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1. Introduction and Summary 
 
Nothing "new" is presented in this document. The Stäckel separation theory is treated in Morse & 
Feshbach (see References) and elsewhere. It is probably fair to say, however, that the treatments are far 
and few between, and the subject is not always presented in a systematic fashion. It is the purpose of this 
monograph to provide a simple, complete and systematic presentation without too much technical 
baggage. It is assumed only that the reader has some rudimentary knowledge of differential equations.  
 References to the original papers of Stäckel (1891,1893,1897), Robertson (1927) and Eisenhart 
(1934) and to a later work of Moon & Spencer (1952) are given at the end. 
 The subject at hand is separation of the Helmholtz equation (and its special case the Laplace 
equation) in various 3D curvilinear coordinate systems whose coordinates we shall call ξ1,ξ2,ξ3. The term 
"separation" means that one starts with the 3D Helmholtz equation (∇2 + K1

2) ψ = 0, which is of course a 
partial differential equation (PDE), and tries to find solutions of the form  
 
 ψ(ξ1,ξ2,ξ3) = X1(ξ1)X2(ξ2)X3(ξ3)/ R(ξ1,ξ2,ξ3) ,       (1.1) 
 
where an ordinary differential equation (ODEn) can be produced for each of the functions Xn(ξn). Thus, 
one can search for solutions "separately" for each Xn. If the Xn are any solutions of their respective 
ODEn, then the ψ shown above is a solution of the Helmholtz equation.  
 First, this is useful way generically to solve the Helmholtz problem, and second, because boundary 
conditions are often specified separately for the three coordinates, this separation (usually) turns at least 
one of the ODEn into its own little 1D boundary value problem. These ODE's always contain self-adjoint 
differential operators and are therefore (usually) amenable to normal 1D "Sturm-Liouville theory", a 
subject reviewed in Appendix A.  
 We say "usually" because in some cases the entanglement of the separation constants forces one to 
consider 2D or even 3D Sturm-Liouville situations, where the problem cannot be factored into 1D 
problems each of which causes quantization of its isolated separation constant. Hopefully this statement 
will become clearer below. A classic 3D case occurs in ellipsoidal coordinates as discussed in Section 12, 
while a 2D case occurs in conical coordinates. Both these systems involve the Lamé functions.  
 If the separation can be done as outlined above for a certain orthogonal curvilinear coordinate system 
where the function R is not a constant, then one says that the system is R-separable. If this can be done 
with R=constant, it is simple-separable and one can then take R = 1 without loss of generality.  
 It turns out that only the 11 "classical" 3D Euclidean orthogonal coordinate systems are simple 
separable for the Helmholtz equation (and therefore also for the Laplace equation). These systems are 
discussed in the first chapter (called Section I) of Moon & Spencer (1961). This separability is why they 
are the classical systems.  
 There are no coordinate systems in which the Helmholtz equation (K1

2≠0) is R-separable. Thus, apart 
from the 11 classical systems in which it is simple-separable, the Helmholtz equation is non-separable. 
For example, in toroidal coordinates (see graphic below) the Helmholtz equation is non-separable. We 
shall use toroidal coordinates as an ongoing example in the work below, and the reader should understand 
that this system is separable only for the Laplace equation (for which it is in fact R-separable). 
 When we speak in this document of the Helmholtz equation, we always mean the scalar Helmholtz 
equation. Moon and Spencer devote a whole Chapter (their Section V) to the vector Helmholtz equation. 
They refer to the vector Laplacian operator as  to avoid confusion with the scalar ∇2 operator. Beyond 
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Cartesian coordinates for which the components of the vector Helmholtz equation are each scalar 
Helmholtz equations, separability is obtained only for special forms of the vector function F  in  F.  
 Here then is a summary of the classification of the separability of 3D coordinate systems:  
 

 
 
The red references to Problems A,B,C will be explained in Section 4 below. 
 The Helmholtz equation is extremely significant because it arises very naturally in problems 
involving the heat conduction (diffusion) equation and the wave equation, where the time derivative term 
in the PDE is replaced by a constant parameter by applying a Laplace or Fourier time transform to the 
PDE. A huge swath of mathematical physics is dominated by these two PDE equation types. One always 
needs to solve the Helmholtz equation that results, and that then involves the notion of "separation". 
Section 11 provides as an example the Schrodinger Equation PDE of quantum mechanics, which is the 
heat conduction equation with scaled imaginary time. 
 Methods of generating equivalent Stackel matrices are given in Section 6, and Section 13 generalizes 
the whole theory to N dimensions.  
  
A brief summary of the document is in order.  
 Section 2 sets up our "systematic" notation and conventions, and discusses the notion of a functional-
form equation which differs in an operational sense from a normal equation.  
 Section 3 starts with the Helmholtz equation and grinds away on it, making one functional-form 
assumption (3.5) along the way. We define a support function Q, compute it for toroidal coordinates, and 
then digress to discuss the notion of separation constants as they appear in Cartesian coordinates.  
 Section 4 assumes a most-general self-adjoint form for the desired separated Ln which defines ODEn 
and then inserts this form into the ground-down Helmholtz equation, thus grinding it down even more to 
equation (4.4). Finally one is in a position to introduce the Stäckel Matrix Φ and with it one can formulate 
two potentially solvable problems, called Problem A and Problem B, and one insolvable Problem C. 
Problem A (simple-separation) is seen to be a special case of Problem B (R-separation). The problem is to 
"find the Stäckel matrix Φ" and various supporting functions, and in so doing to "solve" Problem B, and 
thus also Problem A. Here "solve" means to achieve separation and thus to have at hand all the ODEn 
which can then be solved subject to their boundary conditions. Basically Problems A and B are treated at 
the same time, something not done in the referenced books.  
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 Section 5 takes Problem B and, using elementary linear algebra, recasts it into a new form which 
appears as certain conditions on the matrix Φ. The Robertson Condition appears here.  
 Section 6 digresses momentarily to derive a set of "equivalence rules" allowing one to obtain new 
valid Stäckel matrices from an existing valid Stäckel matrix. This matrix is thus not unique. We have not 
seen these simple rules stated anywhere, but they are doubtless out there somewhere.  
 Section 7 discusses the solution of Problem B as recast at the end of Section 5.  Section 7 (a) specifies 
a set of Conditions which must be met for a solution to exist, and Section 7 (b) gives a sequence of Steps 
one can follow to find the solution. These Steps are then applied to two examples. The first is a Problem 
B problem:  R-separation of toroidal coordinates. The second is a Problem A problem: simple-separation 
of circular cylindrical coordinates. The examples are just exercises in turning a crank. In each case the 
solution functions are stated, these being the toroidal and cylindrical harmonics.  
 Section 8 attempts to specialize the solution method to a class of cylindrical systems in which the 
non-trivial scale factors h1 and h2 are not multiples of each other. Such systems are uncommon with the 
exception of the circular cylindrical system considered in Section 7.  
 Section 9 first considers cylindrical systems for which h2 = αh1, and then sets α = 1 as a further 
special case. Most practical cylindrical systems have h1 = h2 since they come from conformal maps of the 
Cartesian system. The Stäckel matrix is computed for three cylindrical systems of this type and the 21 
such systems considered by Moon and Spencer are mentioned.  
 Section 10 specializes the Section 7 Conditions and Steps to rotational systems, and again toroidal 
coordinates are considered as an example. The 11 such systems listed in Moon and Spencer are 
mentioned.  
 Section 11 considers how separation is affected when some function is rudely added to the constant 
in the Helmholtz equation. If this function has a certain simple form, the resulting equation can still be 
separated. A prototype of this situation is the Schrodinger Equation of quantum mechanics where that 
added function is the potential field imposed on a quantum particle. As an example we mention the notion 
of a central potential in spherical coordinates and take a passing glance at the solution of the hydrogen 
atom.  
 Section 12, as a solid exercise of our systematic machinery, carries out the separation of the 
Helmholtz equation in ellipsoidal coordinates, the most complicated of the classical systems. Two very 
different-looking Stäckel matrices are obtained, both of which appear in the literature, and it is shown 
they are equivalent by the rules of Section 6. Our notation matches Morse & Feshbach and a sign error in 
that book is noted.  
 Section 13 generalizes the Stäckel formalism from 3 to N dimensions, which is quite easy to do, 
though carrying out the computational Steps is more complicated for N > 3.  
 Section 14 examines the Stäckel theory for N = 2 dimensions, writes some general results, and then 
treats polar and elliptical coordinates as examples for h1≠h2 and h1=h2. A certain polar coordinates 
Helmholtz Green's Function problem is considered to illustrate how the Sturm-Liouville analysis can be 
carried out in either coordinate.  
 Appendix A gives a concise review of the 1D Sturm-Liouville Problem and the transform associated 
with such a problem. The Kantorovich-Lebedev transform is presented as an example.  
 A short list of References is then provided. 
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2. Notation and Cast of Players 
 
The entire analysis is a study of functional forms and this makes it a bit slippery. By functional form is 
meant the way a function of multiple variables depends on those variables in terms of possible 
factorization of the form. For example, some u(x,y,z) might be expressible as v(x)w(y,z) and this would 
then be the functional form of u. Another sense of functional form is simply what variables a function is a 
function of. One might write v(x) simply as v if an expressions get complicated, but one must remember 
than that its functional form is v(x).  
 The symbols ξ1, ξ2, ξ3  (these are "xi", pronounced "zeye", different from ζ = zeta and χ = chi ) are 
often used for ellipsoidal coordinates since those coordinates are so closely related to each other. Below 
ξ1, ξ2, ξ3 shall represent an arbitrary triplet of orthogonal curvilinear coordinates. The notation ∂n is used 
for a partial derivative,  
 

 
∂f
∂ξn   = ∂f/∂ξn  = ∂nf   n = 1,2,3 

 
along with the following other symbols, 
 
 Σn ≡ Σn=13  LHS = left hand side of some equation  RHS = right hand side 
    PDE = partial differential equation  ODE = ordinary diff eq 
 
 There will be many function symbols used below, and each symbol has an implied functional form. 
At first one needs to show the forms in full detail, but eventually one learns to work without doing this. 
Here is a triplet of function symbols each having four different notations,   
 
 g1(ξ2, ξ3)  =  g1(23)  = g1(≠1) = g1 
 g2(ξ3, ξ1)  =  g2(31)  = g2(≠2) = g2  
 g3(ξ1, ξ2)  =  g3(12)  = g3(≠3) = g3  . 
 
Each row is the forward cyclic permutation of the previous row. Only the notations of the last two 
columns are amenable to the generic notation 
 
 gn(≠n) = gn  n = 1,2,3  . 
 
Notice these facts: 
 
 ∂1g1 = 0  ∂1(g1F) = g1(∂1F)    
 ∂ngn = 0  ∂n(gnF) = gn(∂nF)  . 
 
These follow, for example, since g1 is a function only of ξ2 and ξ3. "Facts" like these will be crucial in the 
analysis below.  The functions gn are "helper functions" which have no particular significance.    
 Only one other function symbol set will have this same functional form 
 
 Mn(≠n) = Mn  n = 1,2,3  . 
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The letter M stands for "minor" as in the minor of a 3x3 matrix, but in fact M is really a cofactor. This 
confusion seems to go back to Morse and Feshbach who use the word "minor" to mean what is now 
usually called a "cofactor".  In current terminology  cofactorpq = (-1)p+q minorpq where p and q label the 
rows and columns of a matrix, as in Apq. To be a little more specific, the Mn will be the cofactors of the 
elements of the first column of a certain 3x3 matrix called the Stäckel matrix Φ discussed soon below.  
 Certain function symbols imply a very simple functional form as follows 
 
 fn(ξn) = fn(n) = fn     n = 1,2,3 
 Xn(ξn) = Xn(n) = Xn    n = 1,2,3 . 
 
The Xn are the factors of the ψ solution shown in the introduction. The fn functions are just more helper 
functions that will be used in the analysis and which appear in the separated ODE equations. 
 There are several function symbols that are assumed to have in general no factored functional form, 
and here they are : 
 
 R(ξ1,ξ2,ξ3)  = R(123) = R  // the function appearing in (1) above ("modulation factor") 
 Q(ξ1,ξ2,ξ3)  = Q(123) = Q  // a helper function (called u by Morse & Feshbach) 
 S(ξ1,ξ2,ξ3)   = S(123) = S  // the determinant of Φ (coming soon) 
 hn(ξ1,ξ2,ξ3)  = hn(123) = hn  // the curvilinear system scale factors hn2 = gnn (metric tensor) 
 H(ξ1,ξ2,ξ3)  = H(123) = H  ≡ h1h2h3   .  
 
The symbol H is "non standard" but it is convenient to use it as the product of the three curvilinear scale 
factors. One might say that all the quantities listed here have a generic (123) functional form. This does 
not mean they cannot also have some kind of factored form.  
 The symbol ψ, the Helmholtz equation solution function, has the special functional form noted in 
(1.1). That is, one seeks solutions ψ of this functional form, 
 
 ψ(ξ1,ξ2,ξ3) = X1(ξ1)X2(ξ2)X3(ξ3)/ R(ξ1,ξ2,ξ3) 
 ψ(123) = X1(1)X2(2)X3(3)/ R(123) 
 ψ = X1X2X3/R 
 
Historically it seems that R was defined "in the denominator of ψ".  
 Certain constants shall appear below: 
 
 K1

2 = the parameter appearing in the Helmholtz equation (∇2 + K1
2)ψ = 0 

 k22, k32 = two generic constants which will be called "separation constants"  
 
Although K1

2 and the kn2 are written "squared", they are really meant to be arbitrary real numbers, so if 
some ki2 < 0 then the corresponding ki is imaginary. The squared notation arises from the way the 
Helmholtz equation looks when it derives from a transformed wave equation. It is probably an 
unfortunate notation, but we use it to be compatible with Morse and Feshbach. 
 
For equations with three terms where the last two terms are cyclic permutations of the first term, we 
sometimes write first term " + cyclic" to save writing obvious extra terms. That is to say,  
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 f(123) + f(231) + f(312)   =   f(123)  + cyclic  . 
  
We now come finally to the Stäckel matrix which Morse and Feshbach (and Stäckel) call Φ 
 

  Φ   = 
⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞  Φ11(1)   Φ12(1)   Φ13(1)  

  Φ21(2)   Φ22(2)   Φ23(2)  
  Φ31(3)   Φ32(3)   Φ33(3)  

  " the Stäckel Matrix" 

 
  S = det(Φ)    " the Stäckel Determinant"  
 
A key fact to recognize is that the three functions of row n are functions only of ξn , as indicated by the 
notation 
 
 Φnm(n)  = Φnm(ξn) , 
 
so the first index of Φ matches the argument. The cofactors of the elements of the first column of the Φ 
matrix are these,  
 
 Mn ≡  cof(Φn1) = (-1)n+1 minor(Φn1) . 
 
For example, 
 

 M2 = (-1)2+1 minor(Φn1) =  –  ⎪
⎪

⎪
⎪ Φ12(1)  Φ13(1) 

 Φ32(3)  Φ33(3)  = – [Φ12(ξ1) Φ33(ξ3) – Φ13(ξ1) Φ32(ξ3)]  . 

 
Notice that M2 has the functional form M2(≠2) = M2(ξ1,ξ3), and in general Mn = Mn(≠n), as it was 
presented earlier in this section. Sometimes the following notations are used 
 
 Mn(Φ) S(Φ) 
 
to stress that these quantities are functions of the Stäckel matrix elements.  
 This Φ matrix is named after German mathematician Paul Stäckel (shtay'kel), 1962-1919. 
 Our symbols match exactly those of Morse and Feshbach except for Q which they call u, and except 
for our added symbol H for h1h2h3. Our symbols match Moon and Spencer except they use Un(un) in 
place of our Xn(ξn).  
 Morse and Feshbach address this 3D separation subject in two places in their first volume: simple 
separation is treated pp 508-511, while R-separation is treated pp 518-519. They do not use the term "R-
separation" and call the R function a "modulation factor".  
 Moon and Spencer discuss simple separation on pp 5-7, and R-separation on p 96. They provide more 
detail in some of their other books and papers.  
 One last notational item: when an already-numbered equation is later replicated for the reader's 
convenience, the equation number in the replicated line is put into italics to show that this is not the first 
occurrence of the equation.  
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3. Initial Processing of the Helmholtz Equation  
 
We are going to treat R-separation and simple separation at the same time, and branch off later into the 
two cases. Remember that simple separation just means R = 1.  In orthogonal curvilinear coordinates, 
using our notation as defined above, the Helmholtz equation can be written  (see e.g. Morse and Feshbach 
p 115)  
 
  Lψ ≡ (∇2+K1

2)ψ  = 0    L  ≡ (∇2+K1
2)  = the Helmholtz operator 

 
  Lψ = H-1{ ∂1[(H/h12)(∂1ψ)] + cyclic} + K1

2ψ  = 0   H  ≡ h1h2h3  
 
  Lψ = H-1 Σn ∂n[(H/hn2)(∂nψ)]  + K1

2ψ = 0      (3.1) 
 
where sometimes the + cyclic notation is more useful for observing functional forms. We seek a solution 
of this functional form 
 
 ψ = X1X2X3/R          (3.2) 
 
where the four functions Xn and R are as yet unknown. Inserting this ψ form into (3.1) gives 
 
 Lψ = H-1{ ∂1[(H/h12)(∂1{ X1X2X3/R })] + cyclic} + K1

2ψ  = 0    
  
 Lψ = H-1{ X2X3∂1[(H/h12) ∂1{ X1/R }]  + cyclic} + K1

2ψ  = 0  .    (3.3) 
 
Here one sees how the implicit functional forms come into play, as the factors X2X3 quietly slip to the 
left through both ∂1 operators. The following is then inserted into (3.3) 
 
  ∂1(X1/R) = ∂1(R-1X1) =  R-1∂1X1 - R-2X1∂1R = R-2{ (∂1X1)R - X1(∂1R) }   
to get 
 
 Lψ = H-1{ X2X3∂1[ (H/[R2h12]){ (∂1X1)R - X1(∂1R) }  ] + cyclic} + K1

2ψ  = 0 .  (3.4) 
 
In order to move toward a "separated form" wherein the terms above are less coordinate-entangled, we 
shall attempt to select function R so the following equation is satisfied in terms of functional form 
(comments below),   
 
 (H/[R2hn2]) = fn(n)gn(≠n)  n = 1,2,3      (3.5) 
 
 (H/[R2h12]) = f1(1)g1(23)  // for example 
    
because, if one inserts this into (3.4), one can pull g1(23) to the left through ∂1 to get 
 
 H-1{ X2X3∂1[ f1(1)g1(23) { (∂1X1)R - X1(∂1R) } ] + cyclic}ψ + K1

2ψ  = 0  
     
 H-1{ X2X3 g1∂1[ f1 { (∂1X1)R - X1(∂1R) } ] + cyclic}ψ + K1

2ψ  = 0  
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and, recalling that ψ = X1X2X3/R from (3.2), one can then divide by ψ to get 
 
 (Lψ)/ψ = (R/H){(1/X1) g1∂1[f1 { (∂1X1)R - X1(∂1R) }] + cyclic} + K1

2  = 0  
 
 (Lψ)/ψ = (R/H) Σn[(gn/Xn) ∂n[fn { R(∂nXn) - Xn(∂nR) }]  + K1

2  = 0   . 
 
Now using (3.5) to replace gn in favor of fn, our processed Helmholtz equation appears as  
 
 (Lψ)/ψ  = (1/R) Σn[  (1/[hn2Xn]) (1/fn)∂n[fn { R(∂nXn) - Xn(∂nR) }]  + K1

2  = 0  (3.6) 
 
It is not obvious from the discussion above that having (3.5) be true is the only possible pathway to 
finding a separated solution, though probably that can be proven. It will be shown that this (3.5) pathway 
does in fact lead to separated solutions.  
 
For a coordinate system which satisfies (3.5), where one has found the fn , gn and R, one can write ∇2 in 
an alternate form. In (3.1) ∇2 is given in terms of the scale factors hn,  
 
 ∇2 = H-1 Σn ∂n[(H/hn2) ∂n ]  . 
 
From (3.5) one can replace (H/hn2) = fn(n)gn(≠n)R2 to get 
 
 ∇2 = H-1 Σn ∂n[fn(n)gn(≠n)R2∂n ]   = H-1 Σn gn(≠n)∂n[fn(n) R2∂n ] 
 
  = H-1 Σn (H/[hn2R2]) (1/fn) ∂n[fn R2∂n ] 
  
  = Σn (1/[hn2R2]) (1/fn) ∂n[fn R2∂n ]   .       (3.7) 
 
Then in the special case that R = 1, one has 
 
 ∇2 =  Σn (1/hn2) (1/fn) ∂n[fn∂n ]          (3.7a) 
 
showing ∇2 in terms of the fn and the scale factors hn.  In either case L = ∇2+ K1

2.  
   
Comments on (3.5) and example of toroidal coordinates 
 
Conditions (3.5) above, 
 
 (H/[R2hn2]) = fn(n)gn(≠n)  n = 1,2,3       (3.5) 
 
require that the LHS factor in a certain specific manner. One can certainly find an R(123) that works for 
the first equation with n=1: one could just select two arbitrary functions f1(1) and g1(23) and then define 
R by  
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 [R(123) ]-2 ≡ f1(1)g1(23) (H/h12)  . 
 
But if this is done, it is unlikely that (3.5) will be viable for n=2 and 3!  So one has to assume one can find 
a set of 7 functions (three fn, three gn and one R) which make (3.5) valid. Any curvilinear system for 
which one cannot find a happy set of 7 functions is therefore not separable. So one views (3.5) as a 
restriction or condition on the curvilinear coordinate system which must be met to obtain any separation. 
We do not address the question of whether there might be some other possible separation solution where 
(3.5) is not assumed.  
 
Example. Since this is perhaps a confusing concept, consider the toroidal coordinate system as an 
example. The Moon and Spencer page 112 notation is used, where η labels toroids, θ labels bowls, ψ 
labels azimuthal half planes, a is the radius of the limiting toroid, and then (ξ1,ξ2,ξ3)  = (η,θ,ψ). In this 
system the basic parameters come out being 
 
 R-2 ≡ [ch(ξ1)-cos(ξ2)] 
 h1 = h2 = a/[ch(ξ1)-cos(ξ2)]   => h1 = h2 = aR2 

 h3 = a sh(ξ1)/[ch(ξ1)-cos(ξ2)]  => h3 = a sh(ξ1)R2 . 
 
As a candidate for R one tries R = R and finds then that  
 
 (H/h12) = h2h3/h1 = h3 = a sh(ξ1)/[ch(ξ1)-cos(ξ2)] 
 (H/h22) = h3h1/h2 = h3 = a sh(ξ1)/[ch(ξ1)-cos(ξ2)] 
 (H/h32) = h1h2/h3 = a2/[ch(ξ1)-cos(ξ2)]2 * [ch(ξ1)-cos(ξ2)] /a sh(ξ1)  = a/{[ch(ξ1)-cos(ξ2)] sh(ξ1)} . 
 
Can a set of 6 functions fn and gn be found which satisfy (3.5) ? 
 
 fn(1)gn(23) = (1/R2) (H/hn2)  = [ch(ξ1)-cos(ξ2)] (H/hn2)  for n = 1,2,3 
 
The answer is yes:   
 
 f1(1)g1(23) = [ch(ξ1)-cos(ξ2)] a sh(ξ1)/[ch(ξ1)-cos(ξ2)]  = a sh(ξ1)        =  [sh(ξ1) ] [a ] 
 f2(2)g2(31) = [ch(ξ1)-cos(ξ2)] a sh(ξ1)/[ch(ξ1)-cos(ξ2)]  = a sh(ξ1)       =  [ 1 ] [a sh(ξ1) ] 
 f3(3)g3(12) = [ch(ξ1)-cos(ξ2)] a/{[ch(ξ1)-cos(ξ2)] sh(ξ1)}  = a /sh(ξ1)  =  [ a ] [1/ sh(ξ1) ]  . 
 
Thus, with this candidate R, a solution set for the 6 functions has been found: 
         
 f1(1) =  sh(ξ1)  g1(23) = a   R = R  = [ch(ξ1)-cos(ξ2)]-1/2 
 f2(2) = 1   g2(31) = a sh(ξ1) 
 f3(3) = a   g3(12) = 1/sh(ξ1)  . 
 
Therefore, the toroidal system at least has a chance of being R-separable. It is in fact R-separable (for 
Laplace), but we don't know that yet since there might be other restrictions that will need checking.  
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Had one tried R = 1 in the above toroidal discussion, the problem would have been to find 6 functions fn 
and gn which satisfy (3.5). The n=1 condition would read,  
 
 f1(1)g1(23)  = (H/h12)   = a sh(ξ1)/[ch(ξ1)-cos(ξ2)] . 
 
The only chance is to select f1(1) = a sh(ξ1) but then one is stuck with g1(23) = 1/[ch(ξ1)-cos(ξ2)] which 
involves coordinate ξ1 which violates the functional form g1(23)! Therefore the toroidal system is not 
simple-separable!  
 
The Definition of Q 
 
Processing of the Helmholtz equation now resumes where it left off, which was here 
 
 (Lψ)/ψ  = (1/R) Σn[  (1/[hn2Xn]) (1/fn)∂n[fn { R(∂nXn) - Xn(∂nR) }]  + K1

2  = 0  (3.6) 
 
where (3.5) has been assumed. Note that there is serious variable entanglement in each term of the sum, 
since  R =  R(123) and hn=  hn(123).  
 To further process (3.6), compute the ∂n derivatives, 
 
 ∂n[R fn(∂nXn)] = ∂n[R{fn(∂nXn)}]  = R∂n{fn(∂nXn)} +  (∂nR) {fn(∂nXn)} 
 ∂n[fnXn(∂nR)]  = ∂n[Xn{fn(∂nR)}]  = Xn∂n{fn(∂nR)} +  (∂nXn) {fn(∂nR)} . 
 
Therefore, for the quantity appearing in (3.6), 
 
 ∂n[fn { R(∂nXn) - Xn(∂nR) })]   =  R∂n{fn(∂nXn)} – Xn∂n{fn(∂nR)} 
 
since the two second terms cancel. Then (3.6) for (Lψ)/ψ becomes 
 
 (1/R) Σn (1/[hn2Xnfn]) [R∂n{fn(∂nXn)} – Xn∂n{fn(∂nR)}]  + K1

2  = 0     
 
 (1/R) Σn[ (1/[hn2Xnfn]) [R∂n{fn(∂nXn)}]  – (1/R) Σn[  (1/[hn2Xnfn])  [Xn∂n{fn(∂nR)}]  + K1

2  = 0  
or 
 (Lψ)/ψ  = Σn[  (1/[hn2Xnfn]) [∂n{fn(∂nXn)}]  – Σn[  (1/[hn2Rfn]) [∂n{fn(∂nR)}]  + K1

2  = 0 .   (3.8) 
   
Notice that the Xn part is segregated from the R part. Since a viable set of functions fn and R has already 
been determined from (3.5), the second term sum shown in (3.8) can be computed. It is going to be some 
general function of 123 which we now write in a fairly strange manner,  
 
   Σn (1/[hn2fnR]) ∂n{fn(∂nR)}   ≡ - k12/Q(123)  .      (3.9) 
 
Here, it is the RHS which is fully determined by the LHS and we choose to partition the RHS into two 
factors, a constant -k12 (Moon and Spencer call this constant -α1) and 1/Q(123) (Morse and Feshbach call 
this 1/u). Remember that the Helmholtz parameter is K1

2 and has nothing to do with this new constant 
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k12 just introduced. In theory, k12 can be any constant, but one usually chooses it to make the resulting 
Q(123) have some simple form. The reason for calling this constant k12 will be seen later.  
 For the simple separation case with R = 1, we will choose Q(123) = 1 and k12 = 0 in (3.9), which of 
course makes it still valid since (∂nR) = 0.  
 Equations (3.8,9) appears as (5.1.46,47) in Morse and Feshbach p 519, with Q→ u.  
 
Example: Compute Q for the toroidal system using (3.9) 
 
Start with the numerators in (3.9). First,  
 
 (∂1R)  = ∂1[ch(ξ1)-cos(ξ2)]-1/2  = (-1/2)sh(ξ1) [ch(ξ1)-cos(ξ2)]-3/2  =   (-1/2)sh(ξ1) R3 

 (∂2R)  = ∂2[ch(ξ1)-cos(ξ2)]-1/2  =  (-1/2)sin(ξ2) [ch(ξ1)-cos(ξ2)]-3/2 =  (-1/2)sin(ξ2) R3 

 (∂3R)  =  0  => entire third term in the sum is 0, so ignore it from now on 
 
The following tedious algebra must then be done:  
 
 [∂1{f1(∂1R)}]  =  [∂1{ sh(ξ1) * (-1/2)sh(ξ1) R3}] =  (-1/2) ∂1[sh2(ξ1)R3]  
  = (-1/2) [ 2sh(ξ1)ch(ξ1) R3  + sh2(ξ1)3R2(∂1R) ] 
  = (-1/2) [ 2sh(ξ1)ch(ξ1) R3  + sh2(ξ1)3R2(-1/2)sh(ξ1) R3 ]  
  = (-1/2) [ 2sh(ξ1)ch(ξ1) R3  – sh3(ξ1)(3/2)R5 ] 
  = (-1/4)sh(ξ1)R5 [ 4ch(ξ1) R-2  – 3sh2(ξ1) ] 
  = (-1/4)sh(ξ1)R5 [ 4ch(ξ1) [ch(ξ1)-cos(ξ2)]  – 3sh2(ξ1) ] 
  = (-1/4)sh(ξ1)R5 [ 4ch2(ξ1) - 4 ch(ξ1) cos(ξ2)]  – 3sh2(ξ1) ] 
  = (-1/4)sh(ξ1)R5 [ 3 + ch2(ξ1) - 4 ch(ξ1) cos(ξ2)] 
 
 [∂2{f2(∂2R)}]  =[∂2{1 *(∂2R)}]  = ∂2[(-1/2) sin(ξ2) R3 
   = (-1/2)[ cos(ξ2)R3 + sin(ξ2)3R2 (∂2R) ]  
   = (-1/2)[ cos(ξ2)R3 + sin(ξ2)3R2 (-1/2)sin(ξ2) R3 ]  
   = (-1/2)[ cos(ξ2)R3 – sin2(ξ2)(3/2)R5 ]  
   = (-1/2) R5 [ cos(ξ2)R-2 – sin2(ξ2)(3/2)]  
   = (-1/4) R5 [ 2cos(ξ2) [ch(ξ1)-cos(ξ2)]  – 3sin2(ξ2)]  
   = (-1/4) R5 [ 2cos(ξ2) ch(ξ1)-2cos2(ξ2) – 3sin2(ξ2)]  
   = (-1/4) R5 [ 2cos(ξ2) ch(ξ1) - 2 - sin2(ξ2)]  
  
which can be summarized as 
 
 [∂1{f1(∂1R)}] = (-1/4) R5 [ 3 + ch2(ξ1) - 4 ch(ξ1) cos(ξ2)] sh(ξ1) 
 [∂2{f2(∂2R)}] = (-1/4) R5 [ 2cos(ξ2) ch(ξ1) - 2 - sin2(ξ2)]  . 
 
The denominator factors of the Q expression are these,  
 
 h12f1R = a2R4 sh(ξ1) R =  a2 sh(ξ1) R5 

 h22f2R = a2R4 1 R =  a2 R5  . 
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Now the LHS of (3.9) can be evaluated:   
 
 Σn (1/[hn2fnR]) [∂n{fn(∂nR)}] = 
 
  [a2 sh(ξ1) R5]-1 *   (-1/4)sh(ξ1)R5 [ 3 + ch2(ξ1) - 4 ch(ξ1) cos(ξ2)] 
 +    [a2 R5]-1 *  (-1/4) R5 [ 2cos(ξ2) ch(ξ1) - 2 - sin2(ξ2)]  
 
 = (-1/4a2) [ 3 + ch2(ξ1) - 4 ch(ξ1) cos(ξ2)]   +   (-1/4a2)  [ 2cos(ξ2) ch(ξ1) - 2 - sin2(ξ2)]  
 = (-1/4a2) [3 + ch2(ξ1) - 4 ch(ξ1) cos(ξ2)+ 2cos(ξ2) ch(ξ1) - 2 - sin2(ξ2) ]  
 = (-1/4a2) [1 + ch2(ξ1) - 4 ch(ξ1) cos(ξ2)+ 2cos(ξ2) ch(ξ1) - sin2(ξ2) ] 
 = (-1/4a2) [cos2(ξ2) + ch2(ξ1) - 2 ch(ξ1) cos(ξ2)] 
 = (-1/4a2) [ch(ξ1)-cos(ξ2)]2 = (-1/4a2) R-4  . 
 
Therefore (3.9) says 
 
 -k12/Q(123) = Σn (1/[hn2fnR]) [∂n{fn(∂nR)}] =  (-1/4a2) R-4 = (-1/4) / {a2R4} 
 

so one can make this simple partitioning 
 
 k12 =  α1 = (1/4)  Q = a2R4 = a2[ch(ξ1)-cos(ξ2)]2 
 
which agrees with Moon and Spencer page 97.  
 So after this brute force sum computation, Q comes out being a very simple function. The toroidal 
information found so far can now be summarized :  
 
 h1 = h2 = a/[ch(ξ1)-cos(ξ2)]   => h1 = h2 = aR2  H = sh(ξ1)a3R6 

 h3 = a sh(ξ1)/[ch(ξ1)-cos(ξ2)]  => h3 = a sh(ξ1)R2 

 
 f1(1) =  sh(ξ1)  g1(23) = a   R = [ch(ξ1)-cos(ξ2)]-1/2 
 f2(2) = 1   g2(31) = a sh(ξ1)  Q = a2[ch(ξ1)-cos(ξ2)]2 = a2R4 
 f3(3) = a   g3(12) = 1/ sh(ξ1)  k12 = (1/4)  
 
Finish Processing 
 
So here is where things stood prior to the above example : 
 
 (Lψ)/ψ  = Σn[  (1/[hn2Xnfn]) [∂n{fn(∂nXn)}]  – Σn[  (1/[hn2Rfn]) [∂n{fn(∂nR)}]  + K1

2  = 0   (3.8) 
 
   Σn (1/[hn2fnR]) ∂n{fn(∂nR)}   = - k12/Q  .       (3.9) 
 
Therefore,  
 
 (Lψ)/ψ  =  Σn(1/[hn2Xn]) (1/fn)∂n[fn(∂nXn)]  + k12/Q  + K1

2  = 0  .    (3.10) 
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For later reference, notice in (3.10) the position of the two copies of function fn. Equation (3.10) is not 
separated because hn= hn(123) and Q = Q(123). At least in the simple separation case the Q term goes 
away, since as noted above k12 = 0 and Q = 1.  
 
This concludes the "initial processing of the Helmholtz equation". The PDE (3.10) essentially is the 
Helmholtz equation Lψ = (∇2+K1

2)ψ = 0 where various assumptions have been made: the form ψ = 
X1X2X3/R, equation (3.5), and the definition of Q and k12 from (3.9). At this point, then, for a given 
curvilinear coordinate system, we know all these items in full detail:  
 
 K1

2   hn(123)    H(123)    R(123)  fn(n)    gn(≠n)    Q(123)      k12   . 
 
Comment on separation in Cartesian coordinates 
 
Cartesian coordinates have hn = 1 and so fn = 1, R=1, Q=1, k12 = 0 and (3.10) reads 
 
   Σn (1/Xn) (∂n2Xn) + K1

2  = 0        (3.11) 
or 
 (1/X1) (∂12X1) + (1/X2) (∂22X2) + (1/X3) (∂32X3) + K1

2  = 0  .    (3.11a) 
 
If one were to fix ξ2 and ξ3 and vary just ξ1, one would conclude that (1/X1) (∂12X1) is a constant, since 
the other three terms in (3.11a) are then constant. By this argument, one is led to claim that 
 
  (1/X1) (∂12X1) = c1 

  (1/X2) (∂22X2) = c2 
  (1/X3) (∂32X3) = c3         (3.12) 
 
and then (3.11a) says  c1 + c2 + c3  = -K1

2 .     (3.13) 
 
One can then regard any two of the ci as free parameters, say c1 and c2, then the third is not free and is 
constrained to be c3 = K1

2 - c1- c2.  The two free parameters are called separation constants.  
 This is the simple way separation works in Cartesian coordinates, and it works this way because each 
term in the sum (3.11) is completely "detangled" from the other two terms in the sense that the first term 
does not involve variables ξ2 and ξ3 whatsoever. In general curvilinear coordinates, there will still be two 
separation constants, which will be called k22 and k32, but the simple arrangement shown in (3.12) does 
not obtain, and both the free parameters will (in the general case) appear in each of the three separated 
equations! As shown below, in curvilinear coordinates the separated equations end up having this form 
  
  (1/fnXn)∂n[fn(∂nXn)] + [ K1

2Φn1(ξn) + k22Φn2(ξn) + k32Φn3(ξn)] = 0 n = 1,2,3 
 
where the Φni(ξn) are a set of nine functions which can in principle all be different (and they are all 
different in ellipsoidal coordinates, for example, see Section 12). Here the two separation constants k22 
and k32 appear in each of the three separated equations as advertised, and they cannot be simply extracted 
as in (3.12). Nevertheless, they are free parameters and are still called separation constants. That is to say, 
all three equations above will be valid for any values of k22 and k32.  
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4. Starting from the other end:  The Stäckel Matrix Φ and a Formulation of the Problem 
 
The goal is to find differential operators Ln in terms of which (3.10) can be separated. The most general 
second-order linear Ln can be written this way, where pn, rn and qn are real functions,  
   
 LnXn = (1/pn)∂n[pn(∂nXn)] + rn (∂nXn) + qnXn = 0  .     (4.1) 
 
For several reasons, one wants Ln to be formally self-adjoint, L=L*. If (f,g) is the scalar product for the 
space of functions upon which Ln acts, L=L* means that (u,Lv) = (Lu,v), where one ignores the 
contributions of the "parts" terms as L is swung from one side to the other in the integration which this 
scalar product represents. Since L = rn∂nXn => L* = - rn∂nXn, one must have rn= 0 so then 
 
 LnXn = (1/pn)∂n[pn(∂nXn)] + qnXn = 0  .       (4.1A) 
 
If one takes rn ≠ 0, the process given below leads to an intractable set of equations which it is not hard to 
show is insolvable. Secondly, Ln being self-adjoint is essential to the application of Sturm-Liouville 
theory to the separated equations.  
 
Looking now at (3.10),  
 
 (Lψ)/ψ  =  Σn(1/[hn2Xn]) (1/fn)∂n[fn(∂nXn)]  + k12/Q  + K1

2  = 0,     (3.10) 
 
one is highly motivated to set pn = fn in (4.1A) and then the candidate form for Ln is 
 
 LnXn = (1/fn)∂n[fn(∂nXn)] + qnXn = 0       (4.2) 
 
which says  
 
 (1/Xn)(1/fn)∂n[fn(∂nXn)] = - qn  .        (4.3) 
     
Inserting (4.3) into (3.10), 
 
 (Lψ)/ψ  =  - Σn(1/hn2)qn  + k12/Q  + K1

2  = 0   .      (4.4) 
  
This then is the final form of the processed Helmholtz equation, assuming that Xn satisfies the equation 
(4.2) .  
 
Introduction of the Stäckel Matrix  
 
Now comes a fairly inspired and unexpected step in the development. Suppose one chooses to write the 
qn(n) function of (4.2) in this manner, which is to say, the unknown function qn(n) is simply written as a 
linear combination of three other unknown functions, 
 
 qn(n) = [ κ12Φn1(n) + k22Φn2(n) + k32Φn3(n)]  n = 1,2,3   (4.5) 
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where κ12, k22 and k32 are at the moment three arbitrary real constants, and the Φnm(n) are the 9 functions 
of what is called the Stäckel matrix mentioned in Section 2 above,  
 

  Φ   = 
⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞  Φ11(1)   Φ12(1)   Φ13(1)  

  Φ21(2)   Φ22(2)   Φ23(2)  
  Φ31(3)   Φ32(3)   Φ33(3)  

   S(Φ) ≡ det(Φ)    (4.6) 

 
  Mn(Φ)  ≡  cof(Φn1) = (-1)n+1 minor(Φn1)   .      (4.7) 
 
With (4.5) used in (4.2), the assumed form for Ln becomes 
 
 LnXn = (1/fn)∂n[fn(∂nXn)] + [ κ12Φn1(n) + k22Φn2(n) + k32Φn3(n)]Xn = 0   (4.8) 
 
and the processed Helmholtz equation (4.4) becomes 
 
  Q(Lψ)/ψ   = - Σn(Q/hn2) [ κ12Φn1(n) + k22Φn2(n) + k32Φn3(n)]  + k12  + QK1

2  = 0   . (4.9) 
 
This then is the form the processed Helmholtz equation takes if one expands the qn of (4.4) as shown in 
(4.5). The goal is to find a set of functions Φnm which makes (4.9) be true. It is not obvious that such a set 
of Φnm exists. The sum is still entangled due to hn(123) and Q(123).  
  
Formulation of separation Problems A, B and C 
 
Problem A: (simple separation of the Helmholtz equation). 
 
In this case R = 1, so Q = 1 and k12 = 0 in (4.9), and set κ12 = K1

2 in both (4.8) and (4.9) to get 
 
 LnXn = (1/fn)∂n[fn(∂nXn)] + [ K1

2Φn1(n) + k22Φn2(n) + k32Φn3(n)]Xn = 0   (4.8A) 
 
  (Lψ)/ψ  = - Σn(1/hn2) [ K1

2Φn1(n) + k22Φn2(n) + k32Φn3(n)]  + K1
2  = 0  .   (4.9A) 

 
Problem B: (R-separation of the Laplace Equation). 
 
In this case K1

2 = 0 in (4.9), and set κ12 = k12 in both (4.8) and (4.9) to get 
 
 LnXn = (1/fn)∂n[fn(∂nXn)] + [ k12Φn1(n) + k22Φn2(n) + k32Φn3(n)]Xn = 0   (4.8B) 
 
  Q(L0ψ)/ψ  = - Σn(Q/hn2) [k12Φn1(n) + k22Φn2(n) + k32Φn3(n)]  + k12  = 0   (4.9B) 
 
where L0 = ∇2 is the Laplace operator.  
 Comparing the A and B equations, one sees that Problem A is a special case of Problem B having Q = 
1 and k12 = K1

2. Below in the systematic solution of Problem B, we may apply any intermediate 
equation of that solution to Problem A by making these two substitutions (and R=1). This explains why 
we (and Morse and Feshbach) gave the constant in (3.9) the strange name k12. 
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 One now treats Problem B as an abstract mathematical problem. That mathematical problem is to find 
a set of 9 functions Φnm and 3 functions fn that makes (4.8B) and (4.9B) be consistent.  
 The method used for solving this problem is straightforward, the details appear in the next section. 
One requires that the coefficient of each ki2 in (4.9B) vanish, since the equation should be true for all real 
values of the three ki2 parameters. One then writes (4.9B) as a vector equation ΦT V = W where Vn = 
(Q/hn)2 and Wn= δn,1. This equation is inverted to obtain a simple expression for the cofactors Mn of the 
elements of the first column of Φ. From these cofactors one can (hopefully) deduce the 6 components of 
the rightmost two columns of Φ. We postulate a second condition as an ansatz (the Robertson Condition), 
and this condition then leads (potentially) to an evaluation of the elements of the first column of Φ. One 
then has all of Φ! The functions fn are determined from (3.5). If this program can be completed 
successfully, the separated Ln are obtained, and the Robertson ansatz is justified. The solution will be 
summarized as a sequence of Steps that one must execute one at a time. A list of Conditions is first stated 
which, if met, ensure that the Steps can be carried out.  
 
Problem C: (R-separation of the Helmholtz Equation with K1

2 ≠0). 
 
Here one has the full bore (4.9) to contend with 
 
  - Σn(Q/hn2) [ κ12Φn1(n) + k22Φn2(n) + k32Φn3(n)]  + k12  + QK1

2  = 0 .   (4.9C) 
 
Remember that Q = Q(123) is (in general) a function of all three coordinates. It is not clear how to 
decouple that last two terms in this equation. What should κ12 be set to? The method just outlined above 
for solving Problem B does not work for Problem C.  Moon and Spencer state (p 96, 1961) that no 
curvilinear system has ever been found in which the Helmholtz equation with K1

2 ≠ 0 separates via R-
separation (by which they mean with R ≠ constant). So having at least stated it, we shall give up on 
Problem C and continue now to solve Problem B.  
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5. Recasting Problem B into a new form 
 
Equations (4.9B) and (4.8B) are replicated here with new equations numbers,  
 
  - Σn(Q/hn2) [k12Φn1(n) + k22Φn2(n) + k32Φn3(n)]  + k12  = 0    (5.1) 
 
 LnXn = (1/fn)∂n[fn(∂nXn)] + [ k12Φn1(n) + k22Φn2(n) + k32Φn3(n)]Xn = 0  .  (5.2) 
 
If one can find the 3 functions fn appearing in (5.2) and the 9 functions Φnm of the Stäckel matrix that 
solve (5.1), then (5.2) gives the separated ODE for functions Xn. The plan is to find a solution of (5.1) 
which is valid for all three kn2 constants having arbitrary (complex in fact) values. Such a solution 
requires that the coefficients of each kn2 be set to 0 so that 
 
 Σn (Q/hn2) Φn1(n)  = 1       
 Σn (Q/hn2) Φn2(n)  = 0 
 Σn(Q/hn2) Φn3(n)   = 0  . 
 
To put this into a standard vector equation form, use [ΦT]mn(n) ≡ Φnm (n) so that 
 
 Σn ΦT

1n(n) (Q/hn2)  = 1        
 Σn ΦT

2n(n) (Q/hn2)  = 0 
 Σn ΦT

3n(n) (Q/hn2)  = 0 
 
and the vector equation is then 
 
 ΦT V = W  where          (5.3) 

  V =  
⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞ Q/h12

 Q/h22

 Q/h32
    W = 

⎝
⎜
⎛

⎠
⎟
⎞1

0
0 

 Φ   = 
⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞  Φ11(1)   Φ12(1)   Φ13(1)  

  Φ21(2)   Φ22(2)   Φ23(2)  
  Φ31(3)   Φ32(3)   Φ33(3)  

          S ≡ det(Φ)   . 

 
This equation can easily be solved for V using the rule that A-1 = cof(AT)/det(A) :  
 
 V = { cof(ΦT,T)/det(ΦT)} W  =  cof(Φ) W /det(Φ)  = (1/ S(Φ))  cof(Φ) W . 
 
In components 
 
 Vn  = (1/ S(Φ))  [cof(Φ)]nm Wm  = (1/S(Φ))  [cof(Φnm)] δm,1 =   (1/S(Φ))  [cof(Φn1)]  . (5.4) 
 
Following tradition, define Mn according to 
 
 Mn ≡ cof(Φn1)  = the cofactor of the first element in the nth row of Φ   (5.5) 
 
and insert this on the right of (5.4) and Vn = (Q /hn2) on the left, giving the Cofactor Conditions, 
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 Mn/S = (Q /hn2) .          (5.6) 
 
Alternatively, write (5.6) as  
 
 Mn(Φ)/S(Φ)  = (Q/hn2)  n=1,2,3  " Cofactor conditions"   (5.6a) 
 
and this emphasizes that there are 3 conditions that the Φ matrix must satisfy for a given coordinate 
system with scale factors hn. Notice that these conditions arise from the assumed form for Ln in (5.2), 
they are not "imposed". The reason that cofactors appear in (5.6) is because one had to invert the matrix 
ΦT and matrix inversion always gives rise to cofactors. Since W was the unit vector e1, only the cofactors 
of the first column of Φ play a role.  
 If the three cofactor conditions are satisfied by some matrix Φ, then equation (5.1) is satisfied. But 
equation (5.1) is the "ground down" Helmholtz equation, so this provides a solution to the initial problem. 
Moreover, equation (5.2) then gives the Ln operators such that LnXn = 0 from which the Xn may be 
determined.  
 
[Repeated Warning: Morse and Feshbach use cofactor Mn exactly as described above, but unfortunately 
they refer to Mn as a "minor", and they never use the word "cofactor". In modern parlance, cofactors are 
minors with signs added, which make a lot of difference. ]  
 
The next step is to impose an extra condition on the Φ matrix known as the Robertson Condition. This is 
done just as an ansatz to see if it helps find a solution. The requirement is that S = det(Φ) take this form,  
 
 S(Φ)  = H / (f1f2f3QR2) .    "Robertson condition"    (5.7) 
 
It is not obvious that, for a given coordinate system, one can even find a matrix Φ which satisfies the 
Cofactor and Robertson conditions, but we shall try to construct a solution Φ.  Combining (5.6) and (5.7) 
gives 
 
 Mn = (SQ/hn2) =  (H/hn2) /(f1f2f3R2)  .        (5.8) 
 
The Robertson condition causes the solution Mn to be expressed directly in terms of known quantities. If 
a full solution matrix Φ can be found, then this Robertson condition is retroactively justified. Using (3.5) 
which says (H/hn2) = fngn R2, (5.8) can be written in an alternate form 
 
 Mn = gnfn/(f1f2f3)          (5.8a) 
or 
 M1 = g1 /(f2f3) 
 M2 = g2 /(f3f1) 
 M3 = g3 /(f1f2)  .          (5.8b) 
  
These are the three cofactors of the elements of the first column of Φ.  Notice there are no factors of R or 
Q in (5.8b). This was the motivation for installing the Q and R factors in the Robertson condition as done 
above in (5.7).  
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 It remains to find the elements of the first column of Φ. They appear in this standard expansion of the 
determinant of Φ,  
 
 S = Φ11(1) M1 + Φ21(2) M2 + Φ31(3) M3  .       (5.9) 
 
Install now S from (5.7) and the Mn from (5.8)  to get 
 
[ H / (f1f2f3QR2)] = Φ11(1) (H/h12) /(f1f2f3R2) + Φ21(2) (H/h22) /(f1f2f3R2) + Φ31(3) (H/h32) /(f1f2f3R2) 
 
or 
 1/Q = Φ11(1) (1/h12) + Φ21(2) (1/h22) + Φ31(3) (1/h32) .     (5.10) 
 
This is a non-trivial functional-form equation that may or may not have solutions for the Φn1(n).  
  
One is now left with this problem:  Given  
 
 S(Φ)  = H / (f1f2f3QR2)    // Robertson 
 Mn(Φ)  = S(Φ) (Q/hn2)    // Cofactor    (5.11)  
 
how exactly does one find the 9 elements of Φ ?  This is Problem B restated in a simple form. If one can 
solve for the elements of matrix Φ, then the Robertson condition is justified because it led to a solution of 
equation (5.1).  
 Having thus reformulated the problem of finding a separable solution to the Helmholtz equation as a 
problem of finding the matrix Φ solving (5.11), we put our development in temporary stasis to discuss the 
non-uniqueness of the Stäckel matrix Φ. The development then resumes in Section 7.  
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6. The non-uniqueness of Stäckel matrix Φ:  Equivalence Operations 
 
Suppose one has successfully found a solution for Φ satisfying (5.11). Write it as  
 

 Φ    = 
⎝
⎜
⎛

⎠
⎟
⎞  a(1)  b(1)  c(1)  

  d(2)  e(2)  f(2)  
  g(3)  h(3)  i(3)  

   S = det(Φ)  . 

 
The cofactors of the elements of the first column are given by 
 
  M1(23) = e(2)i(3)-f(2)h(3) 
 -M2(31) = b(1)i(3)-c(1)h(3) 
  M3(12)  = b(1)f(2)-c(1)e(2)  . 
 
(1) Look what happens if one scales up the elements of column 2 by constant factor α, and scales down 
those of column 3 by the same factor. The above three equations become 
 
  M'1(23) = αe(2) (1/α)i(3)- (1/α)f(2)αh(3)  = e(2)i(3)-f(2)h(3)  = M1(23) 
 -M'2(31) = αb(1) (1/α)i(3)-(1/α)c(1)αh(3) = b(1)i(3)-c(1)h(3)  = -M2(31) 
  M'3(12)  = αb(1) (1/α)f(2)- (1/α)c(1)αe(2) = b(1)f(2)-c(1)e(2) = M3(12) 
 
Since  S = a(1) M1 + d(2) M2 + g(3) M3 and the M's stayed the same, S also stays the same, and (5.11) is 
still satisfied. Therefore, this up/down scaling of the last two columns is an "equivalence" operation for Φ 
-- it creates a new Stäckel matrix that is just as good as the original Φ. In the special case α = -1, one sees 
that negating the last two columns of a Stäckel matrix is an equivalence operation.  
 
(2) Next, suppose one swaps columns 2 and 3 and then negates either of the swapped columns. For 
example, swapping  columns 2 and 3 and then negating column 2 gives,  
 

  Φ'    = 
⎝
⎜
⎛

⎠
⎟
⎞  a(1)  -c(1)  b(1)  

  d(2)  -f(2)  e(2)  
  g(3)  -i(3)  h(3)  

   S = det(Φ)   .  //  Φ    = 
⎝
⎜
⎛

⎠
⎟
⎞  a(1)  b(1)  c(1)  

  d(2)  e(2)  f(2)  
  g(3)  h(3)  i(3)  

  

 
A quick inspection shows that M'n = Mn. Also, swapping two columns negates the determinant, and then 
negating a column restores it. Negating the third column instead of the second is the same as taking Φ' as 
shown above and negating both columns 2 and 3. But from (1) that is an equivalence operation.  
 
(3) Adding a multiple of one of the last two columns to the other is also an equivalence operation as is 
now shown. Linear algebra says that such an operation does not change S. Suppose one adds a multiple α 
of column 2 to column 3: 
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 Φ    = 
⎝
⎜
⎛

⎠
⎟
⎞  a(1)  b(1)  c(1)  

  d(2)  e(2)  f(2)  
  g(3)  h(3)  i(3)  

   S = det(Φ) 

 
 c'(1) = c(1) + α b(1) 
 f'(2) =  f(2) + α e(2) 
 i'(3) =   i(3) + α h(3) 
 
Then : 
 
 M1'(23) = e(2)i'(3)-f'(2)h(3)  =  e(2)[ i(3) + α h(3)]-[ f(2) + α e(2)]h(3)  
 
        = e(2)i(3)-f(2)h(3) + α [e(2) h(3) - e(2) h(3)]   = e(2)i(3)-f(2)h(3) = M1(23) 
 
and similarly for the other two Mn. Of course one could add a multiple of one of the last two columns to 
the first column, and that would also be an equivalence operation since the Mn and S are both unaltered.  
 
Summary of Stäckel Matrix Equivalence Operations 
 
 (1)  multiply one of the last two columns by any (nonzero) constant α and the other by 1/α.  (6.1) 
 (2)  swap the last two columns of Φ and then negate either of these columns.    (6.2) 
 (3) add any multiple of one of the last two columns to a different column.    (6.3) 
 
These rules are useful if one computes a Stäckel matrix and it does not agree with a Stäckel matrix 
appearing in the literature. Some examples will be shown in Section 12.  
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7. Solving Problem B 
 
To save writing lots of subscripts, write the to-be-determined Φ matrix as shown above, 
 

 Φ    = 
⎝
⎜
⎛

⎠
⎟
⎞  a(1)  b(1)  c(1)  

  d(2)  e(2)  f(2)  
  g(3)  h(3)  i(3)  

    S = det(Φ)  .     (7.1) 

 
The cofactors of interest appear in these equations 
 
  M1(23) = e(2)i(3)-f(2)h(3)    
 -M2(31) = b(1)i(3)-c(1)h(3) 
  M3(12) = b(1)f(2)-c(1)e(2)         (7.2) 
 
and now insert the Mn expressions from (5.8b) to get 
 
   g1/(f2f3)  = e(2)i(3)-f(2)h(3) 
 - g2/(f3f1)   = b(1)i(3)-c(1)h(3) 
    g3/(f1f2)  = b(1)f(2)-c(1)e(2) .        (7.3) 
 
Now define rescaled upper-case functions of the form 
 
 E(2) = e(2) f2(2)            (7.4) 
 
and similarly for the other five functions appearing above, so (7.3) becomes, 
 
   g1(23)  = E(2)I(3)-F(2)H(3) 
 - g2(31)  = B(1)I(3)-C(1)H(3) 
   g3(12)  = B(1)F(2)-C(1)E(2)        (7.5) 
 
where the gn are those helper functions appearing in (3.5). Recall that it was assumed at the start that the 
curvilinear coordinate system and its scale factors hn were compatible with the three equations of (3.5) 
and that one could find a set of 7 functions fn, gn and R, all unique apart from constant allocation. In 
particular, the analysis of (3.5) yields the three gn which appear on the LHS of equations (7.5). The 
question is now whether these gn have the functional form shown in (7.5) !  For example, does the g1(23) 
obtained from (3.5) have a form which is at most two terms each showing simple factorization? One has 
to regard (7.5) as three functional-form conditions for the chosen coordinate system! If the gn don't have 
the functional form shown in (7.5), then given the three cofactors Mn , one cannot successfully obtain the 
elements of the rightmost two columns of Φ and the entire plan collapses.  
 Suppose the gn do in fact have the functional form shown in (7.5). Even in this case, it is not clear 
that (7.5) can be solved for the capital letter functions. The reason is that there is correlation in the three 
equations in that each function shows up in two equations. So even if the functional form requirements 
are met, one still has to actually be able to solve 7.5 for the 6 capital letter functions. If this can be done, 
then one uses (7.4) to find the lower case functions which are the actual Φ matrix elements for the 
rightmost two columns.  
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 In many examples studied below, each of equations (7.5) will have only a single term on the RHS. In 
this case, at least two of the capital letter functions will vanish. (But this does not happen in Section 12.) 
 
We now turn to the S equation which is this from (5.10) 
 
 1/Q = a(1) (1/h12) + d(2) (1/h22) + g(3) (1/h32)      (7.6) 
 
Of course the (1/hn2) and Q(123) objects are completely determined by the choice of coordinate system, 
so once again one has a functional-form question concerning the solvability of (7.6). To see if it is 
solvable, we have to examine a specific curvilinear system, or perhaps a family of such systems. When 
(7.6) has a solution, one often finds that two of the three matrix elements a(1), d(2), g(3) can be set to 0.  
 
In the next two subsections, we summarize first the Conditions needed for a successful separation, then 
the sequence of Steps needed to actually do the separation.  
 
(a) Conditions required for Separability 
 
If the following conditions are all met, then Problem B (and therefore Problem A) has a solution, and the 
corresponding curvilinear coordinate system is separable.  
 
Condition (1) Equations (3.5) must be solvable for the 7 functions fn, gn and R. If some fn is a constant, 
that constant is set to 1. ( If one is doing Problem A, R=1.)  
 
 (H/h12) = f1(1)g1(23) R2   H = h1h2h3 
 (H/h22) = f2(2)g2(31) R2   
 (H/h32) = f3(3)g3(12) R2   .         (3.5) 
 
Assuming one can solve equations (3.5), one computes the Mn as follows, 
 
 M1 = g1 /(f2f3)    // = g1f1 / (f2f2f3) 
 M2 = g2 /(f3f1) 
 M3 = g3 /(f1f2) .          (5.8b) 
  
Condition (2) Equations (7.2) must have a solution. This is a triplet of functional-form conditions, where 
the Mn are as given above,  
 
  M1(23) = e(2)i(3)-f(2)h(3)    
 -M2(31) = b(1)i(3)-c(1)h(3) 
  M3(12) = b(1)f(2)-c(1)e(2) .        (7.2) 
 
Condition (3) If conditions (1) and (2) are met, one then does the work of computing Q and k12 from 
(3.9), 
 
   Σn (1/[hn2fnR]) ∂n{fn(∂nR)}   = - k12/Q(123) .      (3.9) 
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For Problem A, Q = 1 and k12 = 0 and no work is needed.  
 
Then with this Q expression, equation (7.6) must have a solution for a, d and g,    
 
 1/Q = a(1) (1/h12) + d(2) (1/h22) + g(3) (1/h32)      (7.6) 
 
and this is another functional-form condition.  
 
(b) Steps for finding Φ and related quantities  
 
Here it is assumed that the Conditions of 7(a) are all met, so we proceed with our Stäckel solution. Some 
of the Steps listed here were already carried out to check the Conditions, but they are listed here anyway. 
If one knows ahead of time that separation is going to work, one can ignore the Conditions and then just 
carry out the Steps listed here.  
 
Step 0:  Write down the hn for the curvilinear system of interest and compute H = h1h2h3. Perhaps write 
down other useful facts concerning the system of interest.  
 
Step (1) As noted above, the first task is to solve (3.5) for the 7 functions fn, gn and R 
 
 (H/h12) = f1(1)g1(23) R2  
 (H/h22) = f2(2)g2(31) R2   
 (H/h32) = f3(3)g3(12) R2 .         (3.5) 
 
This task is pretty much just one of "inspection" when the LHS's of (3.5) are inserted.  
 
Step (2) One can then immediately write down the three first-column cofactors from (5.8b) 
 
 M1 = g1 /(f2f3) 
 M2 = g2 /(f3f1) 
 M3 = g3 /(f1f2) .          (5.8b) 
 
Step (3)  If Problem A, then Q = 1. Otherwise compute Q and k12 from (3.9), 
 
   Σn (1/[hn2fnR]) ∂n{fn(∂nR)}  = - k12/Q(123)  .      (3.9) 
 
Step (4) Knowing Q, compute S from the Robertson condition, 
 
 S(Φ)  = H / (f1f2f3QR2) .    "Robertson condition"    (5.7) 
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Step (5) One must next find the rightmost two columns of the Stäckel matrix, 
 

 Φ    = 
⎝
⎜
⎛

⎠
⎟
⎞  a(1)  b(1)  c(1)  

  d(2)  e(2)  f(2)  
  g(3)  h(3)  i(3)  

    S = det(Φ) .     (7.1) 

 
This can be done by solving the following equation set, using the Mn found in Step (2) 
 
  M1 = e(2)i(3)-f(2)h(3)    
 -M2 = b(1)i(3)-c(1)h(3) 
  M3 = b(1)f(2)-c(1)e(2)  .         (7.2) 
 
Step (6) One must next find the first column of the Stäckel matrix by solving (7.6) or (5.9) 
 
 1/Q = a(1) (1/h12) + d(2) (1/h22) + g(3) (1/h32)      (7.6) 
 
 S = a(1) M1 + d(2) M2 + g(3) M3        (5.9) 
 
Step (7) At this point, one may want to apply some of the Section 6 equivalence operations to obtain a 
Stäckel matrix Φ that is of the simplest possible form, or of a form that matches the literature.  
 
(c) Problem B Example (R-separation of Laplace):  Toroidal Coordinates 
 
The Φ matrix 
 
Section 3 ( see (3.8) above) states our accumulated facts about toroidal coordinates and their separation, 
and those facts are copied here : 
 
 h1 = h2 = a/[ch(ξ1)-cos(ξ2)]   => h1 = h2 = aR2  H = sh(ξ1)a3R6 

 h3 = a sh(ξ1)/[ch(ξ1)-cos(ξ2)]  => h3 = a sh(ξ1)R2 

 
 f1(1) =  sh(ξ1)  g1(23) = a   R = [ch(ξ1)-cos(ξ2)]-1/2 
 f2(2) = 1   g2(31) = a sh(ξ1)  Q = a2[ch(ξ1)-cos(ξ2)]2 = a2R4 
 f3(3) = a   g3(12) = 1/ sh(ξ1)  k12 = (1/4)   
  
Steps (0),(1) and (3) of Section 7 (b) have already been carried out.  
 
For Step (2) compute the cofactors,  
 
 M1 = g1 /(f2f3)  = a/a = 1 
 M2 = g2 /(f3f1)  = a sh(ξ1)/ a sh(ξ1) = 1 
 M3 = g3 /(f1f2)  =  (1/sh(ξ1))/(sh(ξ1)  = 1/sh2(ξ1)        (5.8b) 
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For Step (4) one has 
 
 S(Φ)  = H / ([f1f2f3]QR2)    = sh(ξ1)a3R6/ ([a sh(ξ1)] a2R4 R2)  = 1   
 
For Step (5) :  
 
  M1(23) = 1              = e(2)i(3)-f(2)h(3)    
 -M2(31) = -1            = b(1)i(3)-c(1)h(3) 
  M3(12) = 1/sh2(ξ1)  = b(1)f(2)-c(1)e(2)          (7.2) 
 
We try h(3) = 0 and f(2) = 0 (trial and error!)  
 
  1              =  e(2)i(3)    
 -1              = b(1)i(3) 
  1/sh2(ξ1)  = -c(1)e(2)  
 
The first two lines say e(2) = 1, i(3) = 1 and b(1) = -1. The third line is then 
 
  1/sh2(ξ1)  =  -c(1)   
 
The Stäckel matrix at this point is then 
 

 Φ    = 
⎝
⎜
⎛

⎠
⎟
⎞  a(1)  b(1)  c(1)  

  d(2)  e(2)  f(2)  
  g(3)  h(3)  i(3)  

   = Φ    = 
⎝⎜
⎜⎛

⎠⎟
⎟⎞

  a(1)   -1   -1/sh2(ξ1)  
  d(2)  1  0  
  g(3)  0  1  

   

 
For Step (6) write 
 
 1/Q = a(1) [1/h12] + d(2) [1/h22] + g(3) [1/h32]      (7.6) 
 
 1/( a2R4) = a(1) [1/ (a2R4)] + d(2) [1/ (a2R4)] + g(3) [1/ (a2R4 sh2(ξ1))] 
 
 1= a(1) + d(2) + g(3) [1/ (sh2(ξ1))]    
 
A solution here is a(1) = 1 and d(2) = g(3) = 0. So here is the filled-in Φ matrix along with our results 
found above: 
 

Φ    = 
⎝⎜
⎜⎛

⎠⎟
⎟⎞

  a(1)   -1   -1/sh2(ξ1)  
  d(2)  1  0  
  g(3)  0  1  

   =   
⎝⎜
⎜⎛

⎠⎟
⎟⎞

  1   -1   -1/sh2(ξ1)  
 0  1  0  
  0  0  1  

      (7.7) 

 
 f1(1) =  sh(ξ1)  g1(23) = a   R = [ch(ξ1)-cos(ξ2)]-1/2 
 f2(2) = 1   g2(31) = a sh(ξ1)  Q = a2[ch(ξ1)-cos(ξ2)]2 = a2R4 
 f3(3) = a   g3(12) = 1/ sh(ξ1)  k12 = (1/4)  
  



  29 

 M1 = 1   S = 1 
 M2 = 1 
 M3 = 1/sh2(ξ1)  
 
These results are in agreement with Moon and Spencer p 112, so Step (7) is not needed.  
 
The separated equations and their solutions:  toroidal harmonics 
 
Here then are the separated equations from (5.2) 
 
 LnXn = (1/fn)∂n[fn(∂nXn)] + [ k12Φn1(n) + k22Φn2(n) + k32Φn3(n)]Xn = 0   (5.2) 
 
We now install the Φ matrix elements from (7.7) above showing enough lines for the reader to quickly 
verify each step:  
 
 L1X1 = (1/f1)∂1[f1(∂1X1)] + [ k12Φ11(1) + k22Φ12(1) + k32Φ13(1)]X1 = 0  
 L1X1 = (1/f1)∂1[f1(∂1X1)] + [ k12 1 + k22(-1) + k32(-1/sh2(ξ1)]X1 = 0  
 L1X1 = (1/sh(ξ1))∂1[sh(ξ1) (∂1X1)] + [ k12 - k22 + k32(-1/sh2(ξ1)]X1 = 0  
 L1X1 = (1/sh(ξ1)){ sh(ξ1) ∂12X1 + ch(ξ1) ∂1X1} +  [ k12 - k22 - k32/sh2(ξ1)]X1 = 0  
 L1X1 = ∂12X1 + coth(ξ1) ∂1X1 +  [(1/4) - k22 - k32/sh2(ξ1)]X1 = 0   
 
 L2X2 = (1/f2)∂2[f2(∂2X2)] + [ k12Φ21(2) + k22Φ22(2) + k32Φ23(2)]X2 = 0  
 L2X2 = (1/1)∂2[f1(∂2X2)] + [ k120 + k221 + k320]X2 = 0  
 L2X2 = ∂22X2 + k22X2 = 0  
  
 L3X3 = (1/f3)∂3[f3(∂3X3)] + [ k12Φ31(3) + k22Φ32(3) + k32Φ33(3)]X3 = 0  
 L3X3 = (1/a)∂3[a(∂3X3)] + [ k120 + k220 + k321]X3 = 0  
 L3X3 = ∂32X3 + k32X3 = 0  . 
 
So here are the separated equations :  
 
 L1X1 = ∂12X1 + coth(ξ1) ∂1X1} +  [(1/4) - k22 - k32/sh2(ξ1)]X1 = 0   
 L2X2 = ∂22X2 + k22X2 = 0  
 L3X3 = ∂32X3 + k32X3 = 0  . 
 
in agreement with Moon and Spencer page 114. For this system, the appearance of the separation 
constants in the last two separated equations looks just like our c2 and c3 equations shown in (3.12) for 
Cartesian coordinates. However, the first equation involves both separation constants in a tangled manner. 
For ellipsoidal coordinates in Section 12, one finds full entanglement in all three separation equations.  
 
Moon and Spencer use k22 = α2 = p2 and k32 = α3 = q2. Whereas the X2 and X3 are simple trig functions, 
the X1 (it turns out) are Legendre functions of the type Pqp-1/2(chξ1). Thus, in a most-general toroidal 
problem, the "toroidal harmonics" would be ( we have added 1/R on the right to get  ψ = X1X2X3/R)  
 



  30 

 [Pqp-1/2(chξ1), Qq
p-1/2(chξ1) [ sin(pξ2), cos(pξ2) ] [ sin(qξ3), cos(qξ3) ] *  [ch(ξ1)-cos(ξ2)]1/2 . 

 
This notation means that each bracket [f1, f2] can be an arbitrary linear combination Af1+Bf2 and the 
constants can be different for each bracket. The functions are called "harmonics" because they are 
functions which solve the Laplace equation.  Elsewhere we refer to the above combinations as "atoms" or 
"atomic forms" with the idea that one can assemble a problem solution by linearly combining the atoms.  
 
Since ξ3 is an azimuthal coordinate, in a problem with a full 2π azimuthal range one would find that k3 = 
q was an integer, and in an problem with azimuthal symmetry one finds q = 0. Legendre functions of this 
kind are called toroidal or ring functions. If k22 = p2 < 0, one writes p = iτ to get 
 
 [Pqiτ-1/2(chξ1), Qq

iτ-1/2(chξ1) [ sh(τξ2), ch(τξ2) ] [ sin(qξ3), cos(qξ3) ] *  [ch(ξ1)-cos(ξ2)]1/2 
 
and Legendre functions of this type are called Mehler functions.  
   
(d) Problem A Example (simple-separation of Helmholtz):  Circular Cylindrical Coordinates 
 
The Φ matrix 
 
Here are the Steps of Section 7 (b) : 
 
Step (0) 
 
 1,2,3 = ρ,φ,z 
 h1 = 1  h2 = ξ1   h3 = 1  H = ξ1  R = 1 
 
Step (1) Examine equation (3.5) with R=1 
 
 (H/hn2) = fn(n)gn(≠n)  n = 1,2,3 
 
 ξ1 = f1(1)g1(23)  =  [ ξ1 ] [  1 ] => f1 = ξ1  g1 = 1 
 1/ξ1 = f2(2)g3(31)  = [ 1 ] [ 1/ξ1] => f2 = 1  g2 = 1/ξ1 
 ξ1 = f3(3)g3(12)  = [1] [ ξ1]  => f3 = 1  g3 = ξ1 
 
Step (2) 
 
 M1 = g1 /(f2f3)  = 1/1 = 1 
 M2 = g2 /(f3f1)  = (1/ξ1)/ξ1 = 1/ξ12 

 M3 = g3 /(f1f2)  = ξ1/ α1 = 1         (5.8b) 
 
Step (3)  Q = 1    k12 = 0 
 
Step (4)  S(Φ)  =  H / ([f1f2f3]QR2) = ξ1/ (ξ1) = 1 
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Step (5)  
 
  M1(23) =  1     = e(2)i(3)-f(2)h(3)    
 -M2(31) = -1/ξ12 = b(1)i(3)-c(1)h(3) 
  M3(12) = 1      = b(1)f(2)-c(1)e(2)        (7.2) 
 
Try h(3) = 0 and f(2) = 0 
 
 1     =  e(2)i(3) => e(2) = 1  and i(3) = 1 
 1/ξ12 = -b(1)i(3) 
 1      = -c(1)e(2) =>  c(1) = -1 
 
The second line then says -1/ξ12 = b(1). The Stäckel matrix at this point is then 
 

 Φ    = 
⎝
⎜
⎛

⎠
⎟
⎞  a(1)  b(1)  c(1)  

  d(2)  e(2)  f(2)  
  g(3)  h(3)  i(3)  

   = 
⎝⎜
⎜⎛

⎠⎟
⎟⎞

  a(1)   -1/ξ12  -1  
  d(2)  1  0  
  g(3)  0  1  

  

 
Step (6)  
 
 1/Q = a(1) [1/h12] + d(2) [1/h22] + g(3) [1/h32]      (7.6) 
 1  =  a(1) 1 + d(2) [1/ξ12] + g(3) 1 
 
One can then take g(3) = 1 and a(1) = d(2) = 0. So here is the filled-in Φ matrix along with the results 
found above: 
 

 Φ      = 
⎝⎜
⎜⎛

⎠⎟
⎟⎞

  a(1)   -1/ξ12  -1  
  d(2)  1  0  
  g(3)  0  1  

   = 
⎝⎜
⎜⎛

⎠⎟
⎟⎞

  0   -1/ξ12  -1  
  0  1  0  
  1  0  1  

  

 
 f1(1) =  ξ1   g1(23) = 1   R = 1 
 f2(2) = 1   g2(31) = 1/ξ1   Q = 1    (7.8) 
 f3(3) = 1   g3(12) =ξ1   k12 = 0  
  
 M1 = 1   S = 1 
 M2 = 1/ξ12 

 M3 = 1           
 
These results are in agreement with Moon and Spencer p 12, so we don't need Step (7).  
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The separated equations and their solutions:  cylindrical harmonics 
 
Here then are the separated equations from (5.2) 
 
 LnXn = (1/fn)∂n[fn(∂nXn)] + [ k12Φn1(n) + k22Φn2(n) + k32Φn3(n)]Xn = 0  .  (5.2) 
 
We now install the Φ matrix elements from (7.8),  
 
 L1X1 = (1/f1)∂1[f1(∂1X1)] + [ K1

2Φ11(1) + k22Φ12(1) + k32Φ13(1)]X1 = 0  
 L1X1 = (1/ξ1)∂1[ξ1(∂1X1)] + [ -k22/ξ12 - k32]X1 = 0  
 L1X1 = ∂12X1 +(1/ξ1)(∂1X1)  - [ k22/ξ12 + k32]X1 = 0  
 
 L2X2 = (1/f2)∂2[f2(∂2X2)] + [ K1

2Φ21(2) + k22Φ22(2) + k32Φ23(2)]X2 = 0  
 L2X2 = (1/1)∂2[1(∂2X2)] + [ K1

20 + k221 + k320]X2 = 0  
 L2X2 = ∂22X2 + k22X2 = 0  
 
 L3X3 = (1/f3)∂3[f3(∂3X3)] + [ K1

2Φ31(3) + k22Φ32(3) + k32Φ33(3)]X3 = 0  
 L3X3 = (1/1)∂3[1(∂3X3)] + [ K1

21 + k220 + k321)]X3 = 0  
 L3X3 = ∂32X3 + (K1

2 + k32)]X3 = 0   . 
 
So here are the separated equations : 
 
 L1X1 = ∂12X1 +(1/ξ1)(∂1X1)  - [ k22/ξ12 + k32]X1 = 0  
 L2X2 = ∂22X2 + k22X2 = 0  
 L3X3 = ∂32X3 + (K1

2 + k32)]X3 = 0   . 
 
in agreement with Moon and Spencer page 15 (they use K1

2 = κ2, k22 = α2 = p2,  and k32= α3 = q2). The 
solutions of the X1 equation have the form Jp(iqξ1). The X2 is trig of the form sin(k2ξ2), and X3 is also 
trig of the form sin( K1

2 + k32 ξ3). The "cylindrical harmonics" can then be written  (R=1 so ψ = 
X1X2X3)  
 
 [Jp(ik3ξ1), Yp(i k3ξ1)] [sin(k2ξ2), cos(k2ξ2)] [sin( K1

2 + k32 ξ3), cos( K1
2 + k32 ξ3)] 

 
or (ignoring constants) one can put in the usual modified Bessel functions, 
 
 [Ip(k3ξ1), Kp(k3ξ1)] [sin(k2ξ2), cos(k2ξ2)] [sin( K1

2 + k32 ξ3), cos( K1
2 + k32 ξ3)] 

  
all of which agrees with Moon and Spencer page 15. Notice that if we had selected a(1) = 1 back in Step 
(6), the constants get shuffled around in the three factors in a trivial manner. The point here is that k2 and 
k3 are arbitrary separation constants and one can "shuffle" them however one wants. If k32 < 0, then k3 = 
-iσ3 to get these harmonics instead.  
 
 [Jp(σ3ξ1), Yp(σ3ξ1)] [sin(k2ξ2), cos(k2ξ2)] [sin( K1

2 - σ32 ξ3), cos( K1
2 -  s32 ξ3)]   . 
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8. Separability in Cylindrical Systems when h1 ≠ α h2  
 
For the moment, assume some general h1 and h2 where one h is not just a multiple of the other. They 
define a 2D orthogonal system of some sort. Then just extrude in the "z direction" (ξ3) to get a 3D 
cylindrical coordinate system. This gives 
 
 h1= h1(12)           (8.1) 
 h2= h2(12) 
 h3=1  H = h1h2 H/h12= h2/h1 H/h22 = h1/h2  H/h32 = h1h2  . 
 
Here then is an examination of the Conditions stated in Section 7 (a) applied to this situation, with a 
summary at the end:  
 
Condition (1)  From (3.5) 
 
 (H/h12) = f1(1)g1(23) R2  
 (H/h22) = f2(2)g2(31) R2   
 (H/h32) = f3(3)g3(12) R2 .         (3.5)  
 
One can define some new functions G1(2) and G2(1) that might simplify things in terms of functional 
form, since the h1 and h2 scale factors don't depend on coordinate 3:   
 
 (h2/h1) = f1(1) g1(23)R2     =>  g1(23) ≡ G1(2) 
 (h1/h2) = f2(2) g2(13)R2 =>  g2(13) ≡ G2(1) 
 (h1h2)  = f3(3) g3(12)R2 =>  f3(3) = 1     (8.2) 
or 
 (h2/h1) = f1(1) G1(2)R2 
 (h1/h2) = f2(2) G2(1)R2 
 (h1h2)  = g3(12)R2 .         (8.3) 
 
One is still faced with the problem of solving (8.3) for the 6 functions f1, f2, G1, G2, g3 and R.  It is not 
clear that a solution set exists for some very strange h1 and h2.  
 For example, suppose h1 = 1 and h2 = ξ12-ξ22 . The first equation of (8.3) forces f1= G1= 1 and 
then R2= ξ12-ξ22 . Then the second equation says 1/ ξ12-ξ22  = f2(2) G2(1) ξ12-ξ22  and one ends up 
with f2(2) G2(1) = 1/(ξ12-ξ22) and there is no solution for f2 and G2 that works.  
 So the duty to find the solutions to (3.5) remains for cylindrical systems. If there is a solution, one can 
multiply the first two equations of (8.3) to find that R must have this form 
 
 1/R4 = [f1(1) G2(1)] [G1(2) f2(2)]        (8.4) 
 
so R is seen to factorize into R = r1(1) r2(2). One can also compute the three cofactors 
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 M1 = g1 /(f2f3)  = G1(2)/f2(2) 
 M2 = g2 /(f3f1)  = G2(1)/f1(1) 
 M3 = g3 /(f1f2)  = g3(12) /[f1(1)f2(2) ]  .       (5.8b) 
 
Condition (2) requires the solution of 
 
  M1(23) = e(2)i(3)-f(2)h(3)    
 -M2(31) = b(1)i(3)-c(1)h(3) 
  M3(12) = b(1)f(2)-c(1)e(2)         (7.2) 
 
and in the current situation this says 
 
   G1(2)/f2(2)              = e(2)i(3)-f(2)h(3)    
 - G2(1)/f1(1)             = b(1)i(3)-c(1)h(3) 
  g3(12) /[f1(1)f2(2)]   = b(1)f(2)-c(1)e(2)  .  
 
From the first line we must choose either i(3) = 0 or h(3) = 0 and we choose the latter. The reader can 
show that selecting i(3) = 0 introduces nothing new. Then the above becomes 
 
  G1(2)/f2(2)              = e(2)i(3)    
 - G2(1)/f1(1)             = b(1)i(3) 
  g3(12) /[f1(1)f2(2)] = b(1)f(2)-c(1)e(2)  .  
 
From the first two lines select 
 
 e(2) =   G1(2)/f2(2)  i(3) = 1 
 b(1) = - G2(1)/f1(1)  i(3) = 1 . 
 
The third line then says 
 
  g3(12) /[f1(1)f2(2)] = [- G2(1)/f1(1)]f(2) - c(1)[ G1(2)/f2(2) ] 
  g3(12)  = [- G2(1) f2(2) ]f(2) - c(1)f1(1)G1(2) 
or  
 - g3(12)  = c(1)f1(1)G1(2) + f(2) f2(2) G2(1)   .      (8.5) 
 
This is a very strict requirement on the form g3(12) must have in order to allow the Stäckel separation 
process to succeed. One is free to select c(1) and f(2), but G1(2), G2(1) and f1,f2 are already determined 
and none of these factors vanishes. Installation of (8.5) and then (8.4) into the last line of (8.3) gives 
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 -(h1h2)  = -g3(12)R2  = [c(1) f1(1)G1(2) + f(2) f2(2) G2(1)] R2 

 

 = [c(1) f1(1)G1(2) + f(2) f2(2) G2(1)] /  { [f1(1) G2(1)]1/2 [f2(2)G1(2)]1/2}  
 
 =  c(1) f1(1)G1(2) / { [f1(1) G2(1)]1/2 [f2(2)G1(2)]1/2}  
  + f(2) f2(2) G2(1)] / { [f1(1) G2(1)]1/2 [f2(2)G1(2)]1/2} 
 
 =  c(1) [f1(1) G2(1)]1/2 / [f2(2)G1(2)]1/2 
  + f(2) [f2(2)G1(2)]1/2 /  [f1(1) G2(1)]1/2 . 
 
Absorbing [f1(1) G2(1)]1/2 into c(1) and similarly for f(2), 
 
 c(1) [f1(1) G2(1)]1/2  ≡ c'(1)  [f2(2)G1(2)]1/2  f(2) ≡  f'(2) , 
 
produces this functional form requirement 
 
 -(h1h2) = c'(1) / [f2(2)G1(2)]1/2   + f'(2) / [f1(1)G2(1)]1/2 ,      (8.6) 
 
so one must find c'(1) and f'(2) to satisfy this equation. So condition (8.5) is replaced with a condition 
directly on the product of the scale factors, and it still looks very strict for some completely arbitrary pair 
of functions h1(12) and h2(12). Equation (8.6) can be regarded as Condition 2.  
 Assuming Conditions (1) and (2) are met as just outlined, one can construct the Stäckel matrix Φ 
  

 Φ    = 
⎝
⎜
⎛

⎠
⎟
⎞  a(1)  b(1)  c(1)  

  d(2)  e(2)  f(2)  
  g(3)  h(3)  i(3)  

   = 
⎝⎜
⎜⎛

⎠⎟
⎟⎞

  a(1)   - G2(1)/f1(1)  c(1)  
  d(2)   G1(2)/f2(2)  f(2)  
  g(3)  0  1  

  . 

 
 Condition (3)  One is supposed to compute Q using (3.9) which says 
 
   Σn (1/[hn2fnR]) ∂n{fn(∂nR)}   = - k12/Q(123)  .      (3.9) 
 
Since ∂3R = 0, there will be only two terms in the sum 
 
 - k12/Q(123) = (1/[h12f1R]) [∂1{f1(∂1R)}]  + (1/[h22f2R]) [∂2{f2(∂2R)}] 
 
   =  (1/[h12f1R]) [∂1{f1(∂1R)}]  + (1/[h22f2R]) [∂2{f2(∂2R)}]   =  T1 + T2 
 
Putting these terms into Maple as T1 and T2 with  R-4 = f1g1f2g2 from (8.4), Maple does the 
derivatives:  
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The details are less important than the general form of the result, visible from the last lines above,  
 
 T1 = t1(1) / h12 
 T2 = t2(2) / h22 
 
 => - k12/Q(12)  =   t1(1) / h12 + t2(2) / h22 .      (8.7) 
 
Now having to some extent computed Q, one must examine condition (7.6),  
 
 1/Q = a(1) (1/h12) + d(2) (1/h22) + g(3) (1/h32)      (8.8) 
 1/Q(12) = a(1) (1/h1(12)2) + d(2) (1/h2(12)2) + g(3) 1 .  
 
Since Q = Q(12), g(3) must be a constant. As an ansatz set g(3)=0 to see if a solution results. Then, 
 
 1/Q = a(1) (1/h12) + d(2) (1/h22)   .        
 
Comparing this to (8.7) one can make these choices 
 
 a(1) = - t1(1)/k12  d(2) = - t2(2)/k12 and of course  g(3) = 0 
 
so the Φ matrix now has this form 
 

 Φ    = 
⎝⎜
⎜⎛

⎠⎟
⎟⎞

  a(1)   - G2(1)/f1(1)  c(1)  
  d(2)   G1(2)/f2(2)  f(2)  
  g(3)  0  1  

   =  
⎝⎜
⎜⎛

⎠⎟
⎟⎞

  - t1(1)/k12   - G2(1)/f1(1)  c(1)  
  - t2(2)/k12    G1(2)/f2(2)  f(2)  

  0 0  1  
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Summary of the three conditions:  
 
(1) One must be able to find f1, f2, G1, G2, g3 and R which satisfy these functional-form equations, 
 
 (h2/h1) = f1(1) G1(2)R2 
 (h1/h2) = f2(2) G2(1)R2 
 (h1h2)  = g3(12)R2          (8.3) 
 
(2) One must be able to find c'(1) and f'(2) which satisfy this functional form equation, 
 
 -(h1h2) = c'(1) / [f2(2)G1(2)]1/2   + f'(2) /  [f1(1) G2(1)]1/2     (8.6) 
 
(3) One can meet condition (3) for sure, and the first column of Φ is as shown above. If Q = 1, choose 
g(3) = 1 and the two elements above it 0.  
 
Example:  Circular cylindrical coordinates revisited 
 
Cylindrical systems with h1 ≠ α h2 are uncommon for the reason discussed at the end of the next section, 
but there is one notable exception: circular cylinder coordinates, which we shall call ρ,φ,z.  If one defines 
the ξn according to ρ,φ,z = exp(ξ1),ξ2,ξ3, then this system fits into the conformal-mapping-of-Cartesians 
framework and one finds h1 = h2  = exp(2ξ1), as in Moon and Spencer p 13. But normally one takes ρ,φ,z 
= ξ1,ξ2,ξ3 so that h1 = 1 and h2 = ξ1, so one can consider this system as an example of a cylindrical 
system with h1 ≠ αh2. This system was fully analyzed in Section 7 (d), so we just examine the first two 
conditions summarized above to see how they work out:   
 
Condition (1):    h1 = 1    h2 = ξ1  and we know the R = 1  
 
 (h2/h1) = f1(1) G1(2)R2 
 (h1/h2) = f2(2) G2(1))R2 
 (h1h2)  = g3(12)R2          (8.3) 
 
 ξ1    = f1(1) G1(2) 
 1/ξ1 = f2(2) G2(1) 
 ξ1   = g3(12)  
 
Inspection shows a simple solution to equation (3.5),  
 
 f1(1) = ξ1  G1(2) = 1  R=1  => Q=1 and k12 = 0 
 f2(2) = 1  G2(1)= 1/ξ1  
 f3(3) = 1  g3(12) = ξ1 
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Condition (2):  
 
 -(h1h2) = c'(1) / [f2(2)G1(2)]1/2   + f'(2) /  [f1(1) G2(1)]1/2     (8.6) 
 
 - ξ1 = c'(1) / [1 *  1]1/2   + f'(2) /   [ξ1 * ξ1-1]1/2  
 
 - ξ1 = c'(1)   + f'(2) 
 
So this condition, noted in the general case to be "strict", has in this system the simple solution, 
 
 c'(1) = - ξ1  f'(2)  = 0  => c(1) = -1          f(2) = 0 
 
Since Q=1, one can take g(3)=1 and a(1) = d(2) = 0 for the first column, so Φ comes out exactly as found 
in Section (7d),  
 

 Φ      = 
⎝
⎜
⎛

⎠
⎟
⎞  a(1)  b(1)  c(1)  

  d(2)  e(2)  f(2)  
  g(3)  h(3)  i(3)  

   = 
⎝⎜
⎜⎛

⎠⎟
⎟⎞

  a(1)   - G2(1)/f1(1)  c(1)  
  d(2)   G1(2)/f2(2)  f(2)  
  g(3)  0  1  

  = 
⎝⎜
⎜⎛

⎠⎟
⎟⎞

  0   -1/ξ12  -1  
  0  1  0  
  1  0  1  
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9. Separability in Cylindrical Systems when h2 = α h1  
 
We review the three Conditions summarized just above (end of Section 8), but now instead of general h1 
and h2, it is assumed that h2 =  α h1,  α = a fixed constant. 
 
The Conditions 
 
(1) It must be possible to solve equations (8.3) for the 6 functions f1, f2, G1, G2, g3 and R 
 
 (h2/h1) = f1(1) G1(2)R2 
 (h1/h2) = f2(2) G2(1)R2 
 (h1h2)  = g3(12)R2 .         (8.3) 
 
In this case,  
 
 α = f1(1) G1(2)R2 
 α-1 = f2(2) G2(1)R2 
 αh12  = g3(12)R2  .          (9.1) 
 
Try R = 1 and search for a solution to 
  
 α = f1(1) G1(2) 
 1/α = f2(2) G2(1) 
 αh12  = g3(12) . 
 
The solution is pretty clear (recall f3 = 1 for any cylindrical system),  
 
 f1=f2=f3=1    G1(2) = α     G2(1) = 1/α g3 = α h12  R=Q=1  .  (9.2) 
 
Since a solution was found, the R=1 assumption is justified.  
 
(2) This condition was 
 
  -(h1h2) = c'(1) / [f2(2)G1(2)]1/2   + f'(2) /  [f1(1) G2(1)]1/2 .    (8.8) 
 
It looked fairly strict in general, but in the current situation it says 
 
 - αh12  = c'(1) / α   + f'(2) α  .        (9.3) 
 
Tracing back we had 
 
 c(1) [f1(1) G2(1)]1/2  ≡ c'(1)  f(2) [f2(2)G1(2)]1/2 ≡  f'(2) 
or 
 c(1) [1/α]1/2  ≡ c'(1)  f(2) [α]1/2  ≡  f'(2) 
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so that Condition 2 above becomes 
 
 - αh12  = c(1) /α  + f(2) α        
or 
 - h12  = c(1) /α2  + f(2) .          (9.4) 
 
(3) We shall redo this condition from scratch. The general condition is 
 
 1/Q = a(1) (1/h12) + d(2) (1/h22) + g(3) (1/h32)      (8.6) 
 
but since Q = 1 and h3 = 1 this becomes 
 
 1 = a(1) (1/h12) + d(2) (1/α2h12) + g(3) .       (9.5) 
 
The obvious solution here is a(1) = 0 , d(2) = 0  and g(3) = 1.  The Stäckel matrix from Section 8 now 
takes this form 
 

  Φ   = 
⎝⎜
⎜⎛

⎠⎟
⎟⎞

  a(1)   - G2(1)/f1(1)  c(1)  
  d(2)   G1(2)/f2(2)  f(2)  
  g(3)  0  1  

   = 
⎝
⎜
⎛

⎠
⎟
⎞  0   - 1/α  c(1)  

  0   α  f(2)  
  1  0  1  

       (9.6) 

 
This agrees in its general form with Moon and Spencer on page 7 equation (1.28).  
 
Summary of Conditions:  The only real condition for separation of this kind of coordinate system is the 
Condition 2 requirement found above,  
 
 - h12  = c(1) /α2  + f(2)         (9.4) 
 
and this, assuming it can be satisfied, fills in the two missing elements in the Φ matrix above.  
 Condition (9.4) of course rules out something like  α =1 and h12 =  (ξ12 + ξ2)-2 as occurs in "tangent 
cylinder coordinates" (Moon and Spencer p 79).  That is to say, the general Laplace equation cannot be 
separated in such coordinates.  
 
The Steps 
 
From Section 7 (b) we track our 7 steps for the case h2 =  α h1 :  
 
Step (1) : Already done above where it was found that 
 
 f1=f2=f3=1    G1(2) = α     G2(1) = 1/α g3 = α h12  R=Q=1   (9.2) 
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Step (2): 
 
 M1 = g1 /(f2f3)  = α/1 = α 
 M2 = g2 /(f3f1) = (1/α)/1 = 1/α 
 M3 = g3 /(f1f2) =  α h12         (5.8b) 
  
Step (3):   R = 1 so Q = 1 
 
Step (4):   S = [ H / (f1f2f3QR2)] = H = h1h2h3 = αh12  
 
Step (5) and Step (6):  Already done above where it was found that 
 

 Φ   = 
⎝
⎜
⎛

⎠
⎟
⎞  0   - 1/α  c(1)  

  0   α  f(2)  
  1  0  1  

  where  - h12  = c(1) /α2  + f(2)  

 
Moon and Spencer page 7 equation (1.28) gives a general form for the Stäckel matrix associated with a 
cylindrical system 
 

 Φ   = 
⎝
⎜
⎛

⎠
⎟
⎞  0   *  *  

  0   *  *  
  1  0  1  

   

 
and this is seen to agree with our result above.  
 
Special Case h1 = h2  
 
Practical curvilinear cylindrical coordinate systems have h1 = h2 so α = 1, and for such systems the results 
above can be summarized : 
 
f1=f2=f3=1    G1(2) = 1     G2(1) = 1     g3 = h12  R=Q=1    (9.2) 
  
 M1 = 1 
 M2 = 1 
 M3 = h12  S = h12         (5.8b) 
 

 Φ   = 
⎝
⎜
⎛

⎠
⎟
⎞  0   - 1  c(1)  

  0   1  f(2)  
  1  0  1  

  where  - h12  = c(1)  + f(2) 

 
This says g3 = M3 = S = h12 so we won't repeat those results in the following examples. The critical 
functional-form condition is that - h12  = c(1)  + f(2).  
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Example 1:  elliptic cylinder coordinates 
 
For this system,  
 
 h12 =  (ξ12 + ξ22)  =  - c(1) -  f(2)    => c(1) = - ξ12 f(2) = - ξ22 
 

 Φ   = 
⎝
⎜
⎛

⎠
⎟
⎞  0   - 1  c(1)  

  0   1  f(2)  
  1  0  1  

   =  
⎝⎜
⎜⎛

⎠⎟
⎟⎞

  0   - 1   - a2ch2(ξ1)  
  0   1   a2cos2(ξ2)  
  1  0  1  

  // agrees with Moon and Spencer p 17 η,ψ,z 

  
Example 2:  parabolic cylinder coordinates 
 
For this system,  
 
 h12 = a2ch2(ξ1) - a2cos2(ξ2)  =  - c(1) -  f(2)    => c(1) = - a2ch2(ξ1) f(2) = a2cos2(ξ2) 
 

 Φ   = 
⎝
⎜
⎛

⎠
⎟
⎞  0   - 1  c(1)  

  0   1  f(2)  
  1  0  1  

   =  
⎝⎜
⎜⎛

⎠⎟
⎟⎞

  0   - 1   -ξ12  
  0   1   -ξ22  
  1  0  1  

   // agrees with Moon and Spencer p 21 μ,ν,z 

 
Example 3:  circular cylinder coordinates 
 
This case was treated in Section 7 (d) above, where h1 = 1 and h2 = ξ1= r. One can do an alternate 
analysis defining ξ1 by r = exp(ξ1), and in this case it turns out that h1 = h2 = exp(ξ1) so,  
 
  h12 = exp(2ξ1)  =  - c(1) -  f(2)    => c(1) = -  exp(2ξ1) f(2) = 0 
 

 Φ   = 
⎝
⎜
⎛

⎠
⎟
⎞  0   - 1  c(1)  

  0   1  f(2)  
  1  0  1  

   =   
⎝⎜
⎜⎛

⎠⎟
⎟⎞

  0   - 1   - exp(2ξ1)  
  0    1   0  
  1    0   1  

  // see Moon and Spencer p 13  ξ,ψ,z 

 
Moon and Spencer have a rare typo in this matrix. They show its upper right element as  -exp(-2ξ) which 
then disagrees with their M1 = exp(2ξ) and S = exp(2ξ).  
 
The 21 cylindrical systems of Moon and Spencer 
 
In their third chapter (called Section III) Moon and Spencer consider 21 cylindrical curvilinear coordinate 
systems which presumably have proven useful in some applications. Each of these systems is obtained by 
doing some conformal mapping w = f(z) of the Cartesian coordinates z = x+iy to get w = ξ1+iξ2. Such 
mappings preserve scaling, which is why h1 = h2, and also preserve angles, so the orthogonality of the 
Cartesian system maps into the orthogonality of the (ξ1,ξ2) system. Of these 21 systems, 18 do NOT meet 
our Condition 2 which says - h12  = c(1)  + f(2), and are therefore not separable! Only 3 of the 21 systems 
are separable, and they are the three cylindrical examples presented above, all simple-separable for 
Helmholtz. These 3 systems are among the 11 classical systems Moon and Spencer discuss in their first 
chapter. In addition to Cartesian, the remaining 7 classical systems are:  ellipsoidal and its two subcases 



  43 

prolate and oblate spheroidal and their special case spherical;  parabolic-cylinder, parabolic (paraboloidal) 
and conical. Moon and Spencer give excellent data sets for all 11 systems including good drawings, 
which seem clearer than the interesting but hard to focus stereoscopic images of Morse and Feshbach. For 
the 21 cylindrical systems Moon and Spencer also have collected data including detailed 2D drawings of 
the level curves.  
 On page 78 Moon and Spencer state bluntly that "no cylindrical system allows R-separability". What 
they mean by this is that no h1 = h2 cylindrical system is separable with R ≠ constant. Certainly our three 
cylindrical systems noted above are R-separable with R = 1, and the more general case might be R 
separable for an obscure contrived system.  
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10. Separability in Rotational Systems 
 
First of all, 2D orthogonal curvilinear systems often have one or two symmetry axes. If the 2D system is 
created by a conformal mapping of the Cartesian system, so w= f(z) or ξ1 + iξ2 = f(x +iy), then the 2D 
level curve drawing will be symmetric in x if it happens that f(x +iy) = f(-x +iy), and it will be symmetric 
in y if  f(x +iy) = f(x -iy).  
 A 3D rotational system is formed by rotating such a 2D system about one of its symmetry axes. Such 
a system of course then has an azimuthal variable ξ3. One could for example rotate any of the 21 2D 
systems that Moon and Spencer use to generate cylindrical systems, and some of those can be rotated 
about two different symmetry axes. All these systems have h1= h2 since the starting 2D systems are 
derived from conformal maps of the Cartesian 2D system.  
 An example is the rotation of a 2D bipolar system about one of its symmetry axes to form toroidal 
coordinates. Rotation about the other symmetry axis gives bispherical coordinates. A simpler example is 
the rotation of 2D polar coordinates to create 3D spherical coordinates.  
 Since h3 = 1 is no longer true, one doesn't  get much specialization of the general case treated back in 
Section 7.  Since ξ3 is an azimuth angle, the defining equations must have this general form,  
 
 x = A(ξ1,ξ2)cosξ3   
 y = A(ξ1,ξ2)sinξ3 
 z = B(ξ1,ξ2) . 
 
The scale factors are given by (see derivation a few lines below) 
 
 hn2  = (∂nx)2 + (∂ny)2 + (∂nz)2   ∂n ≡ ∂/∂ξn  . 
 
Therefore  ( see also Moon and Spencer p 50 )  
 
 h12  = [∂1A(ξ1,ξ2)]2cos2ξ3 + [∂1A(ξ1,ξ2)]2sin2ξ3 + [∂1B(ξ1,ξ2)]2 
   =  [∂1A(ξ1,ξ2)]2  +   [∂1B(ξ1,ξ2)]2 
 
 h22  = [∂2A(ξ1,ξ2)]2cos2ξ3 + [∂2A(ξ1,ξ2)]2sin2ξ3 + [∂2B(ξ1,ξ2)]2 
   =  [∂2A(ξ1,ξ2)]2  +   [∂2B(ξ1,ξ2)]2 
 
 h32  = [A(ξ1,ξ2) (-sinξ3)]2 +  [A(ξ1,ξ2) (cosξ3)]2  =  [A(ξ1,ξ2)]2  . 
 
If h1 = h2 one has an obvious condition on the various derivatives,  
 
 [∂1A(ξ1,ξ2)]2  –   [∂2A(ξ1,ξ2)]2   =   [∂2B(ξ1,ξ2)]2 – [∂1B(ξ1,ξ2)]2   
 
but the main point is that the scale factors are functions only of ξ1 and ξ2 so one has hn(12). This is the 
same form arising in all cylindrical systems except there h3 = 1.  

Derivation of the above hn2 sum.  The curvilinear covariant metric tensor gij can be related to Sin ≡ 
∂xi
∂ξn  

by the matrix equation g = STS.  Since hn2 = gnn one finds that, 
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 hn2 = gnn  = Σi (ST)niSin = Σi (Sin)2   = Σi (
∂xi
∂ξn )2   = (∂nx1)2 +  (∂nx2)2 +  (∂nx3)2  . 

 
This is true for any curvilinear coordinates, orthogonal or not. Morse and Feshbach derive it for a 3D 
orthogonal system on page 24, equation (1.3.4).  
 
We shall now restrict our interest to rotational systems of the type considered in Moon and Spencer which 
are derived from conformal map 2D systems, so from now on h1= h2.  
 
A look at the Conditions of Section 7 (a):   
 
Condition (1) Equations (3.5) must be solvable for the 7 functions fn, gn and R. If some fn is a constant, 
that constant is set to 1. ( If one is doing Problem A, R=1.)  
 
 (H/h12) = f1(1)g1(23) R2   H = h1h2h3 
 (H/h22) = f2(2)g2(31) R2   
 (H/h32) = f3(3)g3(12) R2         (3.5) 
 
which becomes, assuming h1 = h2,  
 
 h3(12) = f1(1)g1(23) R2 
 h3(12) = f2(2)g2(31) R2   
 h12(12)/h3(12) = f3(3)g3(12) R2 . 
 
As with the cylindrical case, define G1(2) in the obvious way and set f3 = 1 to get 
 
 h3(12) = f1(1)G1(2) R2 
 h3(12) = f2(2)G2(1) R2   
 h12(12)/h3(12) = g3(12) R2 . 
 
Divide the first two equations by R2 

 
 f1(1)G1(2) = f2(2)G2(1) 
 
which has this viable solution 
 
 G2(1)  = f1(1) 
 G1(2)  = f2(2) 
 
allowing the three equations to be written as 
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 h3(12) = f1(1) f2(2) R2 
 h3(12) = f2(2) f1(1) R2   
 h12(12)/h3(12) = g3(12) R2  . 
 
Since the first two are the same, Condition 1 requires the solution of the following pair of equations for 
the 4 quantities f1, f2, g3 and R 
 
 h3(12) = f1(1) f2(2) R(12)2 
 h12(12)/h3(12) = g3(12) R(12)2 
 
Assuming this problem has a solution, one then has 
 
 R2 = h3/f1f2 
 
 M1 = g1 /(f2f3)  = G1(2) /f2(2)   =  f2(2) /f2(2)  = 1 
 M2  = g2 /(f3f1)  = G2(1) /f1(1) =  f1(1) /f1(1)  = 1 
 M3  = g3 /(f1f2)  = g3(12) /(f1(1)f2(2))  .       (5.8b) 
 
Condition (2) Equations (7.2) must have a solution: 
 
  M1(23) = 1 = e(2)i(3)-f(2)h(3)   
 -M2(31) = -1 = b(1)i(3)-c(1)h(3) 
  M3(12) = g3(12) /(f1(1)f2(2)) = b(1)f(2)-c(1)e(2)  .        (7.2) 
 
Select h(3) = 0 based on the first two lines (nothing new if i(3)=0 instead) to get 
 
 1   = e(2)i(3) 
 -1 =  b(1)i(3) 
  g3(12) /(f1(1)f2(2))= b(1)f(2)-c(1)e(2)  . 
 
From the first pair select i(3) = 1, e(2) = 1 and b(1) = -1. The last line is then 
 
 g3(12) /(f1(1)f2(2))= - f(2)-c(1) 
or 
 - g3(12)  =  c(1)[f1(1)f2(2)]  + f(2)[f1(1)f2(2)] 
 
and this then is Condition 2. The Stäckel matrix now has this form 
 

  Φ    = 
⎝
⎜
⎛

⎠
⎟
⎞  a(1)  b(1)  c(1)  

  d(2)  e(2)  f(2)  
  g(3)  h(3)  i(3)  

  = 
⎝
⎜
⎛

⎠
⎟
⎞  a(1)  -1  c(1)  

  d(2)  1  f(2)  
  g(3)  0  1

     . 
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Condition (3) If conditions (1) and (2) are met, we then do the work of computing Q and k12 from (3.9), 
 
   Σn (1/[hn2fnR]) ∂n{fn(∂nR)}   = - k12/Q(123)  .      (3.9) 
 
If R = 1, we then set Q = 1 and k12 = 0 since in this case ∂nR = 0. Then with this Q expression, equation 
(7.6) must have a solution for a, d and g,    
 
 1/Q = a(1) (1/h12) + d(2) (1/h22) + g(3) (1/h32)      (7.6) 
 
 1/Q(12) = (1/h12) [ a(1) + d(2) ] + g(3) (1/h32) 
 
and this is another functional-form condition. Since nothing other than g(3) is a function of ξ3, one must 
set g(3) = α, a constant. Then  
 
 1/Q(12) = (1/h12) [ a(1) + d(2) ] + α (1/h32) 
 
so Condition 3 requires solution of the above equatino for α, a(1) and d(2).  The Stäckel matrix is now 
 

 Φ    = 
⎝
⎜
⎛

⎠
⎟
⎞  a(1)  -1  c(1)  

  d(2)  1  f(2)  
  α  0  1

    . 

 
Adding -α times the third column to the first column , Equivalence Rule (6.3) gives us this new equivalent 
matrix 
 

 Φ    ≈ 
⎝
⎜
⎛

⎠
⎟
⎞  a(1)-αc(1)  -1  c(1)  

  d(2)-αf(2)  1  f(2)  
  0  0  1

    . 

 
Moon and Spencer page 7 equation (1.29) gives a general form for the Stäckel matrix associated with a 
rotational system 
 

 Φ   = 
⎝
⎜
⎛

⎠
⎟
⎞  *   *  *  

  *   *  *  
  0  0  1  

   

 
and this is seen to agree with our last result above.  
 
A look at the Steps of Section 7 (b):   
 
Step (1) As noted above in Condition 1, the first step is to solve the following 2 equations for the 
quantities f1, f2, g3 and R 
 
 h3(12) = f1(1) f2(2) R(12)2 
 h12(12)/h3(12) = g3(12) R(12)2 
 



  48 

Step (2)   These items are taken from Condition 2 above 
 
 R2 = h3/f1f2 
 
 M1  = 1 
 M2 = 1 
 M3  = g3(12) /(f1(1)f2(2))   
 
Step (3) If R=1 works in step (1), then Q = 1. Otherwise compute Q from (3.9), 
 
   Σn (1/[hn2fnR]) ∂n{fn(∂nR)}   = - k12/Q(123)      (3.9) 
 
Step (4) Having Q, compute S from the Robertson condition 
 
 S(Φ)  = H / (f1f2f3QR2)    "Robertson condition"    (5.7) 
 
But f3 = 1 and R2f1f2 = h3 so this really says 
 
 S = [ H / (Qh3)]   = h12/Q 
 
Step (5)  Find the rightmost two columns of the Stäckel matrix, 
 

 Φ    = 
⎝
⎜
⎛

⎠
⎟
⎞  a(1)  b(1)  c(1)  

  d(2)  e(2)  f(2)  
  g(3)  h(3)  i(3)  

    S = det(Φ)     (7.1) 

 
But in Condition 2 above (with a little Condition 3) we already know that 
 

 Φ    = 
⎝
⎜
⎛

⎠
⎟
⎞  a(1)  -1  c(1)  

  d(2)  1  f(2)  
  α  0  1

    

 
and entries c(1) and f(2) are then determined by 
 
 - g3(12)  =  c(1)[f1(1)f2(2)]  + f(2)[f1(1)f2(2)] 
 
Step (6)  In Condition 3 above this was the same as solving 
 
 1/Q(12) = (1/h12) [ a(1) + d(2) ] + α (1/h32) 
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Example 1:  toroidal coordinates revisited 
 
This case has already been fully solved, but we shall do it again using the systematic steps outlined above 
for rotational systems. From earlier work the following facts were obtained for the toroidal system,  
 
 h1 = h2 = a/[ch(ξ1)-cos(ξ2)]   => h1 = h2 = aR2  H = sh(ξ1)a3R6 

 h3 = a sh(ξ1)/[ch(ξ1)-cos(ξ2)]  => h3 = a sh(ξ1) R2 

 
 f1(1) =  ash(ξ1)  g1(23) = 1   R ≡ [ch(ξ1)-cos(ξ2)]-1/2 
 f2(2) = 1   g2(31) = a sh(ξ1)  Q = a2[ch(ξ1)-cos(ξ2)]2 = a2R4 
 f3(3) = 1   g3(12) = a/sh(ξ1)  k12 = (1/4)  
 
We shall here pretend not to know the "blue facts" (6 lower left equations), but the earlier calculation of Q 
and k12 will be utilized. Notice first that h1 and h3 are functions only of 12 and not 3, as expected. We use 
here the symbol R ≡ [ch(ξ1)-cos(ξ2)]-1/2 to distinguish it from the separation R below. And (in the blue) 
the constant a has been moved from f3 over to g3, and also from g1 over to f1 -- the allocation of constants 
is immaterial.  
 
Here then are all our Stäckel calculation steps for rotational systems given above:  
 
Step (1) As noted above in Condition 1, the first step is to solve the following 2 equations for the 
quantities f1, f2, g3 and R 
 
 h3 = f1 f2 R2 
 h12/h3 = g3R2 

 

 and these now say 
 
 a sh(ξ1)R2 = f1 f2 R2 
 (a R 2)2/ [a sh(ξ1) R 2] = g3R2 
or 
 a sh(ξ1) R2 = f1 f2 R2 
  aR2/ sh(ξ1) = g3R2 . 
 
The obvious choice is R = R and then 
 
 a sh(ξ1) = f1(1) f2(2) 
  a/sh(ξ1) = g3(12) . 
 
These imply that 
 
 f1(1) = a sh(ξ1) f2(2) = 1 g3(12) = a/sh(ξ1) R = R  
 
and this agrees with the "blue data" above collected from earlier work. Done with Step 1.  
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Step (2)   These items are taken from Condition 2 above 
 
 M1  = 1 
 M2 = 1 
 M3  = g3(12) /(f1(1)f2(2))  = a/sh(ξ1) / [a sh(ξ1)]  = 1/ sh2(ξ1) 
 
Step (3)  This slightly painful calculation was done back in Section 3 with results 
 
 Q = a2R4  k12 = (1/4) 
 
Note that Q = h12 = (aR2)2.  
 
Step (4)  
 
 S  = h12/Q  = 1 
 
Step (5)  

 Φ    = 
⎝
⎜
⎛

⎠
⎟
⎞  a(1)  -1  c(1)  

  d(2)  1  f(2)  
  α  0  1

    

 
 - g3(12)  =  c(1)[f1(1)f2(2)]  + f(2)[f1(1)f2(2)] 
 
This last equation becomes 
 
 - a/sh(ξ1)  =  c(1)[ a sh(ξ1)]  + f(2)[ a sh(ξ1)] 
or 
 - 1  =  c(1)[ sh2(ξ1)]  + f(2)[ sh2(ξ1)]  . 
 
A solution is c(1) = -1/sh2(ξ1) and f(2) = 0. The Φ matrix at this point is then 
 

 Φ    = 
⎝
⎜
⎛

⎠
⎟
⎞  a(1)  -1  c(1)  

  d(2)  1  f(2)  
  α  0  1

     = 
⎝⎜
⎜⎛

⎠⎟
⎟⎞

  a(1)  -1   -1/sh2(ξ1)  
  d(2)  1  0  

  α  0  1
    

 
Step (6)   
 
 1/Q(12) = (1/h12) [ a(1) + d(2) ] + α (1/h32) 
 
which says 
 
 1 = [ a(1) + d(2) ]  + α (Q/h32)  . 
 
Pick a(1) = 1 and d(2) = 0 and g(3) = α = 0 to get the final matrix 
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 Φ     = 
⎝⎜
⎜⎛

⎠⎟
⎟⎞

  a(1)  -1   -1/sh2(ξ1)  
  d(2)  1  0  

  α  0  1
    = 

⎝⎜
⎜⎛

⎠⎟
⎟⎞

 1  -1   -1/sh2(ξ1)  
  0  1  0  
  0  0  1

    

 
All these results agree with those found earlier and with Moon and Spencer p 112-113.  
 
The 11 separable rotational systems of Moon and Spencer 
 
Moon and Spencer in their fourth chapter (called Section IV) review a set of 11 rotational systems which 
can be R-separated. Evidently, if one tries to rotate the 21 conformal map 2D systems of their second 
chapter, 10 of them fail to meet one or more of our three Conditions.  
 The hardest Step is computing Q, and perhaps there is a more elegant way to do than by brute force 
from (3.9). (Of course Maple is happy to compute Q if it is given the fn, hn and R.) In particular, it is not 
obvious why Q comes out being a constant times a power of R. The fact seems to arise since R is always 
a power of some "atom" as shown in this partial table from Moon and Spencer Section III:   
 
    q  (atom) h12   R  Q  

tangent sphere  ξ12+ξ22  q-2  q-1/2  q-2 

cardioid  ξ12+ξ22  q-3  q-1  q-4 
bispherical  chξ1-cosξ2 a2q-2  q-1/2  a2q-2 

toroidal   chξ1-cosξ2 a2q-2  q-1/2  a2q-2 // differ in h3  
inverse prolate  ch2ξ1-sin2ξ2 see M&S q-1/2  q-2 
 
The atom appears first in the scale factors and then propagates to R through our Step 1. The fact that Q 
and the scale factors are both powers of the same atom is what allows Condition 3 to be met with α = 0, 
 
 1/Q(12) = (1/h12) [ a(1) + d(2) ] + α (1/h32) . 
 
Notice how this is satisfied in the cardioid case 
 
 q4 = q3 [ a(1) + d(2) ] 
 
where then  [ a(1) + d(2) ] is taken to be the atom itself, q, to get q4 = q4.  In most other cases the two 
powers match and we just take a(1) = 1 and d(2) = 0.  
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11. Separation of the Schrodinger equation.  
 
(a) Schrodinger meets Helmholtz 
 
The time-dependent Schrodinger equation of non-relativistic (no spin) quantum mechanics has this form 
for a single point particle existing in 3D space under the influence of a potential V, 
 
 HΨ = ih∂tΨ  Ψ = Ψ(r,t)       (11.1) 
 
where 
 
 H  = KE + PE  = p2/2m + V  = (-ih∇)2/2m + V  = - (h2/em)∇2 + V .   (11.2) 
 
H is the Hamiltonian, the sum of kinetic and potential energy for the particle. Here we have used the 
quantum mechanical "rabbit in the hat" fact that p = -ih∇, which is to say, the classical particle 
momentum p is represented by operator -ih∇ in "coordinate space" r. This results in H being a 
differential operator as shown. The solution Ψ(r,t) is called a wavefunction, and the probability of the 
particle being in some small volume d3r at time t is |Ψ(r,t)|2d3r.   
 
Assuming a monochromatic time dependence for Ψ, 
 
 Ψ(r,t)  = ψ(r) e-iωt  => ∂tΨ (r,t) = (-iω) Ψ (r,t)     (11.3) 
 

equation (11.1) becomes 
 
 HΨ = ih((-iω) Ψ(r,t)  = hω Ψ(r,t)  . 
 
Defining E ≡ hω, one finds 
 
 HΨ = EΨ    E = hω  . 
 
Assuming that V(x,t) = V(x), then H does not involve t, and the above equation becomes 
 
 HψE(r) = EψE(r)          (11.4) 
 
which is known as the time-independent Schrodinger equation. The energies E and solutions ψE are thus 
the eigenvalues and eigenfunctions of the differential operator H subject to some kind of boundary 
conditions. It is traditional to refer to these eigenfunctions as "eigenstates" or just "states", while the 
eigenvalues are called "eigenenergies" or "energy levels". The continuous energy E of a classical particle 
ends up being "quantized" into these allowed eigenenergies. Of course the spectrum of E depends on the 
boundary conditions of the particular problem and might be discrete, continuous, or both.  
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Putting (11.2) into (11.4),  
 
 (- h2∇2/2m + V)ψ = Eψ 
 (∇2 - 2mV/h)ψ = -2mE/hψ  
 (∇2 + 2Em/h - 2mV/h)ψ = 0 . 
 
One can now define a scaled potential φ and replace constant E with constant K1

2 
 
 φ ≡ - (2m/h)V K1

2 ≡ (2m/h)E        (11.5) 
 
to get 
 
 (∇2 + K1

2 + φ )ψ = 0  .         (11.6) 
    
And so the Schrodinger equation has become our Helmholtz equation with the addition of the scaled 
potential term φ.   
 
(b) Separation of the Schrodinger Equation in Curvilinear coordinates 
 
The previous section showed that the Schrodinger equation can be written as 
 
 (∇2 + [K1

2 + φ(123)] ) ψ(123) = 0 .       (11.6) 
 
Tracing through our "processing of the Helmholtz equation" in Sections 3 and 4, we find that the K1

2 
term just "sits there" all the way through, and we end up with this new version of (4.4) in which K1

2 is 
replaced by K1

2 + φ,  
 
  - Σn(1/hn2)qn  + k12/Q  + K1

2 + φ = 0  .       (11.7) 
 
This suggests, following Morse and Feshbach, that the most general form for φ which would allow 
separation is this 
 
 φ(123) = Σn sn(n)/hn2 ,         (11.8) 
 
and putting (11.8) into (11.7) gives 
 
   - Σn(1/hn2)(qn-sn)  + k12/Q  + K1

2 + φ = 0  .      (11.9) 
 
We shall now modify (4.5) and introduce the Stäckel matrix this new way  (a new LHS)  
 
 qn-sn = [ κ12Φn1(n) + k22Φn2(n) + k32Φn3(n)]  n = 1,2,3   (11.10) 
 
and then (11.9) becomes (multiplying through by Q)  
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  - Σn(Q/hn2) [ κ12Φn1(n) + k22Φn2(n) + k32Φn3(n)]  + k12  + QK1
2  = 0   (11.11) 

 
which is identical to equation (4.9) and (5.1). One therefore solves for the Stäckel matrix exactly as 
before. Recall that the problem of finding the Stäckel matrix Φ is based only on this equation.  
 What about the separated equations?  The most general self-adjoint form is still as in (4.2), 
 
 LnXn = (1/fn)∂n[fn(∂nXn)] + qnXn = 0       (4.2) 
 
and replacing qn from (11.10) gives 
 
 LnXn = (1/fn)∂n[fn(∂nXn)] + [ κ12Φn1(n) + k22Φn2(n) + k32Φn3(n) + sn(n)]Xn = 0  (11.12) 
 
which is the same as before but with the extra potential function sn(ξn) as shown.  
 
Summary: In order to achieve separation of the Schrodinger Equation, the potential must have the 
restricted form φ = Σn sn(n)/hn2shown in (11.8). This leads to the exact same Stäckel matrix problem we 
had before, and the separated equations are the same as before but with an added sn term from the 
potential. Since the Schrodinger E parameter is normally not 0, and since K1

2 ≡ (2m/h)E, the Stäckel 
matrix problem is that for the pure Helmholtz equation with K1

2 ≠ 0. We know from above that we can 
only achieve simple-separation (R = 1, Problem A) for the Helmholtz equation, and that only happens in 
the 11 classical curvilinear systems. In their review of these 11 classical systems on pages  656-666, for 
each system Morse and Feshbach state the most general form the potential can have ( "General form for 
V").  
 
(c) Central potentials and the hydrogen atom problem 
 
The most famous instance of the Schrodinger Equation separation discussed here occurs in spherical 
coordinates where the potential V(r,θ,φ) is taken as V(r), known as a central potential. This potential 
meets the requirement of (11.8) where h1= 1, s1(1) = V(r), and s2(2)=s3(3)=0 where 123 = rθφ. Thus, 
only the separated equation for r (the "radial equation", (11.12) for n=1) has a modification from the pure 
Helmholtz case. If the spatial region includes all 4π steradians of angle, then the θ and φ separated 
equations yield the usual spherical harmonics Ylm(θ,φ) in which the two separation constants k22 and k32 
have been shuffled into l and m, both forced to certain integer values:  l = 0,1,2... ( to make Ylm  finite at θ 
= π) and m = -l..l (to make Ylm the same at φ = 0 and 2π) . When dimensionless separation constants get 
forced to certain discrete values, those values are traditionally called "quantum numbers".  
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 A particular example is the hydrogen atom problem where V(r) = -|e|2/r  and the solution is then the 
solution to the radial equation R(r) times the spherical harmonics. Only l appears in the radial function 
along with K1

2 ~ En. Specifically, one finds this wavefunction solution to the hydrogen atom problem, 
 
  ψ(r,θ,φ) = Rnl(r) Ylm(θ,φ)  
 
where (see Schiff p 93)  
  
  Rnl(r)  = constant * ρl L2l+1

n+l(ρ) e-ρ/2     ρ = (2/n)(r/a0)    Lp
q = associated Laguerre 

  a0= h2/(μe2) = Bohr radius μ = "reduced mass" of electron       |e| = charge on electron 
  En = -e2/(2a0)/n2   = eigenstate energies    n = 1,2,3... l = 0,1...(n-1) 
 
A third quantum number n has appeared, and it arises from the need for the wave function ψ to be 

normalizable such that ∫ d3r |ψ(r,θ,φ)|2 = 1, meaning the probability of finding the electron somewhere in 

all space must be 1. This requirement in turn creates a need for the power series expansion for the 
function L to truncate at some maximum power, and that power is related to n. Then function L becomes 
a polynomial, known as an associated Laguerre polynomial. The exponential factor e-ρ/2 can then 
overwhelm the polynomial at large r ~ ρ no matter how large n gets, providing normalization.  
 
We can look quickly at a few solutions: ( = states = orbitals) 
 With n=1 we have l=m=0 and the energy E1 is the most negative of all the En. This spherically 
symmetric state is called 1S and is the hydrogen atom "ground state".  
 With n = 2 we get l = 0,1. The l=0 (m=0) case gives a spherically symmetric state (called 2S) while 
the l=1 cases with m = -1,0,1 are usually linearly combined into three perpendicular dumbbell shaped 
states called 2Px,y,z. All four n=2 states have the same energy E2 in this non-relativistic model.  
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12. Separation in Ellipsoidal Coordinates 
 
The ellipsoidal coordinate system is the most complicated of the classical curvilinear systems and 
provides a good exercise in applying the apparatus of the previous sections. We shall make use of some of 
the equivalence operations of Section 6, and shall end up with three separated equations. The good news 
is that the three separated equations turn out to be identical, a fact traceable to cyclic symmetry of this 
system. The bad news is that all of the Stäckel matrix elements are non-zero, so the two separation 
constants are fully entangled into each separated equation, precluding a simple 1D Sturm-Liouville type 
solution except in very simplest cases, one of which is quoted below.   
 This section is not meant to be a complete monograph on ellipsoidal coordinates. Enough facts are 
given to hopefully make the reader comfortable with this system and to support the calculations below. 
See Morse and Feshbach for full details.  
 
(a) Some details about ellipsoidal coordinates 
 
Conveniently, our generic variable names ξ1, ξ2, ξ3 match the notation of Morse and Feshbach's 
ellipsoidal coordinate discussion. In this system the level surfaces (ξn=constant) are ellipsoids and certain 
hyperboloids. The ellipsoids are the surfaces of constant ξ1 and have this equation in Cartesian space, 
 
 x2/(ξ12- a2) + y2/(ξ12- b2)  + z2/(ξ12)   = 1 ,        (12.1) 
 
which is an ellipsoid centered at the origin. The largest semimajor axis of this ellipsoid is obviously ξ1, 
and the other two semimajor axes ξ12- a2  and ξ12- b2 are smaller. The quantities a and b are focal 
distances associated with the x and y directions. Here are crude pictures showing slices of this ellipsoid in 
the x=0, y=0 and then z=0 plane: 
 

 
 
Assuming an eye position such that the +x axis is "up", as these pictures are drawn, then the left and 
middle pictures show that 
 
  b is the focal distance of the horizontal ellipse = the intersection of the ellipsoid with the x=0 plane. 
 a is the focal distance of the vertical ellipse = the intersection of the ellipsoid with the y=0 plane. 
 
Notice that both these focal distances are along the z axis. The right picture then shows the other vertical 
slice ellipse= the intersection of the ellipsoid with the z=0 plane. It will be assumed that a > b. 
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 Sweeping ξ1 through some range produces a family of ellipsoids, each labeled by its value of ξ1, the 
longest semimajor axis length. All these ellipsoids have the same a and b focal distances. For this reason, 
such a family of ellipsoids is called "confocal".  
 As ξ1 gets very large, the ellipsoid gets long in the z direction, and has the shape of a cigar whose 
cross section is elliptical. The lower limit for ξ1 is a, since a semimajor axis cannot be smaller than a focal 
distance (and a is the larger of the two focal distances). If ξ1 = a +ε, the ellipsoid is crushed vertically, lies 
close to the x=0 plane, and looks a thin elliptical cookie.    
 The upshot is that one must have a  < ξ1 < ∞.  
 The other two surface families (those of constant ξ2 and constant ξ3) are types of infinite 
hyperboloids. Here are some graphs showing one surface of constant ξ2 (left) and one of constant ξ3 
(right),  
 

  
 
These hyperboloids are not surfaces of revolution, they are generally asymmetric, though these pictures 
don't make that clear. The surface on the left is called a one-sheeted hyperboloid and the one on the right 
two-sheeted. The pictures show that the coordinates ξ2 and ξ3 also have certain legal ranges, and these 
ranges can be summarized as follows: 
 
  0 ≤ ξ3 ≤ b≤ ξ2≤ a≤ ξ1         (12.2) 
 
These hyperboloid families are also "confocal" in the sense noted above.  
 Replacing ξ1 in (12.1) by ξ2 or ξ3 gives the other two level-surface equations. It is the fact that one or 
two of the terms in (12.1) then change sign, according to 12.2, that causes these surfaces to be the one and 
two sheeted hyperboloids. In fact, the three coordinates ξn2 for n=1,2,3 can be regarded as the three 
solutions of equation (12.1) written with ξ1→ξn and treated as a cubic equation in ξn2. One could in this 
manner find (ξ1,ξ2,ξ3) for a given (x,y,z), though the expressions are quite ugly. It is much easier to go 
the other direction using (12.3) below.  
 The ellipsoid family intersects these two hyperboloid families such that everything is at right angles -- 
this is an orthogonal coordinate system! Here is an attempt to show one member of each surface family in 
the same drawing:  ( We call this picture "the Q Bomb", in fond memory of The Mouse that Roared.)  
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Examination of the Q Bomb shows that the surfaces labeled by ξ1, ξ2, ξ3 intersect at 8 places in Cartesian 
space. These locations are given by  (±x, ±y, ±z)  where 
 
 x2 = (ξ12-a2) (ξ22-a2)  (ξ32-a2)/ [ a2(a2-b2)]   =  + - - / +  = + 
 y2 = (ξ12-b2) (ξ22-b2) (ξ32-b2)/ [ b2(b2-a2)]  = + + - / - = +    // = x2(a↔b)  
 z = ξ1ξ2ξ3/(ab)     = + + +/+ = +     (12.3) 
 
The quantities on the RHS's of these equations are all positive.  
 
(b) Notation and comparison to that of Morse and Feshbach 
 
Right off the bat we are going to make a notational change to our separation machinery. Recall that in 
Step 1 of our solution method we are supposed to analyze equations (3.5), 
 
 (H/h12) = f1(1)g1(23) R2  
 (H/h22) = f2(2)g2(31) R2   
 (H/h32) = f3(3)g3(12) R2  .         (3.5) 
 
We replace fn(n) by Fn(n), in order to use fn(n) for another purpose, so the new equations (3.5) read, 
 
 (H/h12) = F1(1)g1(23) R2  
 (H/h22) = F2(2)g2(31) R2   
 (H/h32) = F3(3)g3(12) R2  ,         (3.5) 
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and of course we make this same change in all our separation equations where the fn(n) appear. The 
reason for doing this is to try and maintain compatibility with the notation of Morse and Feshbach 
regarding ellipsoidal coordinate separation, so we will use fn for their purpose (see Morse and Feshbach p 
512 5.1.35), which purpose is the following set of definitions:  
 
 f12 ≡ (ξ12-a2)( ξ12-b2)  =  + +   = +  G1 ≡ (ξ22- ξ32)    = + 
 f22 ≡ (ξ22-a2)( ξ22-b2)  =  - +   = -  G2 ≡ (ξ32- ξ12)    = - 
 f32 ≡ (ξ32-a2)( ξ32-b2)  =  - -   = +  G3 ≡ (ξ12- ξ22)   = +    (12.4) 
  
These Gn functions have nothing to do with Gn functions we used in Sections 8, 9 and 10. What we have 
here are Gn(≠n) type functions, such as G1(23). [ Gn is another Morse and Feshbach notation, p 512  
5.1.37.  ]  
 Running down the lines above, everything is seen to be nice and cyclic. However, the inequality chain 
in (12.2) gives expression signs as shown to the right above. One implication is that f2 must be imaginary, 
and then we have to worry about branches and factors of ±i and such things. We don't like having 
imaginary stuff floating around unnecessarily, so we now introduce some new italicized capital F and G 
functions as follows (notice the minus signs in front of  f22 and G2 )   
 
 F1

2 ≡ + (ξ12-a2)( ξ12-b2)  =   f12   G1 ≡ + (ξ22- ξ32) =  G1 
 F2

2 ≡ – (ξ22-a2)( ξ22-b2)  =  - f22  G2 ≡ – (ξ32- ξ12) = - G2 
 F3

2 ≡ + (ξ32-a2)( ξ32-b2)  =   f32    G3 ≡  +(ξ12- ξ22)  =  G3   .   (12.5) 
 
All the Fn

2 and Gn quantities are positive and have unambiguous square roots. Note by the way that both 
functions fn and Fn are of the functional form type fn(n) and Fn(n).  
 
Finally we are ready to write down the ellipsoidal scale factors hn. In terms of the fi and Gi functions one 
finds these unpleasant looking forms (e.g., Morse and Feshbach page 663), 
 
 h12 = -G2G3/f12   h1 = -G2G3/f12       (12.6) 
 h22 = -G3G1/f22   h2 = -G3G1/f22  
 h32 = -G1G2/f32   h3 = -G1G2/f32  H = h1h2h3 =  -G2

2G2
2G3

2/(f12 f22 f32 )  
 
We hope the reader feels as uncomfortable as the writer about scale factors that are not obviously positive 
real numbers (though of course they are). We prefer to write the above our using our non-Morse and 
Feshbach symbols which are all positive quantities,  
 
 h12 =  G2G3/F1

2   h1 = G2G3 / F1 => hn2 = G1G2G3/( GnFn
2)  

 h22 =  G3G1/F2
2   h2 = G3G1 / F2 

 h32 =  G1G2/F3
2  h3 = G1G2 / F3 H = h1h2h3 =  G1G2G3/(F1F2F3)z 

  
 (H/h12)  = [G1G2G3/(F1F2F3)]  / [G2G3/F1

2 ]  =  G1F1/ (F2F3) 
 (H/h22)  = [G1G2G3/(F1F2F3)]  / [G3G1/F3

2 ]  =  G2F2/ (F3F1) 
 (H/h32)  = [G1G2G3/(F1F2F3)]  / [G1G2/F3

2 ]  =  G3F3/ (F1F2)  .    (12.7) 
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All the equation sets in (12.7) are cyclic.  
 
(c) Running through the Steps of Section 7 (b) 
 
Step (1) As noted above, the first task is to solve (3.5) for the 7 functions Fn, gn and R 
 
 (H/h12) = F1(1)g1(23) R2  
 (H/h22) = F2(2)g2(31) R2  => (H/hn2)  = FngnR2 

 (H/h32) = F3(3)g3(12) R2           (3.5) 
 
We know the ellipsoidal system is a classical system that allows simple-separation for Helmholtz so R=1. 
The left sides of the three equations above are provided in (12.7) to give 
 
 G1(23)F1/ (F2F3) = F1(1)g1(23)  
 G2(23)F2/ (F3F1) = F2(2)g2(31)   
 G3(23)F3/ (F1F2) = F3(3)g3(12) .  
 
A visual "functional form inspection" of these (again cyclic) equations tells us what we need to know: 
 
 F1 = F1  g1(23)  =  G1(23)/(F2F3) 
 F2 = F2  g2(31)  =  G2(31)/(F3F1)     =>   gn = GnFn/(F1F2F3) 
 F3 = F3  g3(12)  =  G3(12)/(F1F2)       (12.8)  
 
So the F functions turn out to be exactly our separation functions F, and we can now dispense with the F. 
We can now collect our "data" from (12.7) and (12.8) into one place, using (-1)n-1 to handle the minus 
signs for the case n=2,  
 
 hn2 = G1G2G3/( GnFn2)  H = G1G2G3/(F1F2F3)  Gn = (-1)n-1Gn 

 
 Fn2 ≡ (-1)n-1 (ξn2-a2)( ξn2-b2) gn = GnFn/(F1F2F3)     (12.9) 
 
 H/hn2  = GnFn2/(F1F2F3)  gn/H = GnFn/ (G1G2G3) 
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Step (2) The three first-column cofactors of Φ are, from (5.8) and (12.9),  
 
  Mn = gnFn/(F1F2F3)  =  {GnFn/(F1F2F3)} Fn/(F1F2F3) =  Gn Fn2/ (F12F22F32) 
or 
  M1 = G1/ (F22F32)  = - G1/(f22f32) 
  M2 = G2/ (F32F12)  = - G2/(f32f12) 
  M3 = G3/ (F12F22)  = - G3/(f12f22)       (12.10) 
 
Step (3)   R=1 => Q = 1.  
 
Step (4)  Knowing Q, one can compute S from the Robertson condition,  
 
 S(Φ)  = H / (F1F2F3QR2)     "Robertson condition"    (5.7) 
 
    =  H / (F1F2F3) = [G1G2G3/(F1F2F3)] / (F1F2F3) 
 
    = G1G2G3 / (F12F22F32)   = G1G2G3/(f12f22f32)      (12.11) 
 

Step (5) The next step is to find the rightmost two columns of the Stäckel matrix, 
 

 Φ    = 
⎝
⎜
⎛

⎠
⎟
⎞  a(1)  b(1)  c(1)  

  d(2)  e(2)  f(2)  
  g(3)  h(3)  i(3)  

    S = det(Φ)     (7.1) 

 
One can do this by solving the following equation set, using the Mn found in Step (2),  
 
  M1 = e(2)i(3)-f(2)h(3)    
 -M2 = b(1)i(3)-c(1)h(3) 
  M3 = b(1)f(2)-c(1)e(2)         (7.2) 
 
   G1(23)/F22F32 = e(2)i(3)-f(2)h(3)    
  -G2(31)/F32F12 = b(1)i(3)-c(1)h(3) 
   G3(12)/F12F22 = b(1)f(2)-c(1)e(2)  
 
   G1(23)/F22F32 = e(2)i(3)-f(2)h(3)    
   G2(31)/F32F12 = b(1)i(3)-c(1)h(3) 
   G3(12)/F12F22 = b(1)f(2)-c(1)e(2)  
 
   (ξ22- ξ32)/F22F32 = e(2)i(3)-f(2)h(3)    
   (ξ32- ξ12)/F32F12 = b(1)i(3)-c(1)h(3) 
   (ξ12- ξ22)/F12F22 = b(1)f(2)-c(1)e(2)  . 
 
Unlike all our previous examples, both terms on the RHS's of these equations are activated and come into 
play. Looking at the first equation, one can try the following choices,  
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 e(2) = sξ22/F22 i(3) = s/F32  f(2) = t/F22 h(3) =  t ξ32/ F32 
 
where s and t are signs ±1 to be determined below. The second and third equations then become 
 
   (ξ32- ξ12)/F32F12 = b(1) * s/F32-c(1)*  t ξ32/ F32 
   (ξ12- ξ22)/F12F22 = b(1)  * t/F22-c(1) * sξ22/F22   . 
 
Try b(1) = uξ12/F12 and c(1) = v/F12  where u and v are two new signs, 
 
   (ξ32- ξ12)/F32F12 = uξ12/F12 * s/F32 -  v/F12*  t ξ32/ F32 
   (ξ12- ξ22)/F12F22 = uξ12/F12  * t/F22 -  v/F12 * sξ22/F22 
 
   (ξ32- ξ12)/F32F12 = usξ12/F12F32  -  vt ξ32/ F32F12 
   (ξ12- ξ22)/F12F22 =  ut ξ12/F12F22 -  vs ξ22/F12/F22 
 
       us = -1            - vt = 1 
       ut =  1               vs = 1  . 
 
Picking one sign s = +1 we find 
 
       u = -1            - vt = 1 
       ut =  1              v = 1 
then 
       u = -1            - t = 1 
       -t =  1              v = 1 
 
and everything works. The solution is this 
     
   b(1) =  uξ12/F12   c(1) = v/F12 
   e(2) =   sξ22/F22   f(2) = t/F22 
   h(3) =   t ξ32/ F32   i(3) = s/F32 
      
   b(1) =  - ξ12/F12  =  - ξ12/f12  c(1) = 1/F12  = 1/f12 
   e(2) =     ξ22/F22  =   - ξ22/f22  f(2) = -1/F22 = 1/f22 
   h(3) =   - ξ32/ F32  =  - ξ32/f32  i(3) =  1/F32 = 1/f32 
 

and we now have the rightmost two columns of the Stäckel matrix 
 

 Φ    = 
⎝
⎜
⎛

⎠
⎟
⎞  a(1)  b(1)  c(1)  

  d(2)  e(2)  f(2)  
  g(3)  h(3)  i(3)  

  = 
⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞  a(1)   - ξ12/f12   1/f12  

  d(2)   -ξ22/f22   1/f22  
  g(3)   - ξ32/f32   1/f32  

   ≈  
⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞  a(1)   1/f12   ξ12/f12  

  d(2)   1/f22   ξ22/f22  
  g(3)   1/f32   ξ32/f32  

  (12.12) 

 
To get to the rightmost form, we have used the Section 6 equivalence rule which allows us to swap the 
last two columns and then negate one of them.  
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Step (6)  Find the first column of the Stäckel matrix by solving (7.6) : 
 
 1/Q = a(1) (1/h12) + d(2) (1/h22) + g(3) (1/h32)      (7.6) 
 
 1 = a(1) F12/ G2G3 + d(2) F22/ G3G1 + g(3) F32/ G1G2 
 
 G1G2G3 = a(1) G1 F12 + d(2) G2F22 + g(3) G3F32 
 
 – G1G2G3 = a(1) G1 f12 + d(2) G2f22 + g(3) G3f32 
 
This formidable-looking equation has at least two solutions.  The first is this 
 
 a(1)  = ξ14/f12  
 d(2) =  ξ24/f22 
 g(3)  = ξ34/f32           (12.13) 
 
which we can verify by showing that 
 
 – G1G2G3 = a(1) G1 f12 + d(2) G2f22 + g(3) G3f32 
 
 – G1G2G3 =  ξ14G1 + ξ24G2+ ξ34G3 ?      (12.14) 
 
 – (ξ22- ξ32) (ξ32- ξ12) (ξ12- ξ22)   =  ξ14(ξ22- ξ32)  + ξ24(ξ32- ξ12) + ξ34(ξ12- ξ22)     ? 
 
 – (x2- x3) (x3- x1) (x1- x2)   =   x12(x2- x3)  + x22 (x3- x1) + x32 (x1- x2)     ? 
 
Expansion of both sides into 6 terms shows this last equation is true, so the question marks can be 
removed.  
 The other solution is this,  
 
 a(1)  = 1  
 d(2) =  1 
 g(3)  = 1            (12.15) 
 

which can be verified by showing that 
 
 – G1G2G3 = a(1) G1 f12 + d(2) G2f22 + g(3) G3f32 
 
 – G1G2G3 =  G1 f12 + G2f22 + G3f32 ? 
  
  – (ξ22- ξ32) (ξ32- ξ12) (ξ12- ξ22)   =  (ξ22- ξ32) (ξ12-a2)( ξ12-b2) + cyclic    ?  (12.16) 
 
It seems hard to imagine how (12.16) can be true since the RHS depends on a and b while the LHS does 
not!  But let's examine the coefficient of a2 on the RHS 
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 coeff(a2) = - (ξ22- ξ32) ( ξ12-b2) + cyclic 
 
  = - [ ξ12(ξ22- ξ32) + cyclic] + b2[(ξ22- ξ32) + cyclic ]   . 
 
But both square brackets vanish due to the following two trivial theorems valid for any function f 
 
 f(1)[f(2) - f(3)] +cyclic = 0  // makes first [] = 0 in the line above 
 [f(2) - f(3)] +cyclic = 0  // makes second [] = 0 in the line above  .  (12.17) 
 
Thus coeff(a2) = 0 and similarly coeff(b2) = 0 . In other words, the RHS  of (12.16) depends on neither a2 
nor b2, despite appearances. Thus one can select any value of a2 or b2 to evaluate the RHS. If one takes a2 
= ξ22 and b2 = ξ32, then both the terms that make up  "+ cyclic" in (12.16) vanish because each of those 
terms then has a zero factor. Then the RHS of (12.16) becomes 
 
 (ξ22- ξ32)(ξ12- ξ22)( ξ12- ξ32)  =  (ξ22- ξ32)( ξ12- ξ32)(ξ12- ξ22)  = - (ξ22- ξ32)( ξ32- ξ12)(ξ12- ξ22) 
 
But this matches the LHS of (12.16), so we can erase the question marks above.  
  
Installing the first solution (12.13) gives this for the full Stäckel matrix, 
 

 Φ    = 
⎝
⎜
⎛

⎠
⎟
⎞  a(1)  b(1)  c(1)  

  d(2)  e(2)  f(2)  
  g(3)  h(3)  i(3)  

  ≈  
⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞  a(1)   1/f12   ξ12/f12  

  d(2)   1/f22   ξ22/f22  
  g(3)   1/f32   ξ32/f32  

   ≈  
⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞  ξ14/f12   1/f12   ξ12/f12  

  ξ24/f22   1/f22   ξ22/f22  
  ξ34/f32   1/f32   ξ32/f32  

  

 
   where  f12 ≡ (ξ12-a2)( ξ12-b2)       (12.18) 
     f22 ≡ (ξ22-a2)( ξ22-b2) 
     f32 ≡ (ξ32-a2)( ξ32-b2)       
 
Let's calculate the first column cofactors of this result. They are ( cofactor = (-1)n+1 minor )  
 
  M1 = (1/f22)(ξ32/f32) - (ξ22/f22)(1/f32)  = (ξ32- ξ22) / f22f32 = (- G1/ f22f32) 
  M2 = (1/f32)(ξ12/f12) - (ξ32/f32)(1/f12)  = (ξ12- ξ32) / f32f12 = (- G2/ f32f12) 
  M3 = (1/f12)(ξ22/f22) - (ξ12/f12)(1/f22)  = (ξ22- ξ12) / f12f22 = (- G3/ f22f32)  
 

and these results agree with (12.10) in Step 2 above. The determinant should be 
 
 S = (ξ14/f12)M1 + (ξ24/f22)M2 + (ξ34/f32)M3 

 

   = (ξ14/f12) (- G1/ f22f32) + (ξ24/f22) (- G2/ f32f12) + (ξ34/f32) (- G3/ f22f32) 
 
 = - { ξ14 G1 + ξ24G2 + ξ34G3} /( f12f22f32) . 
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But we showed in (12.14) that { ξ14 G1 + ξ24G2 + ξ34G3} = – G1G2G3  so we find that 
 
 S = G1G2G3/ ( f12f22f32) 
 
which agrees with Step 4 result (12.11) above. So we know this Stäckel matrix is valid.  
 Our result (12.18) agrees with Moon and Spencer page 41, but the agreement is a bit hard to see 
because Moon and Spencer use the following mapping of our symbols which then hides the cyclic nature 
of things:    a→c,  ξ1, ξ2, ξ3   → η, θ, λ . 
 
Step (7)  Finally we get to do a Step 7!  First, we will use our second solution (12.15) for the Stäckel first 
column and write 
 

 Φ    = 
⎝
⎜
⎛

⎠
⎟
⎞  a(1)  b(1)  c(1)  

  d(2)  e(2)  f(2)  
  g(3)  h(3)  i(3)  

  ≈  
⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞  a(1)   1/f12   ξ12/f12  

  d(2)   1/f22   ξ22/f22  
  g(3)   1/f32   ξ32/f32  

   ≈  
⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞  1   1/f12   ξ12/f12  

  1   1/f22   ξ22/f22  
  1   1/f32   ξ32/f32  

   (12.19) 

 
which by itself is not such a bad Stäckel matrix. But there is a simpler form that Morse and Feshbach 
quote and we will use our Section 6 equivalence rules to "get to it".  
 In the (12.19) Φ matrix above add (-b2) times the second column to the third column. The new third 
column top row entry is 
 
 ξ12/f12 - b2/f12    = (ξ12-b2)/f12  = (ξ12-b2)/ [(ξ12-a2)( ξ12-b2)]  = 1/(ξ12-a2) 
 
and the equivalent Φ matrix is now 
 

  Φ    ≈  
⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞  1   1/f12   1/(ξ12-a2)  

  1   1/f22   1/(ξ22-a2)  
  1   1/f32   1/(ξ32-a2)  

         (12.20) 

 
Now add - (a2-b2)-1 times the third column to the second column. The new second column top row entry 
is 
 
 1/f12  -  1/[(ξ12-a2) (a2-b2)]   = 1/[(ξ12-a2)( ξ12-b2)]  -  1/[(ξ12-a2) (a2-b2)] 
 
  =  1/(ξ12-a2)  * { 1/(ξ12-b2) - 1/(a2-b2) } =  
 
  =  1/(ξ12-a2)  * { (a2-b2) - (ξ12-b2)/ }/ [( ξ12-b2) (a2-b2)]  
 
  =  1/(ξ12-a2)  * { (a2- ξ12)}/ [( ξ12-b2) (a2-b2)]  
 
   =  -1/ [( ξ12-b2) (a2-b2)] . 
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The new equivalent Φ matrix is then 
 

 Φ    ≈  
⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞  1   -1/ [( ξ12-b2) (a2-b2)]   1/(ξ12-a2)  

  1   -1/ [( ξ22-b2) (a2-b2)]   1/(ξ22-a2)  
  1   -1/ [( ξ32-b2) (a2-b2)]   1/(ξ32-a2)  

  

 
Now we reuse another one of our rules:  swap the last two columns and then negate one of them, 
 

 Φ    ≈  
⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞  1    1/(ξ12-a2)     1/ [( ξ12-b2) (a2-b2)]  

 1   1/(ξ22-a2)     1/ [( ξ22-b2) (a2-b2)]  
  1    1/(ξ32-a2)     1/ [( ξ32-b2) (a2-b2)]  

   S = det(Φ)   (12.21) 

 
and this form agrees with Morse and Feshbach page 663:  
 

  
 
(d) Summary of Results 
 
Step 1:  The functional-form solution to (3.5) is : 
 
 F1 = F1  g1  =  G1/(F2F3) 
 F2 = F2  g2  =  G2/(F3F1) 
 F3 = F3  g3  =  G3/(F1F2)  
 
Step 2:  The first column cofactors are 
 
 M1 = - G1/f22f32 
 M2 = - G2/f32f12 

 M3 = - G3/f12f22 
 
Step 3:  Q = 1 since R = 1 
 
Step 4:   S ≡ det(Φ) = G1G2G3/(f12f22f32) 
 
Step (5):  Use the cofactor information to obtain the rightmost two columns of a Φ matrix and get 
 

  Φ    = 
⎝
⎜
⎛

⎠
⎟
⎞  a(1)  b(1)  c(1)  

  d(2)  e(2)  f(2)  
  g(3)  h(3)  i(3)  

  ≈  
⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞  a(1)   1/f12   ξ12/f12  

  d(2)   1/f22   ξ22/f22  
  g(3)   1/f32   ξ32/f32  
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Step 6:  Obtain two alternative solutions for the first column entries:  
 
 a(1)  = ξ14/f12    a(1)  = 1       
 d(2) =  ξ24/f22   d(2) =  1 
 g(3)  = ξ34/f32    g(3)  = 1 
 
Use the first solution to obtain the Φ matrix of Moon and Spencer: 
 

 Φ    ≈  
⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞  ξ14/f12   1/f12   ξ12/f12  

  ξ24/f22   1/f22   ξ22/f22  
  ξ34/f32   1/f32   ξ32/f32  

     // Moon and Spencer page 41  

 (12.18)  
 
Step 7: Use the second solution and do some equivalence operations to obtain the Φ matrix of Morse and 
Feshbach: 
 

 Φ    ≈  
⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞  1    1/(ξ12-a2)     1/ [( ξ12-b2) (a2-b2)]  

 1   1/(ξ22-a2)     1/ [( ξ22-b2) (a2-b2)]  
  1    1/(ξ32-a2)     1/ [( ξ32-b2) (a2-b2)]  

   // Morse and Feshbach page 663 

 (12.19) 
 
Notice that in all our Stäckel matrices, the three rows are identical except for the coordinate label.  
 
(e) The separated solutions:  Lamé functions  
 
Any of these Stäckel matrices may be used to obtain the separated equations of the Helmholtz equation, 
which are (4.8) with κ1= K1. Thus, 
 
 (∇2+K1

2)ψ  = 0   ψ = X1X2X3   
  
 LnXn = (1/Fn)∂n[Fn(∂nXn)] + [ K1

2Φn1(n) + k22Φn2(n) + k32Φn3(n)]Xn = 0    n = 1,2,3  
or 
 LiXi = (1/fi)∂i[fi(∂iXi)] + [ K1

2Φi1(ξi) + k22Φi2(ξi) + k32Φi3(ξi)]Xi = 0   i = 1,2,3 (12.22) 
 
In the second line, we can think of f2 = +i F2 and then the +i's cancel up and down. ( We have changed 
the index from n to i, because n will have a completely new meaning below. ) 
 
Because the three functions in each row of Φ are different and non-zero, one finds that the separation 
constants k22 and k32 are "fully entangled" in each separated equation. Also, and most impressively, we 
find that each of the separated equations is the same equation,  and so has the same solutions, because the 
three rows of Φ are the same apart from the coordinate.  
 Using the Morse and Feshbach (12.19) form of the Φ matrix, one can install the Φ functions into 
(12.22) to get 
  
 LiXi = (1/fi)∂i[fi(∂iXi)] + { K1

2 + k22/(ξi2-a2) + k32/ [(ξi2-b2)(a2-b2)] } Xi = 0  (12.23) 
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  where  fi2 ≡ (ξi2-a2)( ξi2-b2)   
 
which appears as in Morse and Feshbach (5.1.37) with K1

2 → k12.  
 The solutions Xi are Lamé functions, and the "ellipsoidal harmonics" are products of three Lamé 
functions  
 
 ψ = X1X2X3  ~  [En

p(ξ1),Fnp(ξ1)] [En
p(ξ2),Fnp(ξ2)] [En

p(ξ3),Fnp(ξ3)]   (12.24) 
 
where E and F are first and second kind Lamé functions, somewhat analogous to the Legendre P and Q 
functions. The two separation constants k22 and k32 have now been shuffled into the function parameters 
n and p which one sees are fully cross-linked between the three factors of each harmonic.  
 The n values get quantized to be integers n = 0,1,2,3...  and for each value of n, there are certain 
peculiar quantized values of p for which normalizable solutions exist. Moreover, solutions En

p can be 
partitioned into four classes called Kn

p, Ln
p, Mn

p, Nn
p which have these forms (each series truncates) 

 
 Kn,p(x)   =        1     [ xn + αxn-2 + βxn-4 + .. ]      

 Ln,p(x)  =  x2 - b2 [ xn-1 + αxn-3 + βxn-5 + ..] 
 Mn,p(x) =  x2 - a2 [ xn-1 + αxn-3 + βxn-5 + ..] 
 Nn,p(x) = x2 - b2 x2 - a2  [ xn-2 + αxn-4 + βxn-6 + ..]  
 
where α,β are generic constants, different on each line. These En

p functions are all quite simple, having 
the usual Frobenius form (x-x0)r Σj Ajxj where x0 is a regular singular point of the ODE. In our case, r = 
1/2 and the regular singular points are ±a and ±b. 
  The functions may be simple, but the theory underlying them is quite complicated, though each 
element of the theory is reasonably straightforward. Here are a few En

p functions taken from Byerly for n 
= 0,1,2 and 3  (a,b are here c,b  ):  
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Notice in Byerly's table that there are always (2n+1) solutions for a given n. Hobson considers conical 
coordinates (r,μ,ν) and shows that the harmonics in that system are rn En

p(μ)En
p(ν) which can be 

compared to rn Ynm(θ,φ) in spherical coordinates. The linearly independent functions En
p(μ) En

p(ν) for 
fixed n are thus linear combinations of the (2n+1) Ynm(θ,φ), and that is why there are (2n+1) En

p 
functions. The label n is of course the quantum number associated with angular momentum. If one writes 
the angular momentum operator L2 in these two coordinate systems, one finds that En

p(μ) En
p(ν) and 

Ynm(θ,φ) are both eigenfunctions of L2 with eigenvalue n(n+1).  
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 A classic problem in ellipsoidal coordinates is determining the electrostatic potential outside a 
charged metal ellipsoid having label ξ1= c and potential V0. The solution is this  (see Morse and Feshbach 
p 1308 10.3.91)  
 
 ψ  =  constant *  [F00(ξ1)] [E0

0(ξ2)] [E0
0(ξ3)]  = constant *  [F00(ξ1)] [1] [1] 

 
    = constant  * F00(ξ1)   = constant * sn-1(1/ξ1,b/a)  =  V0 sn-1(1/ξ1,b/a)/ sn-1(1/c,b/a)  (12.25) 
 
where the sn-1 is an inverse Jacobi function which is equal to the elliptic integral of the first kind,  
 
 sn-1(x,k) = F(sin-1x,k) = F(sin-1x | m) = F(sin-1x \ α)   k = sinα m = k2 . 
 
Taking the limit c→a, ψ becomes the potential of a charged thin metal elliptical plate, and then taking 
b→a ψ is the potential a charged metal disk. These three problems, especially the first two, are quite 
difficult to solve in any other coordinate system. 

 
The reader interested in learning about Lamé functions luckily has a very excellent source:  the 43-page 
final chapter of a 1931 book by E.W. Hobson. Even in 2011 this chapter is crisp and clear, though there 
are a few typos. The latter part of the chapter deals with the issue of expressing the ellipsoidal harmonics 
in Cartesian coordinates. 
 
(f) Comment on a missing minus sign on page 512 of Morse and Feshbach 
 
Looking back at the start of Section 3, we had  (take K1

2 → k12 for this subsection) 
 
  (∇2+k12)ψ  = 0   
  Σn(1/H)∂n[(H/hn2)(∂nψ)]  + k12ψ = 0   H  ≡ h1h2h3   (3.1) 
 
For cases with R=1 we know from (3.5) that  (H/hn2) = Fngn, so (3.1) may be written 
 
 Σn (gn/H) ∂n[Fn(∂nψ)]  + k12ψ = 0 .       (12.26) 
 
From (12.9),  
 
  gn/H = GnFn/ (G1G2G3) = - GnFn/ (G1G2G3) 
 
and then (12.26) becomes 
 
 - Σn GnFn/ (G1G2G3) ∂n[Fn(∂nψ)]  + k12ψ = 0  .      (12.27) 
 
From (12.5) make these replacements in (12.27), 
 
 G1F1 .... F1    →   G1f1.... f1 
 G2F2 .... F2   →   (-G2)(±if2).... (±if2)  = G2f2.... f2 
 G3F3 .... F3    →   G3f3.... f3 



  71 

 
to get 
 
 – Σn Gnfn/ (G1G2G3) ∂n[fn(∂nψ)]  + k12ψ = 0      (12.28) 
 
where notice the minus sign on the LHS.  We now compare (12.28) with Morse and Feshbach p 512 
(5.1.37),  

 
 
and we see that Morse and Feshbach should have a minus sign to the left of the large Σ in the above 
equation. Their Gn are the same as ours in (12.4), defined cyclically. There is no disagreement about the 
sign of k12 as this Morse and Feshbach quote from p 509 shows 

   
 
This rare Morse and Feshbach sign error created much confusion for the author until it was detected.  
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13. Stäckel Theory in N dimensions 
 
Altered Development Equations 
 
The generalization of the above analysis from N = 3 to N = N is completely straightforward, one can just 
march down the development and make the necessary alterations. It seemed best not to do this initially to 
keep things simple. Rather than create new equation numbers, we show the old ones and the reader can 
assume that future references to these numbers in this section imply use of the equations as modified here. 
We start at the beginning,  
 
  (∇2+K1

2)ψ  = 0  
 
  H-1{ ∂1[(H/h12)(∂1ψ)] + cyclic} + K1

2ψ  = 0    H  ≡ h1h2h3...hN  
 
  H-1 Σn=1N ∂n[(H/hn2)(∂nψ)]  + K1

2ψ = 0      (3.1) 
 
  ψ = X1X2X3...XN/R  .         (3.2) 
 
The "+ cyclic" notation now brings in N-1 other terms obtained by cyclic permutation of the first term. 
Continuing on, we find 
 
 (H/[R2hn2]) = fn(n)gn(≠n)  n = 1,2,3...N      (3.5) 
 
 (1/R) Σn=1N [  (1/[hn2Xn]) (1/fn)∂n[fn { R(∂nXn) - Xn(∂nR) }]  + K1

2  = 0   (3.6) 
 
   Σn=1N (1/[hn2fnR]) ∂n{fn(∂nR)}   ≡ - k12/Q(123)      (3.9) 
 
 Σn=1N (1/[hn2Xn]) (1/fn)∂n[fn(∂nXn)]  + k12/Q  + K1

2  = 0     (3.10) 
 
    – Σn=1N (1/hn2)qn  + k12/Q  + K1

2  = 0  .       (4.4) 
 
The Stäckel matrix is now an NxN matrix defined in the obvious manner, and one has 
 
 qn(n) = [ κ12Φn1(n) + k22Φn2(n) + k32Φn3(n) + ... + kN2ΦnN(n)] n = 1,2,3..N  (4.5) 
 
 LnXn = (1/fn)∂n[fn(∂nXn)] + [ κ12Φn1(n) + k22Φn2(n) + k32Φn3(n) + ... + kN2ΦnN(n)]Xn = 0   
 This represents a set of N separated equations, n = 1,2....N     (4.8) 
 
There are now N-1 separation constants k22, k32....kN2, each a real number (possibly negative).  
 Recall that κ12 is a stand-in for either the Helmholtz parameter K1

2 for Problem B (R-separation), or 
the constant k12 associated with Q for Problem A (simple-separation).  
 The matrix equation (5.3) is the same, but the matrices are NxN. The solution of this equation is still 
the Cofactor condition as in (5.6a),  
 
 Mn(Φ)/S(Φ)  = (Q/hn2)  n=1,2,3..N  " Cofactor condition"  (5.6a) 
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The Robertson condition is slightly generalized now and says 
 
 S(Φ)  = H / (f1f2f3...fN QR2)    "Robertson condition"   (5.7) 
 
and then (5.8a) is similarly generalized 
 
 Mn = gnfn/(f1f2f3...fN)         (5.8a) 
 
 1/Q =  Σn=1N (1/hn2) Φn1(n)         (5.10) 
 
Problem B recast at the end of Section 5 is this. Given   
 
 S(Φ)  = H / (f1f2f3...fNQR2)    // Robertson 
 Mn(Φ)  = S(Φ) (Q/hn2)    // Cofactor    (5.11) 
 
how exactly do we find the N2 elements of Φ ?  
 
Equivalence Rules 
 
The equivalence rules of Section 6 are slightly modified and their derivation just slightly more 
complicated. It helps to have a 4x4 example for illustration: 
 

   Φ = 
⎝
⎜
⎛

⎠
⎟
⎞ a  b  c  d  

e  f  g  h  
i  j  k  l  
m  n  o  p 

   

 
Suppose we multiply one of the last N-1 columns by α and another by 1/α . For example, doing this for 
the 2nd and 4th columns gives 
 

   Φ = 
⎝
⎜
⎛

⎠
⎟
⎞ a  αb  c  d/α  

e  αf  g  h/α  
i  αj  k  l/α  
m  αn  o  p/α 

   

 
We know that if we take a matrix and multiply any column (or row) by a scalar α, the determinant gets 
multiplied by α. So here we have done that once with α and once with 1/α so the determinant S is 
unchanged.  Now consider the cofactor of a first column element. This cofactor is a signed minor with the 
sign fixed by position of the element, and the minor is the determinant of a 3x3 matrix.  By the same 
argument just stated, this determinant is unaltered by having one column scaled by α and another by 1/α. 
Therefore, the cofactors of the elements of the first column are unaltered by our scaling process. 
Therefore this process generates an equivalent Stäckel matrix. So we modify Rule (1) to read 
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(1)  multiply one of the last N-1 columns by any (nonzero) constant α,   
      and multiply another of the last N-1 columns by 1/α.       (6.1) 
 
Now what happens if we swap a pair of columns among the last N-1 columns and then negate one of 
them? We know that this action does not change the overall determinant S, but by the same argument it 
does not change any of the 3x3 minors involved in the four cofactors of the first column elements. Thus, 
this action creates an equivalent Stäckel matrix. So we have Rule (2) 
 
(2)  swap any pair of the last  N-1 columns of Φ and then negate either of these columns.   (6.2) 
 
Finally, what happens if we add a multiple of one of the last N-1 columns to another of the last N-1 
columns. For example, let's add λ times the last column to the second last:  
 

   Φ = 
⎝
⎜
⎛

⎠
⎟
⎞ a  b  c+λd  d  

e  f  g+λh  h  
i  j  k+λl  l  

m  n  o+λp  p 

   

 
We know S = detΦ  is unchanged. And once again, this operation does not change any of the minors of 
the first column elements. So again we have an equivalence operation. Adding a multiple of one of the 
last N-1 columns to the first is also OK since it changes neither S nor the Mn cofactors. Rule (3) becomes: 
 
(3) add any multiple of one of the last N-1 columns to a different column.    (6.3) 
 
Summary of Stäckel Matrix Equivalence Operations for NxN matrices 
 
(1) multiply one of the last N-1 columns by any (nonzero) constant α,   
      and multiply another of the last N-1 columns by 1/α.       (6.1) 
 
(2) swap any pair of the last N-1 columns and then negate either of these columns.   (6.2) 
 
(3) add any multiple of one of the last N-1 columns to a different column.    (6.3)  
 
Conditions 
 
We generalize Section 7 (a):  
 
Condition (1) Equations (3.5) must be solvable for the 2N+1 functions fn, gn and R. If some fn is a 
constant, set that constant to 1. For Problem A, set R=1.    
 
 (H/h12) = f1(1)g1(≠1) R2   H = h1h2h3...hN 
 (H/h22) = f2(2)g2(≠2) R2   
 .... 
 (H/hN2) = fN(N)gN(≠N) R2         (3.5) 
              
Assuming equations (3.5) can be solved, compute the Mn cofactors as follows from (5.8a) 
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 Mn(≠n) = gnfn /(f1f2...fN)  n = 1,2...N      (5.8a) 
 
Condition (2) Equations (7.2) must have a solution. This is a set of N functional-form conditions,  where 
the Mn are as given above,  
 
  M1(≠1) = ...    
 -M2(≠2) = ... 
  M3(≠3) = ...          
  -M4(≠4) = ...          (7.2) 
 
where the RHS's of these equations are the appropriate (N-1)x(N-1) minors. So the RHS of each equation 
has N-1 terms each of which is the product of N-1 Φ elements. We can write these expressions using the 
totally antisymmetric ε tensor having N indices:  
 
 det(Φ)  = Σnabc.. εnabc.. Φn1 Φa2 Φb3 Φc4 .... 
 
            = Σn  Φn1 [ Σabc.. εnabc.. Φa2 Φb3 Φc4.... ]   
 
           = Σn  Φn1Mn  
 
so that the above equations are these, where there are indeed N-1 Φ factors in each term,  
 
 Mn(≠n) = Σabc.. εnabc.. Φa2(a) Φb3(b) Φc4(c)....  n = 1,2...N   . 
 
As noted earlier, it is not obvious that, given the Mn as stated in Condition 1, the non-first-column Φnm 
elements can be found to satisfy these N conditions due to the functional form restriction and due to 
correlations between the equations since each Φnm appears in N-1 equations.  
 
Condition (3) If conditions (1) and (2) are met, we then do the work of computing Q and k12 from (3.9), 
 
   Σn=1N (1/[hn2fnR]) ∂n{fn(∂nR)}   = - k12/Q(123..N)  .     (3.9) 
 
For Problem A, Q = 1 and k12 = 0 and no work is needed. Then with this Q expression, equation (7.6) 
must have a solution for the first column Φ elements,     
 
 1/Q = Φ11(1) (1/h12) + Φ21(2) (1/h22) + ..... +  Φ2N(N) (1/hN2)    (7.6) 
 
and this is another functional-form condition.  
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Steps 
 
We generalize Section 7 (b):  
 
Step 0:  Write down the hn for the curvilinear system of interest and compute H = h1h2h3 .. hn. Perhaps 
write down other useful facts concerning the system of interest.  
 
Step (1) As noted above, the first task is to solve (3.5) for the 2N+1 functions fn, gn and R 
 
 (H/h12) = f1(1)g1(≠1) R2   H = h1h2h3...hN 
 (H/h22) = f2(2)g2(≠2) R2   
 .... 
 (H/hN2) = fN(N)gN( ≠N) R2         (3.5) 
 
This task is pretty much just one of "inspection" when the LHS's of (3.5) are inserted (assuming 
Condition 1 that a solution exists! )  
 
Step (2) Write down the N first-column cofactors from (5.8b), 
 
 Mn(≠n) = gnfn /(f1f2...fN)  n = 1,2...N 
 
Step (3)  If Problem A, Q = 1. Otherwise compute Q and k12 from (3.9), 
 
   Σn=1N (1/[hn2fnR]) ∂n{fn(∂nR)}   = - k12/Q(123)      (3.9) 
 
Step (4) Knowing Q, compute S from the Robertson condition, 
 
 S(Φ)  = H / (f1f2f3...fN QR2)   "Robertson condition"    (5.7) 
 
Step (5) Find the rightmost N-1 columns of the Stäckel matrix by solving the following N functional-form 
equations for a viable set of N*(N-1) Φnm elements ( see Condition 2 above)  
 
 gn(≠n)fn(n) /(f1(1)f2(2)...fN(N))  =  Σabc.. εnabc.. Φa2(a) Φb3(b) Φc4(c)....  n = 1,2....N 
 
Step (6) Find the first column of the Stäckel matrix by solving (7.6) or (5.9) 
 
 1/Q(12...N) = Φ11(1) (1/h12) + Φ21(2) (1/h22) + ..... +  Φ2N(N) (1/hN2)   (7.6) 
 
which is of course another functional-form equation.  
 
Step (7) At this point, we may want to apply some of our Section 6 equivalence operations to obtain a 
Stäckel matrix Φ that is of the simplest possible form, or of a form that matches the literature.  
 
Examples? N=2 examples are given in the next section. We shall not work out any examples here for 
N>3, but two candidates would be "hyper-ellipsoidal coordinates in N dimensions" and "hyper-spherical 
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coordinates in N dimensions". In the first case the confocal hypersurface families would have N-1 focal 
distances a1, a2.....aN-1 and things are just a generalization of what appears in Section 12. For example, 
the inequality chain (12.2) would be  
 
  0 ≤ ξN≤ aN-1  ≤ ξN-1..... a2 ≤ ξ2≤ a1  ≤ ξ1  . 
 
For hyper-spherical coordinates ξ1 would be the radial coordinate r, then ξ2 through ξN-1 are polar angles 
θ1 through θN-2, and finally ξN is an azimuth φ.  It seems likely to the author that both these N 
dimensional coordinate systems will be separable, but that is just a conjecture.  
 
Non-Euclidian Stäckel Theory?   For an orthogonal non-Euclidian curvilinear coordinate system one has a 
diagonal metric tensor which contains elements of both signs. This means that some of the hn2 (squared 
scale factors) are negative and H might be negative. These facts should not affect the development as 
presented above in this section.  
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14. Stäckel Theory in N=2 dimensions 
 
As noted earlier, Moon and Spencer deal with various 3D cylindrical systems each with its own 2D 
orthogonal system in the ξ1,ξ2 coordinates. Moon and Spencer then state the nature of the Helmholtz and 
Laplace solution functions in various scenarios, one of which is that the solution has no z dependence due 
to an "extrusion symmetry" of the problem. This scenario yields separated equations for ξ1,ξ2 which agree 
with those we find below using the 2D Stäckel method, so Moon and Spencer provide a catalog of 2D 
separated equations, even though they don't explicitly state the 2D Stäckel matrices.  
 
It should be realized that the 2x2 Stäckel matrix is not in general the "upper right 2x2 piece" of the 3x3 
Stäckel matrix for the corresponding cylindrical system. We cannot just "delete" the 3 coordinate in a 
naive way, because in the 3x3 case ∂z2 is an active part of ∇2.  This fact will be demonstrated in the 
second Example below.  
  
We assume at first arbitrary h1 and h2 and then later specialize to h1= h2. There will be only one 
separation constant, k22.  
 
We shall now restate the Conditions and Steps as given in Sections 7(a) and 7(b) for our case N = 2. 
 
Conditions 
 
Condition (1) Equations (3.5) must be solvable for the 5 functions fn, gn and R. If some fn is a constant, 
set that constant to 1. For Problem A, set R=1.    
 
 (h2/h1) = f1(1)g1(2) R2   H = h1h2 
 (h1/h2) = f2(2)g2(1) R2         (3.5) 
 
Assuming (3.5) can be solved, compute the Mn as follows : 
 
 M1 = g1 /f2 
 M2 = g2 /f1           (5.8b) 
 
Condition (2) Equations (7.2) must have a solution. For N = 2 each first column cofactor is just a signed 
multiple of an element in the second column, so then 
 

 Φ    = ⎝
⎛

⎠
⎞a(1)  b(1)  

c(2)  d(2)     S = det(Φ) 

 
  M1 = d(2)   => d(2) =  M1 =  g1 /f2  
  M2 = -b(1)   => b(1) = -M2= - g2 /f1   

 

Thus Condition 2 is satisfied in any N=2 system so we can ignore it, and we know that Φ has the form 
 

 Φ    = ⎝
⎛

⎠
⎞a(1)  b(1)  

c(2)  d(2)    = ⎝
⎛

⎠
⎞a(1)   - g2 /f1  

c(2)    g1 /f2    
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Condition (3) If condition (1) is met, compute Q and k12 from (3.9), 
 
   Σn=12 (1/[hn2fnR]) ∂n{fn(∂nR)}   = - k12/Q(12)      (3.9) 
 
For Problem A, set Q = 1 and k12 = 0 and no work is needed.  Then with this Q expression, equation (7.6) 
must have a solution for a and c   
 
 1/Q = a(1) (1/h12) + c(2) (1/h22)        (7.6) 
 
Steps 
 
Step (0)  Write down the h1 and h2. 
 
Step (1) As noted above, the first task is to solve (3.5) for the 5 functions fn, gn and R 
 
 (h2/h1) = f1(1)g1(2) R2  
 (h1/h2) = f2(2)g2(1) R2         (3.5) 
 
This task is pretty much just one of "inspection" when the LHS's of (3.5) are inserted.  
 
Step (2) Write down the two first-column cofactors from (5.8b) 
 
 M1 = g1 /f2 
 M2 = g2 /f1           (5.8b) 
 
Step (3)  If Problem A, Q = 1. Otherwise compute Q and k12 from (3.9), 
 
   Σn=12 (1/[hn2fnR]) ∂n{fn(∂nR)}   = - k12/Q(12)      (3.9) 
 
Step (4) Knowing Q, compute S from the Robertson condition, 
 
 S(Φ)  = (h1h2) / (f1f2QR2)          (5.7) 

Step (5)  We did this in Condition 2 above and found Φ    = ⎝
⎛

⎠
⎞a(1)   - g2 /f1  

c(2)     g1 /f2   .  

 
Step (6) Find the first column of the Stäckel matrix by solving (7.6) or (5.9) 
 
 1/Q = a(1) (1/h12) + c(2) (1/h22)        (7.6) 
or 
 S = a(1) M1 + c(2) M2         (5.9) 
 
Step (7)  The only equivalence rule that survives for N = 2 is to add a multiple of the second column to 
the first column.  
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Example:  Polar Coordinates  (ξ1, ξ2) = (r,θ) 
 
Step 0:   h1 = 1   h2 = ξ1 
 
Step (1) We know R = 1 so get  
 
 (h2/h1) = f1(1)g1(2) R2  
 (h1/h2) = f2(2)g2(1) R2         (3.5) 
 
 ξ1 = f1(1)g1(2)    =>  f1 = ξ1  g1= 1 
 1/ξ1= f2(2)g2(1)  =>  f2 = 1  g2= 1/ξ1 
 
Step (2) Write down the two first-column cofactors from (5.8b), 
 
 M1 = g1 /f2  = 1/1 = 1 
 M2 = g2 /f1  = ξ1-1/ξ1 = 1/ξ12         (5.8b) 
 
Step (3)  R = 1 => Q = 1 
 
Step (4) Knowing Q, compute S from the Robertson condition 
 
 S(Φ)  = [ (h1h2) / (f1f2)]          (5.7) 
 
 S(Φ)  = [ξ1/ ξ1]   = 1 

Step (5)  From Condition 3 above we found Φ  = ⎝
⎛

⎠
⎞a(1)   - g2 /f1  

c(2)   g1 /f2   , therefore Φ  = ⎝
⎛

⎠
⎞a(1)   - ξ1-2  

c(2)  1   

 
Step (6)   We have to solve 
 
 S = a(1) M1 + c(2) M2         (5.9) 
 
 1 = a(1) 1 + c(2) 1/ξ12 
 
This has a solution  a(1)  = 1 and c(2) = 0 so that 
 

 Φ      = ⎝
⎛

⎠
⎞a(1)   - ξ1-2  

c(2)  1  = ⎝
⎛

⎠
⎞1   - ξ1-2  

0  1     // Stäckel matrix for polar coordinates.  

 
The separated equations are ( since simple-separation, κ12 = K1

2 = the Helmholtz parameter )  
 
 LnXn = (1/fn)∂n[fn(∂nXn)] + [K1

2Φn1(n) + k22Φn2(n) ]Xn = 0    (4.8) 
 
 (1/f1)∂1[f1(∂1X1)] +  [K1

21 + k22(-ξ1-2) ]X1 = 0 
 (1/f2)∂2[f2(∂2X2)] +  [K1

20 + k221 ]X2 = 0 
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 (1/ξ1)∂1[ξ1(∂1X1)] + [K1
2 – k22/ξ12 ]X1 = 0   

               (∂22X2)  + [ k22 ]X2 = 0 
 
 (1/r)∂r[r(∂rR)] + [K1

2 – k22/r2 ]R = 0 or  - (rR')' + k22 (R/r) -  K1
2rR  = 0  

               (∂θ2Θ)  + [ k22 ]Θ = 0 
 
   r2R" + rR' + [ r2 K1

2 – k22 ]R = 0   R = X1     (14.1) 
               Θ"  + [ k22 ]Θ = 0    Θ = X2 

 
These agree with Moon and Spencer p 16 ("For φ independent of z") with K1

2 → κ2 and k22 → α2.  
  
To simplify notation a bit, we define 
 
 a2 = K1

2= the Helmholtz parameter    // = -α2 

 b2 = k22 = the separation constant    // = -β2 

 
We then rewrite the above pair of separated equations as 
 
   r2R" + rR' + [ r2 a2 – b2 ]R = 0  or   - (rR')' + b2 (R/r) -  a2rR  = 0  (14.2) 
               Θ"  + b2Θ = 0 
  
This radial equation is a scaled Bessel equation with solution of the type Jb(ar). Consider now various 
situations:  
 
 a2 > 0 a = real 
 a2< 0 a = iα = imaginary,   α real 
 
 b2 > 0 b = real 
 b2< 0 b = iβ = imaginary,   β real 
 
With these symbols, one can write the separated solution in a variety of ways. Here are the possible 
"atomic forms" (they cannot be called harmonics because they are Helmholtz solutions, not Laplace 
solutions )  
 
 ψ  ~  X1X2  ~ [Jb(ar), Yb(ar)]  [sin(bθ),cos(bθ)]  a = real  b = real  (14.3a) 
 
 ψ  ~  X1X2  ~ [Ib(αr), Kb(αr)]  [sin(bθ),cos(bθ)]  a = imaginary b = real  (14.3b) 
 
 ψ  ~  X1X2  ~ [Jiβ(ar), Yiβ(ar)]  [sinh(βθ),cosh(βθ)]  a = real  b = imaginary (14.3c) 
 
 ψ  ~  X1X2  ~ [Iiβ(αr), Kiβ(αr)]  [sinh(βθ),cosh(βθ)]  a = imaginary b = imaginary (14.3d) 
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Using Sturm-Liouville to solve a specific Helmholtz problem in polar coordinates 
 
A prototype problem in 2D polar coordinates is to find the Helmholtz Green's Function for an infinite 2D 
wedge-shaped region with vertex at the origin. If this is a normal "Dirichlet" Green's Function, then the 
solution must vanish on both faces of the wedge, say θ=0 and θ=ψ, and the point source lies somewhere 
inside the wedge at r',θ'. This then turns the Θ equation above into a simple 1D Sturm Liouville problem 
and we find that the separation constant called b2 gets quantized to specific values bn2 where bn = nπ/ψ, n 
= 0,1,2... The complete set of eigenfunctions associated with this SL problem is { sin(bnθ), n = 1.2.3...} 
and the "transform" associated with this Sturm Liouville problem is the Fourier Sine Series transform. If 
we start off assuming that the Helmholtz parameter a2 is negative, then we can try to find a solution using 
atoms in (14.3b) where a = iα, and we try this "Smythian form",  
 
 g(r,θ|r',θ') = Σn=1∞ Cn(r',θ') sin(bnθ) Ib(αr<) Kb(αr>)   r< = min(r,r') r> = max(r,r') 
 
where Cn is a coefficient to be determined. One can in fact solve for Cn to obtain this result ( see Stakgold 
vol 2 p 273 (7.174)),  
 
 g(r,θ|r',θ') = Σn=1∞ (2/ψ) sin(nπθ/ψ) sin(nπθ'/ψ) Inπ/ψ(αr<) Knπ/ψ(αr>)   .   (14.4) 
 
An interesting special case is also treated by Stakgold. If one lets the wedge angle increase all the way to 
2π, then the two wedge sides meet along the +x axis, and the problem is to find the Helmholtz Green's 
Function where this half line x>0 is "grounded", meaning g=0. He further places the Green's unit point 
source at location x = -r0 on the x axis.  

    
 
The reader can extrude this picture out of the plane of paper to find a 3D problem solvable by 2D methods 
in which there is an infinite line source lying off the edge of a grounded half plane. The solution to this 
special case is of course just the above formula with ψ = 2π and θ' = π, so we get [ Stakgold vol 2 p 275 
(7.183) ]   
 
  g(r,θ|r0,π) = Σn=1∞ (1/π) sin(nθ/2) sin(nπ/2) In/2(αr<) Kn/2(αr>) .   (14.5) 
 
Remember that α encodes the Helmholtz parameter according to α2 = -K1

2 and for this problem we can 
assume that K1

2 < 0 so α2 > 0, at least for a start, then we can analytically continue in α as needed.  
 
Stakgold then proceeds to do this same special case problem by instead treating the radial R equation as a 
1D Sturm-Liouville problem in r on the interval (0,∞). In this case, taking b = iβ and a = iα, we can use 
atomic form (14.3d) to set things up. In this Sturm-Liouville problem, it turns out that the complete set of 
eigenfunctions is { Kiβ(αr), β = real values 0 to ∞ }. Looking at (14.3d) and looking at the symmetry of 
the problem relative to θ = π, we are led to try the following Smythian form (this form is symmetric under 
x axis reflection which takes θ → 2π-θ )  
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 g(r,θ|r0,π) =  ∫
0

 ∞ dβ  Kiβ(αr) [Fα(β, r0) ch(β|θ-π|) +  Gα(β, r0) sh(β|θ-π|)]     

 
where now Fα and Gα are the unknown coefficients. As in the previous case, we are just expanding on the 
appropriate Sturm-Liouville basis functions, which for the r coordinate are Kiβ(αr).  It is then possible to 
find these coefficients and express the answer to this problem as follows: 
 

 g(r,θ|r0,π) = (1/π2)  ∫
0

 ∞  dβ Kiβ(kr) Kiβ(kr0) sh(βπ) { th(βπ) ch(β(|θ-π|) - sh(β(|θ-π|) }  . (14.6) 

 
As must be the case for any Green's Function (as we are using them), g must be symmetric under the 
interchange r ↔r 0 and θ ↔ π. In this particular problem, g is symmetric under each of these swaps 
separately. Notice how all our previous g's have been symmetric as well.  
 An interesting exercise is to show that (14.5) and (14.6) are in fact the same. This can be done by 
rewriting (14.6) this way 
 

 g(r,θ|r0,π) =  - (i/2π)  ∫
-∞

 ∞ dβ I-iβ(kr<) K-iβ(kr>) { th(βπ) ch(β(|θ-π|) - sh(β(|θ-π|) }  . 

 
The contour can be closed up or down, and then as it is deformed, it picks up the pole residues of th(βπ) 
which are located where ch(βπ) = 0 = cos(iβπ), which are points on the imaginary β axis at iβ = ±n/2. This 
sum of residues becomes the sum shown in (14.5).  
 The point is that in polar coordinates,  where there is one separation constant b2= -β2,  it is possible to 
do the 1D Sturm-Liouville analysis in either of the separated functions. The transform associated with the 
complete set of functions just mentioned is known as the Kantorovich-Lebedev Transform. The functions 
Kiβ(αr) are the usual modified Bessel functions (McDonald functions) but of imaginary order, and are in 
fact real and oscillatory for real argument αr (see Appendix A).  
 We want to emphasize a key point. In our first solution of the "half plane problem", the spectrum of 
β2 was discrete, being iβn = bn = nπ/ψ  with ψ =2π. In our second solution, the spectrum of this very same 
separation constant β2 was continuous with β being the continuum of the positive real axis.  
 The reader interested in studying this problem should be advised there are 5 typos in this section of 
Stakgold (1968) Volume 2 which we can just nail down right here : 
 
 p 273 middle of page  should say "by Kiγ(kr) and " , not   "by r Kiγ(kr) and" 
   bottom equation should contain sinh, not sin 
 p 275 the A+B equation should contain sinh, not sin 
   same for the following equation 
   the equation following that is wrong and should read 
    ν~ = – { cosh[γ(φ-π)] / [γ sinh(2γπ)]}  Kiγ(kr0)  
 
Only the first of these five errors is corrected in the 2000 SIAM edition of the book.  
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The special case h1 = h2  
 
Step 0:   Let h12 = h22 ≡ R2 

 
Step (1)  
 
 (h2/h1) = f1(1)g1(2) R2  
 (h1/h2) = f2(2)g2(1) R2   
 
 1 = f1(1)g1(2) R2  
 1 = f2(2)g2(1) R2  
 
An obvious solution is  
 
 f1 = 1 g1= 1       R = 1 
 f2 = 1 g2= 1 
  
Step (2) Write down the two first-column cofactors from (5.8b) 
 
 M1 = g1 /f2  = 1 
 M2 = g2 /f1  = 1 
 
Step (3)  R = 1 => Q = 1 
 
Step (4)  Knowing Q, compute S from the Robertson condition 
 
 S(Φ)  =  (h1h2) / (f1f2)   "Robertson condition"     (5.7) 
 
 S(Φ)  = (h12) / (1*1) =  R2  
 
Step (5)  Find the rightmost column of the Stäckel matrix, 
 
 d(2) = g1 /f2 = 1  b(1) = - g2 /f1   = - 1 

 
so that 

 Φ    = ⎝
⎛

⎠
⎞a(1)  b(1)  

c(2)  d(2)     = ⎝
⎛

⎠
⎞a(1)   -1  

c(2)  1   

 
Step (6)   We have now to solve 
 
 S = a(1) M1 + c(2) M2 

or 
 R2 = a(1) + c(2) 
 
This will only be possible if our 2D system is such that 
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 R2 = R1

2(1) + R2
2(2) 

 
in which case we have our final Stäckel matrix 
 

  Φ    = ⎝
⎛

⎠
⎞a(1)  b(1)  

c(2)  d(2)     = ⎝⎜
⎛

⎠⎟
⎞R1

2   -1  
 R2

2   1   

 
Step (7)  The only equivalence rule that survives for N = 2 is to add a multiple of the second column to 
the first column.  
 
Separated equations:   
 
 LnXn = (1/fn)∂n[fn(∂nXn)] + [ κ12Φn1(n) + k22Φn2(n) ]Xn = 0    (4.8) 
 
 (1/f1)∂1[f1(∂1X1)] + [ κ12Φn1(n) + k22Φn2(n) ]X1 = 0 
 (1/f2)∂2[f2(∂2X2)] + [ κ12Φn1(n) + k22Φn2(n) ]X2 = 0 
 
 (1/1)∂1[1(∂1X1)] + [ κ12R1

2 -  k22]X1 = 0 
 (1/1)∂1[1(∂1X1)] + [ κ12R2

2 + k22 ]X2 = 0 
 
         (∂12X1) +  [ κ12R1

2 -  k22]X1 = 0 
              (∂22X2) +  [ κ12R2

2 + k22 ]X2 = 0 
 
Summary of 2D systems with h1 = h2  
 
Define R2 ≡ h12 = h22.  Separability is only possible if one can write R2(12) = R1

2(1) + R2
2(2). In this 

case, we get simple-separation for the Helmholtz equation with this data 
 
 f1 = 1 g1= 1       R = 1  M1 = 1  S  = R2 
 f2 = 1 g2= 1   Q = 1  M2 = 1     
 

 Φ   = ⎝⎜
⎛

⎠⎟
⎞R1

2   -1  
 R2

2   1   

 
 (∂12X1) +  [ κ12R1

2 -  k22]X1 = 0 
 (∂22X2) +  [ κ12R2

2 + k22 ]X2 = 0  
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Example :  elliptical coordinates 
 
In this system one has 
 
 h12 = h22 =R2 = a2(ch2ξ1 - cos2ξ2) 
so 
 R1

2(1) = a2ch2ξ1   
 R2

2(2) = -a2cos2ξ2   
 

 Φ   = ⎝
⎛

⎠
⎞a2ch2ξ1   -1  

 -a2cos2ξ2  1    ≈  ⎝
⎛

⎠
⎞a2sh2ξ1   -1  

 -a2sin2ξ2  1   

 
 (∂12X1) +  [   κ12 a2ch2ξ1  -  k22]X1 = 0 
 (∂22X2) +  [ - κ12a2cos2ξ2 + k22 ]X2 = 0  
 
We added a2 times the last column to the first to get an equivalent form of Φ. The first form agrees with 
Moon and Spencer p 20 ("For φ independent of z") with κ12 → κ2 and k22 → α2. The solutions to these 
equations are Mathieu functions.  
 Recall from Section 9 Example 1 the Stäckel matrix for elliptic cylinder coordinates 
 

 Φ   =  
⎝⎜
⎜⎛

⎠⎟
⎟⎞

  0   - 1   - a2ch2(ξ1)  
  0   1   a2cos2(ξ2)  
  1  0  1  

   ≈   
⎝⎜
⎜⎛

⎠⎟
⎟⎞

  0   a2ch2(ξ1)   -1  
  0   -a2cos2(ξ2)   1  
  1  -1  0  

  

 
where to get the second form we have swapped the last two columns and then negated the 2nd column. In 
this special form, it happens that the upper right 2x2 matrix of Φ3x3 is the same as our first Φ2x2 matrix, 
but it is pretty clear than one cannot just take any form of Φ3x3 and assume this will be the case!    
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Appendix A. Review of 1D Sturm-Liouville Theory;  the Kantorovich-Lebedev transform 
 
The requirements of a 1D Sturm-Liouville problem are these:   [ Stakgold vol 1 p 268 + p 295 ]  
 
(1) L is a self-adjoint differential operator of the form Lu = (pu')'+q.  
 
(2) L acts on L2-normalizable (possibly complex) functions on some interval (a,b). L2 is a Hilbert Space 

of such normalizable functions with scalar product (physics convention) <f,g> =  ∫
a

 b dx f*(x)g(x).  

 
(3) The eigenvalue problem is Lφλ = s(x)λφλ where s(x) is some weight function. The functions p,q,s are 
all real and "reasonable" (C1), and p and s must be non-negative on (a,b). At each end of the interval we 
have an unmixed boundary condition such as Aφλ(a) + Bφλ'(a) = 0, where A and B are real. If either of 
the endpoints is "singular", such as b=∞ or p(b) = 0, the boundary condition for that endpoint is replaced 
by a requirement that φλ be finite at that endpoint. This can happen in two ways called "limit circle" and 
"limit point" as discussed by Stakgold.   
 
The eigenfunctions of such a problem form a complete set:  the φλ span the infinite dimensional Hilbert 
Space of L2 of functions on (a,b) which meet the boundary conditions. The spectrum of eigenvalues of λ 
can in general be "mixed", consisting of a point spectrum and a continuous spectrum, both on the positive 
real axis in the λ plane, though in practice one usually has either discrete or continuous. We will assume 
the general mixed case, so we shall write the eigenvalue problem on two lines 
 
 Lφλ (x)   = λ  s(x) φλ (x)  // spectrum λn = continuous range of real values  (A.1) 
 Lφλi (x) = λi s(x) φλi(x)   // spectrum λni = discrete set of real values i = 1,2,3.... 
 
The statements of completeness and orthonormality of the eigenfunctions are these 
 

 Σi φλi*(x)φλi(ξ)  + ∫dλ φλ(x)* φλ(ξ)  = δ(x-ξ)/s(x)  // completeness   (A.2) 

 
 <φλi,sφλj> = δi,j    
 <φλ,sφλ'>  = δ(λ-λ')   
 <φλ,sφλn>  = 0      // orthogonality   (A.3) 
 
where one should take note of the weight function s(x) in all equations. 
 Such relations immediately imply the existence of a "transform" which we write as 
 

 Fλi  ≡   ∫
a

 b dx s(x) φλi*(x) f(x) 

 Fλ   ≡   ∫
a

 b dx s(x) φλ*(x)  f(x)    // projections   (A.4)  

 f(x) = Σi Fλi φλi(x)  + ∫dλ Fλ φλ(x)   // expansion   (A.5) 
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where we ignore issues of convergence of sums and integrals and assume f(x) is suitable such that its 
projections exist, and that the expansion converges. The above transform can easily be "verified" by 
inserting either line into the other and using the completeness and orthogonality given above.  
 The reader is reminded that every Sturm-Liouville problem is associated with its own private 
transform, though frequently occurring transforms have people's names attached to them such as Fourier 
Sine Series Transform, Fourier Integral Transform, Mellin Transform, Hankel Transform, and so on.  
 Having been explicit with the mixed spectrum, we now adopt a more compact notation where the 
reader understands that the spectrum can be discrete, continuous, or mixed:  
 

 Fλi   ≡   ∫
a

 b dx s(x) φλi*(x)  f(x)  // projection 

 f(x)     =     Σλi Fλi φλi(x)   // expansion  
 
Here the λi in the projection includes discrete and continuous, and the notation Σλi implies a sum on the 
discrete part plus an integral on the continuous part. If we knew there was only a continuous spectrum, we 
might write this as 
 

 F(λ)   ≡   ∫
a

 b dx s(x) φλ*(x) f(x)  // projection 

 f(x)      =   ∫dλ F(λ) φλ(x)   // expansion  

 
but we shall retain the Fλi notation. The Fλi are sometimes called "the coefficients", or "the transform".  
Basically the variable x of f(x) is traded out for the variable λi of Fλi, just as in a spatial Fourier 
transform the variable x is traded out for λ = k2. One must be a little careful with the distinction between 
λ and a convenient variable used to label λ, in this case k.  For example, dλ  = 2kdk.  
 In the same vein, we can compact down our completeness and orthogonality this way 
 
 Σλi φλi*(x)φλi(ξ) = δ(x-ξ)/s(x)   // completeness 

  ∫
a

 b dx s(x) φλi*(x) φλi'(x) = δλi,λi'  // orthogonality 

 
The notations Σλi and δλi,λi' are just shorthands for the fuller equations. We can gather up the above 
results and summarize the 1D Sturm Liouville situation as follows:   
 
 Lφλi (x) = λi s(x) φλi(x)    // eigenvalue problem (with BC's) on (a,b) 
 
 Σλi φλi*(x)φλi(ξ) = δ(x-ξ)/s(x)   // completeness 

  ∫
a

 b dx s(x) φλi*(x) φλi'(x) = δλi,λi'  // orthogonality 

 Fλi   ≡   ∫
a

 b dx s(x) φλi*(x)  f(x)   // transform projection 

 f(x)     =     Σλi Fλi φλi(x)    // transform expansion   (A.6) 
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We should mention that there is a standard technique used to find the eigenfunctions φλ.  One first solves 
this Green's Function problem, 
 
 [Lx - λs(x)] g(x|ξ; λ) = δ(x-ξ)        (A.7) 
 
using the usual method of finding a boundary-condition-matching homogeneous solution to the left and to 
the right of x = ξ, and then matching the jump condition in the first derivative at x = ξ.  
 
 g(x|ξ; λ)  = A(λ) uleft(x<) uright(x>)   Δg'|x=ξ  = -1/p  . 
 
Once this g(x|ξ; λ) is found, one can deduce the normalized eigenfunctions by matching the two sides of 
this equation, where C is a counterclockwise great circle contour in the λ plane,  
 

 - (1/2πi) ∫C dλ g(x|ξ;λ)  =  Σλn φλn*(x)φλn(ξ)  + ∫dλ φλ(x)* φλ(ξ) .   (A.8) 

 
If g(x|ξ;λ) has a branch cut along the real axis, the contour wraps this cut and one obtains a real integral of 
the discontinuity of g across the cut, and that becomes the second term on the RHS. Again, care is needed 
to distinguish the use of λ on the LHS as a complex contour integral variable, and on the RHS as the 
variable of a real axis integration. Poles in g(x|ξ;λ) give rise to the first term on the RHS. We would be 
remiss to omit the following standard expansion for g(x|ξ;λ), 
 

 g(x|ξ;λ) = Σi φλi (x)* φλi(ξ)/ (λi-λ)  +  ∫dλ' φλ(x)* φλ'(ξ)/(λ'-λ)]    (A.9) 

 
In the second term it is the "continuum of poles" that creates the branch cut whose discontinuity is then 
picked up as the second term in (A.8).  
  
As an example, here is the Sturm Liouville data for equation (14.2) on the interval (0,∞). This is the radial 
equation for separated polar coordinates. We used this data slightly in the discussion leading to (14.6) and 
it is the basis of the derivation of (14.6), which is somewhat involved.  The spectrum in this case is purely 
continuous and  eigenvalue λ= β2 spans the entire positive real axis of the λ plane.   
 
 -(xu')' + α2xu -β2x-1u = 0 or     Lu = β2x-1u      where L = -(xu')' + α2xu   
     or     Lλu =  0          where Lλ = L - β2x-1  λ = β2    s(x) = x-1 

 φβ(x) =  (1/π) sh(πβ)  Kiβ(αx)     // eigenfunctions 

 (2/π2) ∫
0

 ∞ dβ β sh(πβ) Kiβ(αx) Kiβ(αx')   = x δ(x-x')  // completeness 

  ∫
0

 ∞ dx x-1 Kiβ(αx) Kiβ'(αx) =  δ(β-β') π2/[2βsh(πβ)]  // orthogonality 

 Fα(β) ≡  ∫
0

 ∞ dx x-1 f(x) Kiβ(αx)     // projection (KL) 

 f(x) = (2/π2)  ∫
0

 ∞  dβ β sh(πβ) Kiβ(αx) Fα(β)    // expansion (KL) (A.10) 
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As noted earlier, for this particular operator L, the transform is called the Kantorovich-Lebedev transform 
(see e.g. Stakgold vol 1 p 317 4.30). It is always possible to write the halves of a transform some other 
way by replacing f(x) = jobob(x) F(x).  
 The entire discussion of this Appendix can be generalized such that the transform projections are onto 
eigenfunctions of multiple operators, which functions are the unitary irreducible representation functions 
of a continuous group. The spherical harmonics are a well known example associated with the rotation 
group SO(3).  
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