
 
Current wiki bipolar and toroidal coordinates pages use: (see other references there)  
 
 bipolar  (ξ,u) → (τ,σ)   -π < σ ≤ π    http://en.wikipedia.org/wiki/Bipolar_coordinates  
 toroidal (ξ,u,φ) → (τ,σ,φ)      http://en.wikipedia.org/wiki/Toroidal_coordinates  (15.7) 
 
Margenau and Murphy discuss bipolar and toroidal coordinates on pages 187-190. Their coordinates 
are 
 bipolar (ξ,u)       →   (η,ξ)  0 ≤ ξ ≤ 2π   
 toroidal  (ξ,u,φ)    →   (η,ξ,ψ)         (15.8) 
 
Moon and Spencer use :  
 
 bipolar (ξ,u)    → (u,v)    // page 53, Table 2.02 item E.4 
 toroidal (ξ,u,φ) → (η,θ,ψ) -π < θ ≤ π // page 112-115    (15.9) 
 

http://en.wikipedia.org/wiki/Bipolar_coordinates�
http://en.wikipedia.org/wiki/Toroidal_coordinates�
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We can rewrite (13.13) in this manner, using w = u+iξ  from (13.14),  
 

 z = ia cot(
w
2  ) = ia tan( 

π
2 -

w
2  )  = ia tan( 

[π-u]-iξ
2  ) .      (15.10) 

 
If we define an angle β to replace u as  
 
 β = π-u   -π ≤ β ≤ π       (15.11) 
 
then we find 
 

 z = ia tan(
β-iξ

2  ) = a tanh( i 
β-iξ

2 ) = a tanh ( 
ξ+iβ

2  )  .      (15.12) 

 
Lebedev et al. use this angle β along with ξ which they call α so that 
 

 x + iy  = a tanh ( 
α+iβ

2  )    // Lebedev p 212 (4) with a = c   (15.13) 

 
and then Lebedev has bipolar coordinates α and β which are related to ours according to 
 
 α = ξ   -∞ < α < ∞ 
 β = π-u   -π < β ≤ π 
 
so 
 (ξ,u) → (α, π-β)          (15.14) 
 

      (15.15) 
             Lebedev et al.  bipolar coordinates α and β 
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Appendix A:  Fourier Analysis of the angular charge distribution n1(ξ1,θ)  
 
As discussed in Section 10, for the two-cylinder capacitor the angular charge distribution on conductor C1 
shown in Fig (10.2) is called n1(ξ1,θ). We are interested in finding the Fourier components of this 
function of θ. The moments Nm are defined by this Complex Fourier Series transform,  
 

 n1(ξ1,θ)  = ∑
m = -∞

∞
   Nm ejmθ          // expansion    (A.1) 

   Nm = (1/2π)  ∫
-π

 π dθ n1(ξ1,θ) e-jmθ  .  // projection    (A.2) 

 
Thus, using (10.28),  
 

 n1(ξ1,θ)  =   
q
2π  

|shξ1|
chξ1+cosθ  ,        (10.28)  

 
 we find the following projections of the charge density,  
 

 Nm = (1/2π)  
q

2π   |shξ1 |  ∫
-π

 π dθ 
e-jmθ

chξ1+cosθ   ≡   (1/2π)  
q

2π   |shξ1|  I .    (A.3) 

 
The integral I can be evaluated as follows 
 

 I =  ∫
-π

 π dθ 
e-jmθ

chξ1+cosθ   =  ∫
-π

 π dθ 
cos(mθ)-jsin(mθ)

chξ1+cosθ    =  ∫
-π

 π dθ 
cos(mθ)

chξ1+cosθ   

 

   =  2  ∫
0

 π dθ 
cos(mθ)

chξ1+cosθ   =  
2

chξ1  ∫
0

 π dθ 
cos(mθ)

1+sechξ1cosθ    ≡  
2

chξ1  J .   (A.4) 

 
GR7 p 391 3.613 provide the following integral we can use for integral J,  
 

 
which we translate to say         (A.5) 
       

 J =   ∫
0

 π dθ 
cos(mθ)

1+sechξ1cosθ   = 
π

|th(ξ1)|  [ 
|th(ξ1)| - 1
sech(ξ1)  ] m   m ≥ 0  .  (A.6) 

 
But 
 

 
|thξ1|-1
sechξ1   = 

|shξ1|/chξ1-1
1/chξ1    = |shξ1| - chξ1 =  - e-|ξ1|      (A.7) 

 
so the integral is 
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 J =  
π

|th(ξ1)|  [-e
-|ξ1|]m  =   

π
|th(ξ1)|  (-1)m e-m|ξ1| .   m ≥ 0   (A.8) 

 
Since the integral J shown in (A.6) is manifestly even in m, the result is in fact  
 

 J  =   
π

|th(ξ1)|  (-1)m e-|mξ1| .     all m   (A.9) 

 
Integral I is then 
 

 I = 
2

chξ1 J  = 
2π

|sh(ξ1)| (-1)m e-|mξ1|        (A.10) 

 
and the moments are  
 

 Nm =  (1/2π)  
q

2π   |shξ1|  I   =  (1/2π)  
q
2π   |shξ1|  

2π
|sh(ξ1)|  (-1)m e-|mξ1| 

 
  = (q/2π) (-1)m e-|mξ1|  => N0 = (q/2π)  .     (A.11) 
 
The "relative moments" ηm are defined by 
 
 ηm ≡  Nm/N0  = (-1)m e-|mξ1| .        (A.12) 
 
Since Nm = N-m we can write the expansion above as 
 

 n1(ξ1,θ)  = ∑
m = -∞

∞
   Nm ejmθ  =  N0 + 2 ∑

m = 1

∞
   Nm cos(mθ)   = N0 [ 1 + 2 ∑

m = 1

∞
   ηm cos(mθ) ]  

  =  (q/2π)[ 1 + 2 ∑
m = 1

∞
    (-1)m e-m|ξ1| cos(mθ) ]      (A.13) 

 
where q is the total charge on the conductor. If |ξ1| is very large, indicating that the conductor is 
approaching a thin wire centered on one of the focal points, only the m = 0 term survives and the charge 
distribution is just the constant value n1(ξ1,θ) = (q/2π). This shows that "widely spaced" round conductors 
have isotropic charge distributions in θ, consistent with Fig (10.40) with ξ1 = -3. On the other hand, if |ξ1| 
is relatively small, such as ξ1 = -0.25 appearing in Fig (10.40), one sees in the sum (A.13) that terms will 
have alternating signs near θ = 0 causing cancellation, whereas near θ = π where cos(mθ) = (-1)m  the 
terms will be additive, resulting in a peak centered at θ = π . Again, see Fig (10.40).  
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We shall now evaluate the sum in (A.13) to make sure it reproduces the starting function (10.28). We 
wish to show that : 
 

 1 + 2 ∑
m = 1

∞
    (-1)m e-m|ξ1| cos(mθ)   =  

|shξ1|
chξ1+cosθ     ?    (A.14) 

or 

 1 + 2 ∑
m = 1

∞
    (-1)m e-my cos(mθ)   =  

shy
chy+cosθ   .  ?  y = |ξ1|   (A.15) 

  
Rewrite the LHS of (A.15) as 
 

 LHS = 1 + 2 ∑
m = 1

∞
    (-1)m e-my (1/2) [ ejmθ + e-jmθ] 

  = (1/2) [1 + 2 ∑
m = 1

∞
    (-1)m e-my ejmθ ]   + (1/2) [1 + 2 ∑

m = 1

∞
    (-1)m e-my e-jmθ ] 

  = (1/2) [1 + 2 ∑
m = 1

∞
    (-1)m e-m[y-jθ] ]   +  c.c.     // c.c. = complex conjugate 

  = (1/2) [1 + 2 ∑
m = 1

∞
    (-1)m e-2mx ]   + c.c.  where  x ≡ (y-jθ)/2  .   (A.16) 

    
The bracketed sum appears in GR7 p27 as 1.232.1,  
 

  (A.17) 
so then 
 

 LHS =    
1
2 tanh( 

y-jθ
2  )   + c.c.    =  2 Re [ 

1
2 tanh( 

y-jθ
2  ) ] .      (A.18) 

 
At this point, we hand the problem over to ancient Maple V which is not too smart about half angle 
formulas, so we provide assistance along the way. The first step is to obtain a real expression for LHS  : 
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The next step is to manually replace all these half angle functions. Maple needs to see the upper and lower 
functions separately, so we do what it needs:  
 

 
 
Since this equals the RHS of (A.15), we have verified (A.15) and thus (A.14).  
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