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Overview 
 
This paper gives an elementary presentation of the kinematics of the earth-sun system with a few basic 
applications. An interested reader would do well to read the Summary first, to acquire a familiarity with 
the general thread of the paper and with the symbols used for the variables involved.  
 The term kinematics refers to the set of variables used to describe the mechanics of the sun-earth 
system. Much of this paper is concerned with finding expressions for and relations among these variables. 
One might refer to the way the variables vary in time ("motion") as the dynamics of the earth-sun system 
characterized by the kinematics.  
 The paper is almost completely self-contained and derives from scratch precise mathematical 
expressions for all quantities of interest. The only math required is trigonometry, some geometry, the use 
of 3x3 matrices, and a basic knowledge of spherical coordinates. A small handful of derivatives and 
simple one-dimensional integrals are encountered along the way. One first-order differential equation 
appears in Section 4.  
 Due to the high historical cost of creating and printing graphics, authors of technical books often 
short-changed their readers with regard to "figures", having to replace proper detailed drawings with 
complicated text descriptions of what those drawings would look like. The author of this paper, though 
hardly an artist, benefits greatly from reasonably precise and well-labeled drawings, and for that reason 
has produced many of them for this document, even though that increased the file size to several 
megabytes. Most were quickly created in Visio, though some were cribbed from the web (with reference 
always given). Our drawings are "line drawings", rather than elaborate renderings of intersecting curved 
surfaces. A particular graphic trick used several times is the superposition of two screen-clip images in 
Visio where the front one is made partially transparent, allowing us to compare one of our graphs with 
another graph found elsewhere.  
 Finally we come to Maple. The author uses a 1995 version of the Maple computer algebra system that 
works beautifully and is unencumbered with GUI enhancements. The internal Maple system is deep and 
powerful and one gets a lot done with a few lines of code (see author's Maple User's Guide). Maple code 
is readable by a person familiar with any programming language. The main use of Maple in this paper is 
to graphically display how interesting quantities vary with respect to one or maybe two parameters. The 
analemmas in the last section were created by generating time-strobed data arrays for analemma 
coordinates and having Maple plot the data with its pointplot routine. Our Maple code is freely available 
by email to any interested party (it is presented only in screen-clip form in this document). It will run in 
the worksheet of the current Maple release, or can be translated into Mathematica, MATLAB, Octave 
(freeware), etc. It is hard to imagine how "those who went before" investigated things with only hand 
calculations. It does generate a sense of respect. 
  
• Equation numbers for equations which are repeats of the original equation are italicized.  
 
• Unit vectors are usually marked with a "hat", as in x̂ . Exceptions are the en and e'n unit vectors.  
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Summary 
 
This is an abnormally detailed summary which the author feels is useful to introduce the names of the 
many kinematic variables, and to make visible the meandering thread of the paper.  
 
Section 1 presents the basic facts of the earth's orbit around the sun, then shows how this picture is 
transformed into one in which the sun apparently orbits the earth. These are the heliocentric and 
geocentric views of the earth-sun relationship. Three different angular velocities are involved, called Ω0, 
ω and ωs. The earth's rotation axis is tilted by θtmax ≈ 23o relative to the plane of its slightly elliptical 
orbit which has eccentricity e ≈ .017 and whose major and minor axes are rotated by an angle φper ≈ 13o 
relative to another pair of axes associated with seasonal moments of the year known as solstices and 
equinoxes. The equation of the ellipse is stated and Kepler's "anomalies" are described.  
 The basic heliocentric picture is this (Fig 1.3),  
 

     
 
which shows two azimuthal angles φ' and ψ for the earth's position, and another angle α. Angle φ' is 
measured from March equinox, where time τ = 0, while ψ is measured from the point of closest approach 
(perihelion) where a different time t = 0. The figure shows that 
 
 α  = π/2 - φper          (1.9) 
 φ' = ψ - α  .           (1.10) 
 t = τ + tMe           (7.2) 
 
where tMe is the time it takes for the earth to move from perihelion to March equinox.  
 
Section 2 describes the sun's apparent daily path in the sky at the two solstice and two equinox days of 
the year, as viewed by an observer at the North Pole. The two equinox paths are the same, so these paths 
form three circles in the sky which are parallel to the earth's equatorial plane. On any day of the year, 
there is one circle on which the sun rides, and it lies somewhere between the extremal solstice circles.  
 
Section 3 introduces the celestial sphere as a visualization tool for describing the angular location 
(declination = latitude, right ascension = longitude) of distant astronomical objects as well as local objects 
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like the sun and planets whose projections move on this sphere. The three special circular daily paths of 
the sun (solstices and equinox) are projected onto this celestial sphere and also onto the earth, where they 
become the Tropics of Cancer and Capricorn and the Equator. These three projected celestial sphere paths 
of the sun are later plotted from the point of view of inhabitants of the earth at different latitudes, using a 
few lines of Maple code. These abstract circles, when clipped to the local tangent plane of the earth, 
become the familiar sun paths of everyday life. After a brief discussion of the radius of the celestial 
sphere, the annual path of the sun on the celestial sphere is described, a path known as the ecliptic. The 
earth's rotation axis precesses slowly and this has implications which are duly noted. Finally, the 
significance of the Arctic and Antarctic Circles is explained.  
 
Section 4 shows how the angular velocity Ω = ψ•  of the sun along its elliptical path (and along its circular 
projected ecliptic path on the celestial sphere) varies slightly with sun position due to orbital eccentricity 
(Kepler's second law). This causes the angular position ψ of the sun to differ slightly from the position of 
a circular-orbit sun. The azimuthal position ψ(t) is given approximately by (t=0 is perihelion Jan 3),  
 
 ψ(t)  =  Ω0t + 2e sin(Ω0t) + (5/4)e2 sin(2Ω0t)      (4.31) 
 
which is one of two principle ingredients in the so-called "equation of time".  
 
Section 5 discusses the way the earth's tilt angle toward the sun, called θt, varies during the year between 
θtmax = 23o at June solstice and -23o at December solstice. At either equinox, θt = 0. A physical 
interpretation of θt is developed in which θt really is the angle of "earth's tilt toward the sun". This same 
angle θt is in fact the declination of the sun on the celestial sphere ecliptic and is shown to be 
 
 θt(t) = sin-1 { sinθtmax sin(φ')}   =  sin-1 { sinθtmax sin(ψ-α) } .    (5.5) 
 
Section 6 obtains expressions for the sun's position on the ecliptic first in Cartesian coordinates r = x,y,z 
and then in spherical coordinates R,θ,φ where R is the radius of the celestial sphere and θ,φ are the sun's 
polar and azimuthal angles on the celestial sphere. Since θt is the sun's declination (latitude), θ = π/2 - θt. 
This angle φ (the sun's right ascension) is measured from a certain point on the celestial sphere (March 
equinox) where τ = 0. Since the ecliptic is tilted on the celestial sphere, angle φ and the angle φ' of 
Section 1 are not the same and we find that,  
 
 φ(t)  = tan-1[cosθtmax tanφ'(t)]  =   tan-1[cosθtmaxtan(ψ-α)]   .    (6.13) 
 
A "mean fictitious sun" is imagined to exist in the sky which operates with θt = 0 (no tilt) and e = 0 
(circular orbit). The azimuth of this fictitious sun is shown to be 
 
 φf(t)  =  Ω0t - α  .          (6.14) 
 
The difference  
 
 Δφ = φ(t) - φf(t)          (6.15) 
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is called "the equation of time", which then includes the azimuthal variation effects of both the tilt θtmax 
and the eccentricity e. Since φf(t) is a simple linear function of time t, it can be regarded as time on a 
clock, and then Δφ describes the variation of "sun time" from "clock time", which is the real meaning of 
the phrase "the equation of time" -- it is a temporal correction. Sundials follow φ(t), whereas mechanical 
or electronic clocks follow φf(t).  
 
Section 7 considers an observer's reference Frame S' which is located on the surface of the earth at 
colatitude (polar angle) θ1 and longitude φ1 east of Greenwich. In the celestial sphere frame of reference, 
the location of the earth's Frame S' origin is described by a vector b(t) which moves (on a cone) because 
the earth rotates. The polar angle of b is θ1 and its azimuth is φb(t). This azimuth φb(t) can be projected 
out onto the celestial sphere where it becomes in effect the right ascension of the observer site. Since the 
earth rotates at sidereal rate ωs, one has 
 
  φb(τ) = ωsτ + φb0          (7.3) 
 

where then φb0 is the right ascension the observer site had at the last March equinox τ = 0. The value of 
φb0 is given by φb0 = φ1 + φG0 where φG0 is the right ascension that Greenwich had at τ = 0, and this in 
turn can be obtained from the published GMT time of March equinox. We mention all this detail just to 
get all the symbols laid out on the table. The sun's position in Frame S' is computed first in Cartesian 
coordinates r' = x',y',z' and then in spherical coordinates R,θ',φ'  :   
 
 x' =  R cosθt sin(φ –φb)  
 y' =  R [sinθt sinθ1 – cosθt cosθ1 cos(φ–φb) ] 
 z' =  R [sinθt cosθ1 + cosθt sinθ1 cos(φ-φb)]      (7.14) 
 
and 
 
 θ' = cos-1[sinθt cosθ1  + cosθt sinθ1 cos(φ-φb)] 
 φ' = tan-1 ( [sinθt sinθ1  – cosθt cosθ1 cos(φ –φb) ] / [cosθt sin(φ –φb)] ) .   (7.29) 
 
In these equations, θt and φ are given by (5.5) and (6.13) quoted above.  
 
Section 8 replaces the azimuth φ' in (7.29) with Φ' = π/2 - φ' so the second of equations (7.29) describing 
the sun's azimuthal position in Frame S' becomes 
 
 Φ'  = π + tan-1 ([cosθt sin(φb-φ)] / [– sinθt sinθ1  + cosθt cosθ1 cos(φb-φ) ] )  
 Φ'f = π + tan-1 ( [sin(φb-φf)] / [cosθ1 cos(φb-φf) ] )   .     (8.3) 
 
where the second line is for the fictitious sun. For northern hemisphere observers at latitude above 23o, Φ' 
is an azimuth that "runs with the sun" at all times of the year, and solar noon always occurs at Φ'  = π 
which is "due south" in Frame S'. At the North Pole (θ1= 0), we find  
 
 ΔΦ'NP ≡   Φ'NP – Φf'NP   = – (φ – φf)   = - Δφ   .      (8.6) 
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At the north pole, Φ' "runs with the sun" while Φf "runs with the clock" and their difference is again the 
equation of time, albeit negated. The notions of Local Mean Time (LMT) and Local Sundial Time (LST) 
are defined, and we arrive then at our version of the "official" equation of time,  
 
 EOT(t) ≡  [LST – LMT]minutes  =   – (720/π) { tan-1[cosθtmax tan(ψ-α)]  –  (Ω0t-α) }. (8.16) 
 
LST varies from LMT by a maximum of about 15 minutes during the year.  
 
Section 9 uses the equations developed above to compute the Local Mean Time (LMT) of (actual sun) 
noon and midnight in Frame S' on any day of the year. Similarly, the times of sunrise (t'sr) and sunset 
(t'ss) are obtained relative to noon, so the nominal length of day equals t'ss – t'sr, with time of daylight 
being up to 8 minutes longer (ball park). The Frame S' azimuth for sunrise (φ'sr) is computed and plotted 
for different latitudes and days of the year. Finally, an expression is found for the noontime elevation of 
the sun. These results are:  
 
 LMT(noon)      = [12:00 + (720/π)Δφ] mod 24       (9.5) 
 LMT(midnight) = [00:00+ (720/π)Δφ)] mod 24  .       (9.6) 
 
 t'sr = – (1/ω) cos-1[– tanθt cotθ1]   < 0  // sunrise 
 t'ss = + (1/ω) cos-1[– tanθt cotθ1]   > 0  // sunset    (9.15)  
 tday = 2 t'ss  = (24/π) cos-1[- tanθt cotθ1]  hours      (9.16) 
 
 tanφ'sr  =   (tanθt/sinθ1) / 1 - tan2θt cot2θ1        (9.17) 
 
 θ1+θt range:                    0                      π/2                             π 
 θelnoon = :      no noon            θ1+θt                 π - (θ1+θt)                  no noon   (9.20)  
 
These expressions are approximations which assume (correctly) that θt(t) and Δφ(t) vary slowly during a 
day so one can approximate these functions at precision time t by their computed values at the start of a 
day of interest.  
 
Section 10 is concerned with the amount of solar energy per second loaded into a square meter of black 
ground on the earth (insolation) as a function of latitude and time. If the solar power flux is S watts/m2, 
then the amount captured by that black square meter of ground is Scosθ', a fairly trivial fact known as 
Lambert's Law (θ' is the polar angle of the sun given by the first of equations (7.29) above). Daily 
insolation is Scosθ' averaged over a day, while annual insolation is this same quantity averaged over a 
year. Various plots are generated by Maple code and are then compared with other references. The same 
approximation mentioned in the previous paragraph is used in this insolation work.  
 
Section 11 introduces an imaginary sphere called the sun sphere which is a version of the celestial sphere 
which rotates once a year such that the mean fictitious sun remains at a fixed point on the sun sphere all 
year long. The actual sun then moves in a pattern in the neighborhood of this fixed point on a path that is 
called the solar analemma. A qualitative description of the analemma viewed from various locations is 
presented. The analemma path can be exposed by the use of stroboscopic photography of the real sun 
wherein a multiple exposure image is accumulated over the period of a year by taking a heavily filtered 
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exposure at the same time each day (or every nthday) in the general direction of the fictitious sun's fixed 
point. The path that is the analemma is computed in a few dozen lines of Maple code in both angle-space 
(θ',Φ') and in the screen-space (xs,ys) of the film in the camera. An analemma "gallery" then presents 
Maple-computed images of the analemma as it would appear shot from various positions in the northern 
hemisphere. The final section treats a certain Crimean-shot analemma as a case study, and the computed 
analemma is compared with the one captured on film.  
 
Appendix A describes a special arctangent function implementation which returns a well-defined result 
in the range 0 to 2π and introduces the special notation tan-1( [y] / [x] ). This notation is used in the 
second line of (7.29) above and the corresponding function is implemented in Maple for evaluation of φ'.  
Several other arctangent functions are also considered and are then compared on a branch diagram.  
 
Appendix B discusses the active and passive views of the rotation of a vector.  
 
Appendix C studies the shape of the analemma for a circular-orbit earth. It is shown to be symmetric in 
both directions, and in the limit of small θtmax it becomes a curve known as the lemniscate of Gerono.  
 
Appendix D develops a chart to show how much a photographed analemma will be tipped left or right on 
the film, assuming a camera platform whose pointing direction is set by certain tilt and pan angles.  
 
The final section contains a few References.  
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1. Geometry of the Earth's Orbit 
 
(a) The Heliocentric Picture 
 
The following "heliocentric" (sun-centered) camera view of the earth's orbit is taken from above the 
earth's orbital plane, in the sense that the earth's north pole is up, and the camera is elevated perhaps 30 
degrees above that plane. Note the basic fact that the earth rotates about its axis in the same sense that the 
earth rotates around the sun: both rotations are counterclockwise viewed from above. This is why the 
noon-to-noon day is a little longer than the sidereal (relative to stars) day. Starting at noon, after rotating 
one sidereal day the earth has to rotate an extra 4 minutes to reach noon again because the earth has 
moved ahead a bit in its orbit. The average noon-to-noon day (mean solar day) is exactly 24 hours (by 
definition), whereas the sidereal day is about 23 hours and 56 minutes (≈ 23.93447). A sidereal year is 
365.25 mean solar days long (365.256363004 in 2000), and is the time for the earth to completely traverse 
its orbit, returning to its starting point relative to the distant stars. Since time is now based on an atomic 
standard, and since the earth has tiny variations in its rotational speed, the mean solar day might vary 
from 24 hours by 1 second per year (called a leap second), but we ignore this 10-8 fine detail.  
 The sun is located at one of the two focal points of the earth's elliptical orbit. The distances for closest 
approach (perihelion) and farthest (aphelion) are stated in millions of km.  
 

 
 
             Fig 1.1 
 
The slanted arrows indicate the angular momentum vector of the rotating earth. The times of the year 
when this tilt arrow points toward or away from the sun are called solstices, and the times at which the 
arrow points neither toward nor away from the sun are called equinoxes. When the arrow tilts toward the 
sun, earth inhabitants in the northern hemisphere experience "summer". At the summer solstice, the mean 
daily insolation reaches a maximum (but not close to the equator), as we show in some detail in Section 
10. This is basically due to the fact that the sun is close to overhead much of the time during the day. At 
the same time, the insolation reaches a minimum in the southern hemisphere, so Argentineans experience 
winter. 
  In hemisphere-neutral language, it is best to refer to "December solstice" and "June solstice", and as 
well "March equinox" and "September equinox". The term "vernal equinox" is heavily embedded into 
astronomy literature meaning the March equinox, though it is not verdant spring in Argentina at that time.  
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 The plane of the earth's orbit around the sun is called "the ecliptic plane", but one more normally uses 
this term when thinking of the plane of the sun's apparent orbit around the earth. It is the same plane 
relative to the stars in either case, just viewed by different observers.  
 The plane of the earth's equator is tilted by an angle of about 23o relative to the ecliptic plane of the 
earth's orbit. For reasons seen later, we refer to this angle as θtmax, and its official name is "the obliquity 
of the ecliptic".  Here both planes are seen edge-on,  
 

       Fig 1.2 
 
 Viewed from directly above, the elliptical orbit would appear very close to circular, having 
eccentricity e = c/a = .0167. The ratio of the extremal earth-sun distances is about 152/147 ≈ 1.034, 
resulting in a solar energy flux ratio of (1.034)2 = 1.069 between the two solstices (ignoring the 13o in Fig 
1.1). Solar flux is therefore 6.9% greater at summer solstice in the southern hemisphere (Dec) than it is in 
the northern hemisphere (June).  
 To see more clearly the position of the earth at the equinoxes, we now swing the camera up and view 
the ecliptic plane from directly above (ellipse eccentricity exaggerated). The earth's angular position can 
be measured by angle φ' from March equinox (τ=0), or by angle ψ from perihelion (t=0) where τ and t are 
two different time variables with different zero points:  
 

        Fig 1.3 
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The official way of measuring the 13o angle is shown below as the "longitude of perihelion" ≈ 283o. Here 
is some data from http://aom.giss.nasa.gov/srorbpar.html showing how this angle, the tilt angle and even 
eccentricity change over a small number of years:   [ 283o = 270o + 13o ]    

      Table 1.1 
For 2012 the angle is therefore 13.101o. Here is data at two larger time scales,  

      Table 1.2 

      Table 1.3 
 
 The 13o angle indicates a relationship between the earth's elliptical orbit and the direction of its tilt 
vector. This angle φper ≈ 13o along with the tilt angle θtmax  ≈ 23o and the eccentricity e ≈ .017 all vary 
in time as part of the complicated solution of a gravitational N-body problem involving the earth, sun, 
moons, planets, and asteroids. In this solution, the total change in a parameter like φper can be 

http://aom.giss.nasa.gov/srorbpar.html�
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approximately viewed as being a sum of changes each associated with a certain physics "mechanism", 
some of which are long term and some short term relative to human time scales.  
 One such mechanism causing a change in φper (called astronomical precession, see Section 3 (d)) is 
that the earth's rotation axis precesses in a complete conical circle every 26,000 years. Although this 
precession does not affect θtmax, other mechanisms do, and θtmax cycles between 22.0o and 24.5o with a 
period of 41,000 years. Another mechanism is that the ellipse of the earth's orbit is itself rotating in its 
plane relative to the stars, completing a rotation every 112,000 years. Each of the two extremal points of 
an ellipse is called an apsis (perihelion = periapsis, aphelion = apapsis, plural apsides), and the line 
connecting these points is the line of apsides, so it is this line that rotates relative to the stars (called 
apsidal or perihelion precession). Yet another mechanism is that the ecliptic plane of the earth's orbit 
wobbles back and forth with a similarly long period. Furthermore, the eccentricity of the orbit varies as 
well (range .005 to .058) with cycles of 413,000 years and 100,000 years. These "mechanisms" are all due 
to forces of the moon and other objects acting on the earth. They were studied by the Serbian 
geologist/climatologist Milutin Milankovic (1879-1958) who was interested in the effect of these 
changing orbital parameters on climate. His theory called orbital forcing shows how changing orbital 
parameters could cause ice ages on the earth.  
 Short term mechanisms also affect the parameters. As the earth's rotation axis precesses, it also 
nutates ±20 arc seconds with a 19 year cycle due the perihelion precession of the moon's elliptical orbit 
around the earth. Another form of nutation is associated with the "wander" of the earth's poles,  such as 
the 433 day Chandler wobble which moves the poles ±15 feet. These effects are caused by the non-
rigidity and non-roundness of the earth. 
 Ignoring all these effects due either to their long time scale or their small size, we may regard the 
earth's rotation axis as pointing in a direction which is fixed relative to the stars.  
 
(b) Development of the Geocentric Picture  
 
First, consider a scenario in which some object A moves counterclockwise in a closed path about object B 
which is at rest. Neither object is rotating about its own axis. Each object has a glued-on set of axes. This 
scenario appears on the left below (black) which is the view taken by an observer on object B in Frame S:  
 

      Fig 1.4 
 
If we call the path p(t), t being time, then on the left we have in Frame S,  
 
 rB(t) = 0  // B is at rest 
 rA(t) = p(t) .  // A moves around the path p(t)  
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Now we go to a new frame of reference S' defined by a time-dependent translation by - p(t) relative to 
Frame S,  
 
 r'(t) = r(t)  – p(t) .  
 
In this new frame of reference we find that the positions of A and B are given by, 
 
 rA'(t) = rA(t)  – p(t) = p(t) – p(t)    = 0  // A is at rest at the origin of Frame S' 
 rB'(t) = rB(t)  – p(t) = 0     – p(t)    = – p(t) .   // B moves around the path -p(t) 
 
In Frame S' the object A is now at rest, and object B is traversing a negated path – p(t) which is an 
inversion of the original path through the Frame S origin (blue dotted path). This situation is shown on the 
right above. 
 If we now assume that p(t) is a planar path, as suggested by the drawing, then inverting the original 
path is the same as rotating it 180 degrees about the Frame S origin in the plane of paper. This is so 
because then Rz(π) p(t) = -p(t) since pz(t) = 0.  
 The two points of this exercise are the following:  
 
(1) To obtain the picture on the right, rotate the path p(t) 180 degrees about the Frame S origin on the left 
(to get the dotted blue path), then translate points A and B together by -p(t) which causes B to lie on the 
inverted path.  
 
 (2) If A is going counterclockwise around B on the left, then B is going counterclockwise around A on 
the right. The sense of the path motion is not reversed. The new path is -p(t), not p(-t).  
 
Example. Suppose path p(t) is a tilted ellipse and suppose A lies at a focal point. Application of the above 
procedure takes the left picture below (A is at rest) into the right picture (B is at rest) : 
 

 
                    Fig 1.5 
 
If A is the non-rotating sun and B is the non-rotating earth, then the left side picture is the heliocentric one 
and the right is the geocentric one. Of course for the earth-sun application the eccentricity is much less 
than shown here. Since the sun is so massive, it can be regarded as a fixed point A in the left picture. The 
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conclusions are that in the geocentric picture on the right, the earth lies at a focus of the elliptical sun 
orbit, and the sun moves counterclockwise around the earth. Notice where C and D end up on the right.  
 Without further ado, we now transform Fig 1.3 to the geocentric view :  
 

 
   Heliocentric Picture          Geocentric Picture 
             Fig 1.6 
(c) Relation between the three angular velocities 
 
Let diy = 365.256363004 be the number of days in a year. In one (sidereal) year's time, the earth 
experiences diy number of 24 hour periods, normally referred to as "mean solar days". But during this 
same time, the earth has in fact rotated diy+1 times relative to the stars. If a person faces the noon sun 
each day and is the subject of a stroboscope movie filmed from above the ecliptic, with a frame shot each 
day at that person's noon (shots are 24 hours apart), that movie will show that person making one 
complete revolution during the year. Had that movie shown a static person, one would say that the earth 
rotated exactly diy times during the year. But in fact the earth rotates a little more than 360o each 24-hour 
day to keep that person facing the sun and then the total rotations is diy + 1. So we have 
 
 Tyear = diy*T  T ≡ 24 hours, length of solar day 
 Tyear = (diy+1)*Ts  Ts ≡ length of sidereal day     (1.1) 
 
Therefore,  
 
 Ts = [diy/(diy+1)] T          (1.2) 
 
      = [365.256363004/366.256363004]*24 = 23.93447 hours      
 
which agrees with the number quoted above. The (mean) rotation rate of the earth around the sun is 
 
 Ω0 ≡  2π/Tyear          (1.3) 
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The solar-day angular frequency ω is, using (1.3) then (1.1),  
 
 ω  ≡  2π /T  =  Ω0 (Tyear/T)  = Ω0 * diy 
 
 => Ω0 = ω/diy .          (1.4) 
 
Inverting equation (1.2) then multiplying by 2π gives 
 
 2π/Ts  = [1 + 1/diy] 2π/T           
or 
 ωs = [1 + 1/diy] ω .         (1.5) 
 
Then using (1.4),   
 
 ωs = ω + Ω0          (1.6) 
 
which is the main result of this little section (ωs is a little larger than ω). As for units, most often we shall 
use ω = π/12 radians/hr and Ω0 = 2π radians/year.  
 
(d) Equation of the ellipse 
 
We refer to the 13o angle in Fig 1.3 as φper (perihelion). Notice in this same figure another angle ψ which 
is the usual angle one uses when describing an ellipse in polar coordinates (a = semimajor axis, e = 
eccentricity)  
 
 r = a(1-e2) / (1 + e cosψ )          (1.7) 
 
so that ψ = 0 gives the shortest (perihelion) value of r.  The figure shows that  
 
 ψ - φ'  = π/2 - φper  =>  φ' = ψ + φper - π/2      (1.8) 
 
To reduce symbol count later on, we define 
 
 α ≡ π/2 - φper  // α ≈ 77o (2012)      (1.9) 
 
and then  
 
 φ' = ψ - α  .           (1.10) 
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(e) The Anomalies 
  
When Kepler wrote up his laws in 1609 and 1619, he used the term "anomaly" for an angle that exhibited 
some unusual behavior. As we shall find in Section 4, the angle ψ (and therefore φ') varies with time in a 
non-linear fashion; it is linear only when the elliptical orbit is circular. The angle ψ (Fig 1.3 or Fig 1.6) 
measured from perihelion is called "the true anomaly". Kepler's third law says that the period of an 
elliptical orbit (for two given objects) is a function only of the semimajor axis a  (T2 ~ a3). One can 
circumscribe a circle of radius a around an ellipse and if the orbiting object had that circular orbit, the 
orbital period would be the same as that of the inscribed elliptical orbit. The angular position along this 
alternate circular orbit is linear in time and is sometimes called M(t), the "mean anomaly", so one has then 
M(t) = 2π(t/T) where T is the orbital period. If the elliptically orbiting object's position is projected 
"vertically" to that circumscribed circle, a third angle appears, E(t), called "the eccentric anomaly". After 
time t elapses from perihelion, the three anomalies ψ, M and E all have different values.  
 

   Fig 1.7   
 
Kepler showed that M = E - e sin(E) and tan(ψ/2) = ( 1+e / 1-e ) tan(E/2), so this provided a numerical 
method of finding ψ(t) by first solving the transcendental equation for E. In Section 4 we shall calculate 
ψ(t) using an approximation method good for small e, and we shall make use only of this true anomaly ψ. 
Ref [1] Chap 3 (3-18) and (3-20) provides a general formal solution to the Kepler problem. 
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2. The Sun's Apparent Path in the Sky 
 
As noted above, the earth tips toward the sun at June solstice, and away at December solstice. This figure 
shows a composite of three different earth positions relative to the sun,  
 

 
                 Fig 2.1 
 
For the moment, let's call the maximum earth tilt 23o (Table 1.1 shows 23.4382 for 2012). By the term 
"tilt" we mean "amount of tilt toward the sun" which is 0 in the middle image above. This tilt will later 
get the name θt, and the maximum value for θt is 23o  ≡ θtmax.  
 When the earth is in the orientation shown at the left, a June solstice observer on the north pole sees 
the sun elevated 23o above the horizon. As the earth turns, that sun appears to sweep around in a circle, 
holding its 23o elevation angle above the horizon. An equinox north pole observer instead sees the sun 
sweep right around at the horizon, with half the sun above the horizon and half below (the sun is very far 
away). A December solstice north pole observer never sees the sun, but if this observer had X-ray vision 
the sun would appear to be going in a circular path 23o below the horizon.   
 In Fig 2.1 Frame S is a coordinate system:  (1) whose origin is at the center of the earth; (2) whose 
axes are aligned with the earth but don't rotate with the earth; (3) whose axis directions are fixed relative 
to the stars; (4) whose z axis is along the red line and whose x and y axes lie in the blue equatorial plane. 
Since the earth moves slowly around the sun, it has some small acceleration relative to the stars, so Frame 
S is not quite an inertial frame. [The red lines in Fig 2.1 point in different directions only because the 
"camera" is attached to the earth-sun line and is at different orientations for the three earth images. See 
Fig 5.1 and discussion there. ]  
 We now construct a rotating Frame S' glued to the north pole that rotates with the earth. Later we 
shall move Frame S' to other locations on the earth. If one hops aboard Frame S' which is rotating at rate 
ω relative to Frame S, then objects which were at rest in Frame S appear to be rotating at rate -ω relative 
to Frame S'. In each of the three different situations shown above, the ω vector lies along the red line. 
What one sees from Frame S' in these three situations is shown below, where the earth's size is highly 
exaggerated relative to its distance from the sun (earth should really be a dot),  
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             Fig 2.2 
 
During the cycle of the year, the green daily circular sun path moves. If we start at a June solstice, it is the 
upper green circle (but the circle is viewed edge-on so appears as a green line segment). Moving toward 
September, that circle drops down and at September equinox becomes the middle green circle above. 
Moving toward December, the sun continues to move down until the December solstice when it follows 
the lower green circle. During the next 6 months the path of the sun reverses and next June it is at the top 
again. So all possible sun paths are bounded by the upper and lower green circles. The daily sun rotates 
clockwise as viewed from above the north pole (sun rises in the east). For the positions of the sun marked 
on the right, the sun is moving toward the observer. In reality, the green circular daily sun paths shown 
above are turns of a dense continuous green slinky spiral having 365.25 nearly-horizontal turns (half of 
the turns spiraling down, the other half spiraling back up), and we have drawn three of the spiral turns.  
 In the next Sections, we shall refine this brief qualitative description of the sun's apparent motion in 
the sky and shall provide appropriate equations describing this motion.  
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3. The Celestial Sphere and the Sun's Daily and Annual Paths Thereon 
 
(a) The Celestial Sphere and the Tropics of Cancer and Capricorn 
 
The celestial sphere is an imaginary spherical surface surrounding the earth at some unspecified radius R 
upon which one imagines that the sun and other astronomical objects are replaced by their projections 
onto this sphere. An infinite ray is drawn from the center of the earth through an astronomical object, and 
the projection point is the intersection of this ray with the celestial sphere. Astronomical objects could be 
inside or outside the celestial sphere. The "marked up" (with star projections) celestial sphere is at rest 
with respect to the distant stars (Frame S), and the earth rotates within it. Of course in our Frame S' glued 
to the north pole of the earth, the earth is at rest and the celestial sphere rotates clockwise around the earth 
causing stars to "rise in the east" and "set in the west".  
 We shall now draw the projections of the three green circular sun paths of Fig 2.2 onto both the earth 
and onto a celestial sphere. The projections of sun paths onto the earth are shown here in blue, while 
projections onto the celestial sphere are shown in red, and we slightly displace the equatorial projections 
just so they are visible :  
 

 
             Fig 3.1 
 
The two extremal blue circles on the earth are at latitude ± 23o. These latitude circles have the special 
historical names Tropic of Cancer in the north, and Tropic of Capricorn in the south. The history of these 
names is obscure, but the word "tropic" indicates a "turning point", and indeed these extremal circles 
mark the turning points of the sun path (projected onto the earth) as the yearly cycle progresses, as 
described in the previous Section. The "tropics" lie between these bounding latitudes.  
 

.   // OED2 
 

The two extremal red circles on the celestial sphere are of course also at latitude ± 23o on the celestial 
sphere. The radius of the celestial sphere (discussed below) is supposed to be much larger than the radius 
of the earth, so to make the above picture more accurate, we redraw it with the earth shrunk to a small dot.  
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             Fig 3.2 
 
A very convenient model for thinking about the sun paths is to think of them as being those red circles on 
a celestial sphere (usually called the celestial sphere). In the above drawing, the radius R of the celestial 
sphere is perhaps 25 million miles, since the sun is 93 million miles away.  
 Below we are going to ask the question: What do the three red circles look like from various 
observation points on the earth?  We want an exact answer to this question. For an observer on the north 
pole, the answer is clear and is represented by the left picture below (the winter circle is not visible to this 
observer), while for an observer on the equator the answer is also clear and is represented by the right 
picture below. In these two pictures, the vertical direction represents "up" for the observer, south is to the 
left and east is toward the viewer. 
    

  
 Observer at North Pole      Observer at the equator               Fig 3.3 
 
In these drawings the celestial sphere is suggested by the dim gray circles. These gray circles form a half 
sphere, and the flat bottom of the half sphere coincides with a plane tangent to the earth at the observer's 
location. This plane contains the observer's horizon, so portions of the red circles below this plane are not 
visible to the observer. The ending points of partial red circles (as on the right) are identified therefore 
with sunrises and sunsets (the near ones are sunrises since east is toward the viewer). 
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(b) Why is R >> REarth for the celestial sphere?   
 
The celestial sphere construct simply does not "work" if it is very close to the earth. For example, suppose 
the celestial sphere were 500 feet above the surface of the earth. One could imagine for some observer the 
stars projected onto this sphere and their positions marked with paint dots on the otherwise transparent 
sphere. As the observer moves to a different location, those paint dots no longer align with the stars they 
represent. The projections of the stars for this celestial sphere are dependent on the location of the 
observer on the earth. On the other hand, if the mathematical celestial sphere is placed 100 earth radii out 
into space, then as the observer wanders from A to B, the paint dots made at A will be pretty close to the 
stars seen from location B. Maybe the maximum angular error will be 1/100th of a radian or about 1/2 
degree (parallax error). As the celestial sphere is mentally moved further away, this error becomes 
smaller, and in the limit R→∞ the paint dots are in the same place for all observers on the earth (the stars 
are imagined to be infinitely far away). So we want R large to prevent parallax error for viewers on the 
earth, then a single celestial sphere map of the stars can be used by everyone.  
 A separate but related issue concerns the distance of observed objects from the earth. A balloon at 
500 feet could be projected onto the celestial sphere, but its projection must be different for different 
observers, and the celestial sphere is pretty useless in this case. The moon is about 61 earth radii away, so 
if it were projected onto the celestial sphere, its position would be the same value for all earth observers 
with perhaps 1 degree of error or less. The sun is 24,000 earth radii from the earth, so the parallax error 
for any earth observer is then very small, perhaps .002 degrees.  
 Eventually we will set R = 1 unit and have mind perhaps REarth = .0000001 unit.  
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(c) Annual apparent motion of the sun around the earth: the ecliptic 
 
Viewed from directly above the ecliptic plane, the path of the sun around the earth was shown on the right 
side of Fig 1.6, which we reproduce here as its own separate figure. The elliptical orbit of the sun lies in 
the plane of paper and the earth's tilt arrow points 23o out of the plane of paper and to the right.  
 

 
                  Fig 3.4 
 
We have added in red the intersection of the sun's ecliptic plane with the celestial sphere, which sphere 
we now show being outside the sun's orbit. Since the earth lies at the center of the celestial sphere, this 
intersection is a great circle on the celestial sphere. This red circle lies in the plane of paper above and is 
commonly referred to as the ecliptic. The March equinox is the azimuthal reference point on both the 
ecliptic and on the earth's elliptical orbit. The angle φ' from the ecliptic reference point to the sun's 
projection on the ecliptic is the same as the angle φ' going from the elliptical orbit reference point to the 
actual sun (similarly for ψ). The elliptical orbit is thus projected onto the circular ecliptic. 
 If we now think of the red disk (with earth) as a flat damper disk hinged on the vertical axis, we can 
rotate that disk 23o so that the June solstice rises above the plane of paper, the December solstice drops 
behind the plane of paper, and the two equinoxes (being on the hinge) stay in the plane of paper. Such a 
rotation causes the angular momentum vector of the earth to point directly at the viewer. This situation 
would be precisely the view of the earth-sun system from the north pole of the celestial sphere.  
 Here then is a nice 3D representation of the celestial sphere and its red ecliptic, where June solstice is 
the high point on the ecliptic on the right. One now sees the abovementioned damper disk in its rotated 
position.  
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      Fig 3.5 
   http://astro.wsu.edu/worthey/astro/html/lec-celestial-sph.html 
 
 The ecliptic circle intersects the celestial sphere equator at the two (hinge) equinox points on opposite 
sides of the celestial sphere. The March equinox (northern hemisphere's vernal equinox) is used as the 
azimuthal reference on the celestial sphere. This azimuth may be regarded as longitude on the celestial 
sphere, measured in the same sense that longitude is measured on the earth east of Greenwich. To avoid 
confusion with various other azimuths, the longitude or azimuth on the celestial sphere is called right 
ascension. It could be measured in degrees or hours, and in the latter case one refers to the "hour angle" 
of the azimuth, as in the picture above. Similarly, latitude on the celestial sphere is called declination and 
runs from +90o at the north pole to -90o on the south pole with 0o at the celestial equator.  
 

      
    http://hyperphysics.phy-astr.gsu.edu/hbase/eclip.html    Fig 3.6 
 
A star on the celestial sphere located at a certain right ascension will "ascend" from the eastern horizon 
into the night sky (as viewed from the earth) at a time associated with that star's right ascension. The term 
"right" has a historical meaning, but it is best to think of it meaning the angle is measured to the "right" of 
the vernal equinox as shown in the above figure.  

http://astro.wsu.edu/worthey/astro/html/lec-celestial-sph.html�
http://hyperphysics.phy-astr.gsu.edu/hbase/eclip.html�
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 If Fig 3.5 were "live", one would see the celestial sphere fixed, the earth rotating counter clockwise 
once per day (viewed from the north celestial pole), and the sun slowly traversing the red ecliptic circle 
counterclockwise once per year.  
 The sun traverses the ecliptic circle over a period of 12 months, and each month's segment of the 
ecliptic lies "in" one of the 12 constellations of the zodiac (circle of animals, like Leo the lion, but only 
half of the 12 constellations are animals). Roughly in February, for example, the sun is "in the house of 
Aquarius". The houses don't exactly align with official months.  
 One might wonder how the ancients knew where the sun was on the ecliptic since the bright sun 
makes the stars on the celestial sphere invisible. They might have done it this way: (1) observe the 
elevation of the noon sun (sun on meridian) and deduce from one's latitude the corresponding celestial 
sphere declination of the sun (Eq. 9.20); (2) at midnight, observe what stars are located at this same 
declination on the midnight meridian; (3) the sun must then be on that same declination on the opposite 
meridian; (4) consult a celestial sphere map to see where the sun must therefore be.  
 The mass-averaged plane of the planetary orbits is called the invariable plane. The orbits of the 8 
major planets all lie fairly close to this invariable plane (< ~ 6o). For that reason, the orbits of the planets 
all lie close to that of the ecliptic ( < ~ 7o). Therefore, one looking for the planets in the nighttime sky 
should look near the path in the sky the sun took that day. Since the moon's orbit is inclined only 5o 
relative to the ecliptic, when visible the moon will be located in that same region of the sky. So the 
planets and the moon all wander through the houses of the zodiac.  
 Notice that the annual path of the sun shown in red in Fig 3.5 is very different from the daily paths of 
the sun which are red circles which align with lines of latitude on the celestial sphere as shown in Fig 3.2. 
When the sun on the above tilted red ecliptic circle is viewed from our north-pole Frame S' which is glued 
to the rotating earth, its path over a year is a red spiral (with 365.25 turns) which runs back and forth once 
between the two extremal daily red circles shown in Fig 3.2. Here is an illustration of that spiral where we 
draw 12 turns instead of 365.25 turns:  
 

       Fig 3.7 
 
On any given day, that day's spiral turn is very close to lying on a fixed declination circle of the celestial 
sphere, and that spiral turn is then the sun path for that day.  
 Here is an $80 commercial celestial sphere with various stars, galaxies and the milky way projected 
onto its surface:  
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        Fig 3.8 
          http://starlab.com/shop/Celestial-Globe-SKU1094.html  
 
The yellow Milky Way shown in Fig 3.8 reflects the position and orientation of the earth relative to the 
galaxy as indicated in this Britannica picture  ( the earth is in the Orion Arm of the Milky Way) : 
 

 
http://www.britannica.com/EBchecked/media/101407/Three-views-of-the-Milky-Way-Galaxy  Fig 3.9 

http://starlab.com/shop/Celestial-Globe-SKU1094.html�
http://www.britannica.com/EBchecked/media/101407/Three-views-of-the-Milky-Way-Galaxy�


Section 3:  The Celestial Sphere 

  27 

 
The picture shows that the ring of the Milky Way runs close to the north and south poles of the earth and 
one can then imagine its location on the celestial sphere (yellow in Fig 3.8).  
 Commercial celestial globe makers face a conundrum: if the sphere is accurate, then all constellations 
appear inverted when the sphere is viewed from the outside, which is where it is normally viewed from. 
Sometimes manufacturers transform the true celestial sphere so what one sees from the outside is what 
one would see on a true celestial sphere from the inside, which is immensely confusing. Transparent 
spheres at least allow the possibility of doing it right so one can view through the sphere. One could 
imagine a fancy celestial sphere with a tiny movable camera on the earth which one can hook to one's 
"PC". A simpler alternative is to just download the freeware Stellarium http://www.stellarium.org/ .  
 
(d) Precession effects  
 
The reason a tilted spinning top precesses is that gravity applies a torque N = r x mg about the center of 
mass of the top, relative to the point of contact. This tangential torque causes a change dω = Ndt which is 
perpendicular to the rotation vector ω of the top and causes the top to precess. 
 Since the earth rotates and is not rigid, it has a larger radius at the equator than at the poles (by about 
21 km). The plane of the earth's fat equator makes some significant angle relative to the earth-moon line, 
as in this drawing which assumes a set of positions and orientations at some instant in time (the moon-
earth line can be at most 5o out of the ecliptic ).  
 

      Fig 3.10 
 
As a result, the moon exerts a net torque on the earth due to the gradient of its gravitational field at the 
earth (the same gradient which causes the bulging of the tides). This torque causes the earth to precess. If 
the earth were perfectly spherical and uniform, it would act as a point mass at its center upon which the 
moon could exert no torque. 
 The sun creates a torque in this same manner, but the torque is smaller because the sun's distance 
outweighs its larger mass. The net result is that the sun's effect is about half that of the moon, as is the 
case for earth tides.  
 The precession rate of the earth's rotation axis is about one degree every 72 years (25,800 year cycle). 
The earth's angular momentum vector ω points from the center of the earth to its north pole. If one traces 
out the path of this vector, it rotates around a cone of half angle 23o once every 25,800 years, as shown in 
Fig 5.1 below. One consequence of the earth's precession is that the time between March equinoxes is 
slightly less than a year. After the sun does exactly one revolution about the earth starting at a March 
equinox, it expects to be at the next March equinox where the earth is again tilted neither toward nor away 
from the sun. But the tilt axis has precessed 1/72 of one degree (50 arc sec), so the equinox is early (it 
turns out) by this amount of time :  
 

http://www.stellarium.org/�
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 Δt = (1/72) deg *[1 yr/ 360 deg] * [ 365.25 day/yr] * [24*60 min/day] =  20.3 minutes (3.1) 
 
This effect is called "the Precession of the Equinoxes", and of course the September equinox and the two 
solstices experience this same anomaly. The seasonal "year" between solstices is called "the tropical 
year". The sidereal year is "too long" and if it could be shortened a bit, it would match the seasonal year. 
But as it is, the seasons are slowly sliding backwards relative to a sidereal calendar and in fact slide 
entirely through the calendar every 25,800 years. The solstices are associated with the high and low points 
of the ecliptic circle on the celestial sphere, and those points in turn are associated with certain of those 
zodiac zoo animals, so the 12 members of the zodiac slide along with the seasons relative to the sidereal 
calendar.  
 But most people don't use a sidereal calendar. Instead, they use one that is on average 365.25 days  
long, since every 4th year (leap year) adds a day on Feb 29 (the Julian calendar). Now the sidereal year is 
365.25 days + 9.17 min long, so the tropical year is then 365.25 days - 11.13 min long (taking off the 20.3 
minutes in (3.1)). So the Julian calendar is too long by 11.13 minutes, which means the seasons are 
sliding backwards through the Julian calendar by 11.13 minutes every year. This adds up to one day after 
129.4 years. A scheme was concocted to knock out 3 days every 400 years which is one day every 133.3 
years, close enough for government work. The scheme is to not have a leap year every XX00 year, except 
when XX is a multiple of 4. This plan is called the Gregorian calendar and was set up in 1582 by Pope 
Gregory. Since Easter was associated with a certain seasonal date (first Sunday after full moon after 
vernal equinox) and with a certain calendar date (vernal equinox around March 20-21), the Pope didn't 
like the idea of these two associated dates drifting apart. It is all a very long story. 
 Since the north pole of the celestial sphere always aligns with that of the earth, one can think of this 
precession effect in terms of the earth's rotation axis staying fixed vertically and the celestial sphere (and 
all the stars attached to it) doing the precessing. This is a very difficult concept to illustrate with line 
drawings, but here is a crude attempt:  
 

 
               Fig 3.11 
 
Think of the present celestial sphere on the left as a globe with all the stars and the sun's ecliptic painted 
on it. The usual axis of this globe is the vertical black arrow, but consider the blue arrow shown on the 
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left as another axis glued to the celestial sphere. As the celestial sphere precesses, this blue arrow 
traverses the large vertical cone (half angle 23o), so that 25,800/2 years from now the blue arrow will be 
as shown on the right. The positions of all stars on our precessed globe are then transferred to the celestial 
sphere of that future time. Polaris which was the north star moves to the new location shown, 46o down 
from the celestial north pole. The small black rotation axis of the earth meanwhile has moved on its cone, 
which is the pink cone of Fig 5.1. The red ecliptic circle wobbles around with the celestial sphere and 
after half a wobble ends up as on the right. Every point on the ecliptic, and in fact every point on the 
original celestial sphere, traverses a circle on the sphere of half angle 23o, Polaris being an example. As 
the ecliptic wobbles around, its intersections with the celestial equator move, and these intersections are 
the equinoxes which are then moving 1/72nd of a degree per year on the celestial sphere. To understand 
this picture, one has to hold a physical globe in two hands, imagine a blue arrow sticking out, and then 
wobble the globe in such a way that the blue arrow traverses the cone.  
 During this precession of the celestial sphere, star charts have to be updated. Since any two 
orientations of a sphere are related by a specific rotation R, the coordinates (ephemerides, see below) of 
all stars at t = t can be obtained from those at t = 0 by applying some uniform rotation R(t) to their 
coordinates at t = 0.  
  
Ephemeris. A table or book of computed future positions of astronomical objects on the celestial sphere 
as a function of time is called an ephemeris (< Gk. journal, diary, calendar). The positions themselves are 
called ephemerides, plural of ephemeris. The phrase "ephemeris time" (ET) refers to a certain precision 
time scale (of which there are now many) which is independent of the vagaries of the earth's (rotational) 
motion and which agrees exactly with the dynamical time variable "t" in Newton's Laws governing the 
motions of objects in the solar system, as based on observations of these objects. Ephemeris time was 
used in ephemeris tables circa 1950-1980, but is now replaced by more elaborate precision times based on 
atomic clocks, some of which take into account effects of special (time dilation) and general (gravitational 
curvature) relativity. 
 
(e) Daily sun paths for various observation points 
 
In Section 7 below we shall derive the equations used in this section to plot three red daily sun-path 
circles (two solstice paths, one equinox path) as viewed from various observation sites in the northern 
hemisphere. Here we just display the results for the reader's possible interest. Recall that "up" is up, south 
is to the left, and east is toward the viewer. For each picture both the polar angle and latitude of the 
observer site are given, where polar angle + latitude = 90o. Representative cities near the indicated 
latitude are noted. Basically one sees here how the two pictures shown earlier are "interpolated" as we 
move from equator to north pole. The plane of any of the red curves shown makes an angle with the 
horizontal site tangent plane which is equal to the polar angle shown. We are just viewing the three red 
circles of Fig 3.1 or Fig 3.2 from various places on the earth.  
 To obtain the figures for the southern hemisphere, the images below should be mirror-reflected left to 
right, that is, in the east-west-up plane. Then the red curves all tip to the right.  
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polar = 90    lat = 0  Singapore, Quito (equator)     polar = 80    lat = 10  Caracas, Costa Rica 
    

     
polar = 70 lat = 20  Honolulu, Mexico City, San Juan            polar = 60    lat = 30  Cairo, Houston 

    
polar = 50    lat = 40  New York, Salt Lake City            polar = 40    lat = 50 Brussels 
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                  polar = 30    lat = 60  Helsinki   polar = 25    lat = 65  Reykjavik 
 

  
   polar = 20    lat = 70  Barrow    polar = 10    lat = 80   Eureka 
 

               Fig 3.12 
  polar = 0    lat = 90  North Pole 
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Maple Code Notes  
 
The code is based on equations (7.15) which are derived below in Section 7 (see notes there),  
 
 x' =  – R cosθt sin(ωt) 
 y' =    R [sinθt sinθ1  – cosθt cosθ1 cos(ωt) ] 
 z' =    R [sinθt cosθ1  + cosθt sinθ1 cos(ωt)]  .      (7.15) 
 
The functions are first entered with R = 1 and we then verify that x'2+y'2+z'2 = 1,  
 

 
Next, the plot library is activated and constants are set in,  
 

 
 
The Maple code generates one plot at a time, and for this plot θ1 = 50o. The three red partial circles are 
generated in a display list p1 : 
 

 
 
Three values of θt are used here to make three red circles. The z part of the view option causes these 
circles to be plotted only for z' ≥ 0 which means only for daytime. The grey half sphere latitude guide 
circles are generated using equations (6.7) with R = 1,  
 

 
 
and then finally both the p1 and p2 plots are superposed, displayed and oriented by the last command, 
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(f) The Arctic and Antarctic Circles 
 
In going from the polar = 25 to the polar = 20 drawing in Fig 3.12, one notices that the winter solstice sun 
path has completely disappeared. In the following picture, we assume θt = -20o which is not quite at 
December solstice (which would be -23.4o).  
 

  
                    Fig 3.13 
 
This picture is hard to draw because we really want the sun extremely far away. This is why the arrows 
which say "to sun" do not point to the close-in sun, but do point to the correct far-away sun. The bottom 
green line is the edge-on path of the close-in sun. The point here is that someone on the north pole cannot 
ever see the sun in this picture, no matter where it is on its green circular path. This is also true for any 
observer above the upper blue circle which is at θ1 = 20o polar angle. In general, the condition for 24 hour 
night near the north pole is this 
 
 θt < 0   AND   θ1 < |θt|    // north pole region always night 
 
The largest angle that θ1 can be, with 24 hour darkness above it, is 23.4o and this occurs at Dec solstice. 
The blue circle at this limiting point is called the Arctic Circle (not shown). Below that circle it can never 
be 24 hour night.  
 At the same time, an observer south of the mirror-image lower blue circle always sees the sun, as the 
lower arrow shows.  The condition for 24 hour daylight here is 
 
 θt < 0   AND   π- θ1 < |θt|    south pole region always day 
 
The upper limit of the lower blue circle is called the Antarctic Circle. Above this circle it can never be 24 
hour day.  
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Now consider the situation near June solstice 
 

 
                     Fig 3.14 
 
The conditions now for all night and all day are 
 
 θt > 0   AND   θ1 < |θt|    north pole region always day 
 
 θt > 0   AND   π- θ1 < |θt|    south pole region always night 
 
We can then summarize these four conditions:       
 
 θt < 0   AND   θ1 < |θt|    north pole region always night 
 θt < 0   AND   π- θ1 < |θt|    south pole region always day 
 θt > 0   AND   θ1 < |θt|    north pole region always day 
 θt > 0   AND   π- θ1 < |θt|    south pole region always night   (3.2) 
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4. How the Earth's Orbital Azimuthal Position ψ Varies with Time due to Eccentricity 
 
(a) A simple solution for ψ(t) 
 
Recall from Section 1 the equation of the elliptical orbit of the earth around the sun, 
 
 r(ψ)  = a(1-e2) / [1 + e cosψ ]  .        (1.7) 
 
Using 2012 data, a = 149.598261 million km and eccentricity e = .0167.  Here a is the semi-major axis of 
the ellipse, and the semi-minor axis will be called b below.  
 Ignoring small external torques on the sun-earth system, the angular momentum L of the system is a 
conserved quantity. If m is the reduced mass of the system (m ≈ MEarth) then Kepler's second law of 
orbital motion states that (see for example Ref [1] p 60 Eq (3-8) )  
 
 ψ•  r2 = L/m = constant .         (4.1) 
 
The area of a small triangular wedge of angle dψ is  
 
 dA = (1/2)r(rdψ) = (1/2)r2ψ•  dt =  (L/2m) dt       (4.2) 
 
and here we see (4.1) stated as the "equal areas swept out in equal times" rule. Integrating both sides 
around the entire ellipse then gives 
 
 A =  (L/2m)T ,          (4.3) 
 
where T is the period of the orbit. But we know that A = πab for an ellipse, and also that b = a 1-e2 , so 
the area is A = πa2 1-e2 . Therefore,  
 
 (L/m)  = 2A/T = 2πa2 1-e2 /T  .        (4.4) 
 
We define Ω0 to be the mean angular velocity of the orbit, 
 
 Ω0 ≡ (2π/T)     // radians/time       (4.5) 
 
and we then have 
 
 (L/m)  = Ω0 a2 1-e2  .         (4.6) 
 
Then we can then rewrite (4.1) as 
 
 ψ•  r2  =  Ω0a2 1-e2  .         (4.7) 
 
Combining this with (1.7),  r  = a(1-e2) / [1 + e cosψ ],  we get 
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 ψ•  {a(1-e2) / [1 + e cosψ ]}2  = Ω0a2 1-e2  
or 
 ψ•   =  Ω0 (1-e2)-3/2 [1 + e cosψ ]2          
or 
 dψ/dt  = C [1 + e cosψ ]2  C = Ω0 (1-e2)-3/2 .    (4.8) 
 
This equation can be integrated from t = 0 to t and ψ = 0 to ψ,  
 
 dψ/[1 + e cosψ ]2  = C dt 
 

 I ≡  ∫0
 ψ  dψ'/[1+ e cosψ' ]2  = C t . // ψ(t=0) = 0     (4.9) 

 
Using the following integrals from p172 of Ref [2] with a = 1, b = e, A = 1, B = 0, and n = 2 :  
 

 

 
the integral I may be evaluated, 
 

 I  =  (1-e2)-1 {  (2/ 1-e2 ) tan-1[
1-e 
1+e 

 tan(ψ/2) ]  –  
esinψ

 1+ecosψ    } 

    =  (1-e2)-3/2  {  2 tan-1[
1-e 
1+e 

  tan(ψ/2) ]  –  
e 1-e2 sinψ

 1+ecosψ     }     

 
Since C = Ω0 (1-e2)-3/2 we then find that  
 

 Ω0t   =  2 tan-1[
1-e 
1+e 

 tan(ψ/2)]  –  
e 1-e2 sinψ

 1+ecosψ     // radians   (4.10) 

 
Later we shall use years as the unit of time, so then Ω0 = 2π radians/year and the time span of an orbit is 
from t = 0 at perihelion until t = 1 year at the next perihelion. Equation (4.10) appears in Ref [3] as (8).  
 Looking at Fig 1.3, we can identify these angles with the solstices and equinoxes,  
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 ψ = π/2-φper ≡ α March equinox   // α was defined this way in (1.9)   
 ψ = π-φper  June solstice 
 ψ = 3π/2 - φper Sept solstice 
 ψ = 2π - φper Dec solstice 
 
Then using (4.10), we may compute the time (0-1) and day (0-365.25) at which these events occur :  
 

 
             (4.11) 
 
In the case of a circular orbit, we expect to find that ψ = Ω0t and that is what (4.10) gives with e→ 0. In 
this case, keeping the "perihelion" at the same location, the time of the March equinox is determined by 
Ω0tMe = ψ = π/2-φper ≡ α  so that 
 
 tMe  = α/Ω0 = (π/2-φper)/2π    // e = 0      (4.12) 
 
and then the four times or interest are close to, but different from, those shown above, and they are 
separated from each other by 1/4 orbit :  
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    (4.11)e=0 
 
 Equation (4.10) gives t(ψ) which can be numerically inverted to obtain ψ(t). Since e is so small, it is 
much simpler to back up and use an approximation for ψ(t). Consider again (4.8),  
 
 dψ/dt  = C [1 + e cosψ ]2         (4.8) 
 
  ≈  C [ 1 + 2 e cosψ ].         (4.13) 
 
The fractional error in this approximation is ~e2 = (.0167)2 =  3 x 10-4.  Since the orbit is nearly circular, 
we approximate ψ = Ω0t inside the sine to get (another order e2 error contribution)  
 
 dψ/dt ≈ C [ 1 + 2 e cos(Ω0t) ]  .        (4.14) 
 
Taking the mean of the left hand side over a year gives <dψ/dt> = C, but in our approximation this must 
be C = Ωo, so defining Ω ≡ dψ/dt as the instantaneous angular velocity of the orbit at time t we get 
 
 Ω(t) = Ωo [ 1 + 2 e cos(Ω0t) ]  .        (4.15) 
 
Here is a plot of Ω(t)/Ω0 as in (4.15) which can be correlated with Fig 1.3. Starting at t = 0 (Jan 3 
perihelion), Ω(t) first slows down, reaching a minimum value at aphelion, then speeds back up:  
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 Fig 4.1 
 
Alternatively, we can integrate (4.14) with C = Ωo to get an expression for ψ(t),  
 
 dψ/dt = Ω0 [ 1 + 2ecos(Ω0t) ]        (4.14) 

 ψ(t) - ψ(0)  = Ω0t + 2e Ω0
 ∫

0

 t dt cos(Ω0t) 

 
  = Ω0t + 2e Ω0(1/Ω0) [sin(Ω0t)]|t0 
 
  = Ω0t + 2e sin(Ω0t) .         (4.16) 
 
If we agree to start our clock at the instant the earth is at perihelion (Jan 3) , then ψ(0) = 0 as indicated in 
Fig 1.3. We already assumed this in writing ψ = Ω0t inside the sine above. In this case,  
 
 ψ(t)  = Ω0t + 2e sin(Ω0t)  // radians      (4.17)  
 
and using (1.9) and (1.10) we may express the angle φ' of Fig 1.3 this way,  
 
 φ'(t) = Ω0t + 2e sin(Ω0t) + φper - π/2       (4.18) 
   
where Ωo = 2π rad/year. During a year the sine phase goes around once with a zero average value, so that 
 
 <ψ(t) – Ω0t> = 0 .            
 
This plot of  ψ(t) - Ω0t shows how ψ(t) in degrees deviates from straight-line clock time for t = (0,1) yr: 
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 Fig 4.2 
 
The above curve will reappear in Section 6 (e) in the discussion of the Equation of Time for the "black 
earth".  
 The preceding discussion addresses the variation in ψ due to eccentricity in the orbit of the earth 
around the sun. As shown in Fig 3.4, this same ψ applies to the projected sun's orbit around the ecliptic 
circle on the celestial sphere. However, when this red circle gets projected down onto the equator of the 
celestial sphere (Fig 3.5), a "tilt effect" arises which further affects azimuthal timing on that equator. This 
will be clarified in Section 5 below.  
 
(b) A systematic solution for ψ(t) and estimate of error in using (4.17) 
 
The exact (non-linear) differential equation for ψ shown in (4.8) is this 
 
  dψ/dt = C  [1 + e cosψ ]2   
          =  C [1 + 2ecosψ + e2cos2ψ ] .       (4.8) 
        
One can expand ψ in a power series in smallness parameter e ≈  .0167 ,  
 
  ψ(t) ≈  ψ(0)(t) + e ψ(1)(t) + e2 ψ(2)(t)   + ....      (4.19) 
 
where we require that for each order ψ(n)(0)  = 0, so that ψ(0) = 0. Now using 
 
 cos(x+ε) ≈ cos(x) – ε sin(x)  + O(ε2)        (4.20) 
 
we have 
 
 cosψ = cos[ψ(0)(t) + e ψ(1)(t)]  =  cos[ψ(0)(t)] - e ψ(1)(t) sin[ψ(0)(t)]   + O(e2) 
 
 cos2ψ  =  cos2[ψ(0)(t)]  + O(e) .        (4.21) 
 
Defining  c ≡ cos[ψ(0)(t)] and s ≡ sin[ψ(0)(t)]  this pair of equations becomes 
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 cosψ = c - e s ψ(1)(t) + O(e2) 
 
 cos2ψ  =  c2 + O(e) .         (4.22) 
 
Retaining only terms through order e2, the right side of (4.8) becomes 
 
 =  C [1+2e{ c - e s ψ(1)(t)} + e2c2]  
 
 = C [ 1 +2ec - 2e2s ψ(1)(t) + e2c2 ] 
 
 =  C  + e [2Cc] + e2[C(c2-2s ψ(1)(t)]  .       (4.23) 
 
Balancing powers of e with the left side of (4.8) given by differentiating (4.19), we get then this set of 
equations,  
 
 dψ(0)/dt = C 
 
 dψ(1)/dt  = 2Cc  = 2C cos[ψ(0)(t)] 
 
 dψ(2)/dt  = Ccos2[ψ(0)(t)]- 2Csin[ψ(0)(t)] ψ(1)(t)  .      (4.24) 
 
The solution to the first equation is just ψ(0)(t) = Ct  and therefore C = Ω0 = 2π radians/year,   
 
 ψ(0)(t) = Ω0t  .  // solution for a perfectly circular orbit. e = 0   (4.25) 
 
The remaining two equations are then 
 
 dψ(1)/dt  = 2Cc  = 2Ω0cos(Ω0t) 
 
 dψ(2)/dt  = Ω0cos2(Ω0t)- 2 Ω0sin(Ω0t) ψ(1)(t)      (4.26) 
 
The ψ(1) equation can be trivially integrated to give 
 
 ψ(1)(t) = 2 sin(Ω0t)          (4.27) 
 
so the third equation becomes 
 
 dψ(2)/dt  = Ω0[ cos2(Ω0t)- 4sin2(Ω0t) ]  
 
  = Ω0[ (1/2)(1+cos(2Ω0t)) - 4(1/2)(1 – cos(2Ω0t)) ] 
 
  = (1/2)Ω0[ (1+cos(2Ω0t)) - 4 (1 – cos(2Ω0t)) ] 
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  = (1/2)Ω0[ (-3+5cos(2Ω0t) ]  .        (4.28) 
 
The integral of interest in determining ψ(2) is 
 

  ∫
0
 t [-3+5cos(2Ω0t') ] dt'  =  -3t + 5/(2 Ω0)sin(2Ω0t)       (4.29) 

 
so that 
 
 ψ(2)(t) =  –(3/2)Ω0t  + (5/4) sin(2Ω0t)  .       (4.30) 
 
Therefore the solution ψ(t) through second order in eccentricity e is  
 
 ψ(t)  =  Ω0t + 2e sin(Ω0t) + (5/4)e2 sin(2Ω0t)   + order(e3)   .    (4.31) 
 
The e2 contribution is very small, being on the order of (5/4)e2 =  (5/4) (.0167)2 = 3.5 x 10–4 . 
Converting this from radians to degrees makes this term on the order of  1/50th of one degree. Here is a 
plot of ψ(t) - Ω0t in degrees, with (red) and without (black) the e2 term,  
 

  Fig 4.3 
 
For our purposes in this document, such as plotting analemmas, there is no need to keep the e2 term and 
we can use this simple approximation for ψ(t)  
 
 ψ(t)  =  Ω0t + 2e sin(Ω0t) 
 
which is the same as (4.17) obtained by our ad hoc method.  
 The result (4.31) is sometimes written this way,  
 
 δ   ≡  ψ(t) – Ω0t  ≈   2e sin(Ω0t) + (5/4)e2 sin(2Ω0t)  ,     (4.32) 
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where δ is then the difference between the true anomaly ψ and the mean anomaly Ω0t as discussed at the 
end of Section 1. This expression appears in the code shown in Ref [4] where the time scale is chosen so 
that a year is 2π units long, so t' = 2πt = Ω0t. That code reads  (kappa = e)  
 

 
 
As a check on (4.31), let's use it to verify our earlier calculation of tMe shown in (4.11) by setting t = tMe in 
(4.31):   
 

 
Thus, when we install t = tMe  = .2084458064 yrs from (4.11), we recover our ψMe = α as shown at the end 
of (4.11) to 6 decimal places accuracy. One could go on and find the e3 and higher terms in the expansion 
(4.31) by the method outlined above.  
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5. How the Earth's Tilt Angle θt Varies with Time 
 
In this section we think of θt as the angle of tilt of the earth's rotation axis toward or away from the sun. 
This angle varies between -θtmax and θtmax where θtmax is the earth's obliquity 23.4o. This tilt θt is 
described below in a special frame of reference that rotates around the sun with the earth so that the sun 
and earth maintain their positions (earth on left, sun on right). Later in Section 6 (b) we show that θt is 
also the declination of the sun on the celestial sphere, its more conventional interpretation. This fact is 
implied by the inset in Fig 5.1 below.  
  
We first replicate Fig 1.3 since it is closely related to the drawing we are about to present: 
 

     Fig 1.3 
 
In Fig 1.3 angle φ' denotes the azimuthal position of the earth with respect to the March equinox. This 

angle φ' appears in the following picture, along with angle φ~ = π-φ' and θ~ = θtmax  :   
 

 
             Fig 5.1 
 
The earth is represented by the black origin dot on the left, and its equatorial plane by the gray disk. The 
red arrow ω is the angular momentum vector of the rotating earth. This vector's tip precesses clockwise 
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around the pink circle as the year progresses. The sun is on the right, "looking at the earth".  The reader is 
invited to correlate this drawing and its markings with Fig 1.3. For example, when φ' = 0, in Fig 1.3 the 
sun sees the earth tilting to the right. The red vector on the cone in Fig 5.1 also tilts to the right as viewed 
from the sun when φ' = 0 (March equinox).  
 For the situation shown in Fig 5.1, we want to determine the location of the sun's path projected on 
the earth. We know that this path is a circle of constant latitude because the path is created by the earth 
rotating (see blue circles in Fig 3.1). We only need to find one point on this circle. The line from sun to 
earth-center penetrates the earth's surface at a point which must lie on this blue latitude circle of interest, 
since the circle is a projection of the sun's path (see Fig 5.1 inset in which ω̂ is tilted toward the viewer as 
on the left).  
 First consider this standard expression for a spherical-coordinates radial unit vector in terms of the 
Cartesian basis vectors, 
 

 r̂  = sinθ~cosφ~ x̂  + sinθ~sinφ~ ŷ  + cosθ~ ẑ    .       (5.1) 
 
We can think of r̂  = ω̂, the direction of the red arrow. We know that ω̂ is a unit vector normal to the 
equatorial plane of the earth. We know that ŷ points toward the sun. Therefore, the colatitude θ of our 
penetration point of interest is given by cosθ = ω̂ • ŷ as shown in the Fig 5.1 inset.  This colatitude θ is 
just the polar angle measured down from the north pole of the tilted earth to the ŷ vector. The 
corresponding latitude we shall call θt = π/2 - θ. Now,  
 
 cosθ = cos(π/2-θt) = sinθt  .        (5.2) 
 
Therefore,  

 sinθt  = cosθ = ω̂ • ŷ  = sinθ~sinφ~   = sinθtmax sin(π-φ') = sinθtmax sinφ'   (5.3) 
 
and we obtain the key result which is 
 
 sinθt(t) = sinθtmax sinφ'(t)  where θtmax = 23o.      (5.4) 
 
To check the result, at June solstice φ' = π/2 so sinθt = sinθtmax* 1 =>  θt = θtmax . Things check 
similarly at Dec solstice and the equinoxes.  From Fig 3.4, φ' = ψ - α , so using ψ from (4.31) we get 
 
 φ'(t) = ψ - α =  Ω0t + 2e sin(Ω0t) + (5/4)e2 sin(2Ω0t) - α   // α = π/2 - φper 
 
so (5.4) becomes 
 
 θt(t) = sin-1 { sinθtmax sin(ψ-α)}  
 
   =  sin-1 { sinθtmax sin[Ω0t + 2e sin(Ω0t) + (5/4)e2 sin(2Ω0t) - α]  }   (5.5) 
 
where t = 0 at perihelion Jan 3. The following black plot of θt(t) shows (5.5) with only its first term Ω0t, 
while the red plot shows (5.5) with the first two terms. The e2 term makes no visible difference so we 
don't bother with it. 
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         Fig 5.2  
 
The extremes of the plot are θt ≈ ± 23o at the solstices, while the zero crossings are the equinoxes θt= 0. 
At t = 0 Jan 3 (left edge) we are just after December solstice where the sun was at - 23o.  
 
A geometric interpretation of θt.  
 
It is possible to interpret θt as "the amount of tilt of the earth toward the sun" according to the following 
somewhat elaborate construction :   
 

 
             Fig 5.3 

The distance from the z axis to the tip of the red unit vector is sinθ~ as indicated. This distance can then be 

projected onto the gray wall (the yz plane) to get a distance sinθ~sinφ~. We then create a black unit vector 

on the gray wall which has this distance sinθ~sinφ~ as its y component. If we denote the angle of this black 

unit vector relative to the z axis as α, then sinα = sinθ~sinφ~. But in (5.3) we had sinθ~sinφ~ = sinθt. 
Therefore, α = θt and then we can interpret θt as the "amount of tilt of the earth toward the sun".  Note 
that the black arrow is not the projection of the red one onto the wall, because the projected arrow would 
be too short to be a unit vector.  
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6. Coordinates of the Sun on the Celestial Sphere  
 
(a) Cartesian coordinates x,y,z and velocity of the sun in Frame S  
 
Consider this picture showing the tilted red ecliptic circle and the black equatorial circle on the celestial 
sphere (compare to Fig 3.5 above).  
 

   Fig 6.1 
 
The black equatorial circle is associated with Frame S with x,y,z axes, while the ecliptic red circle is 
associated with Frame S' with x',y',z' axes. Staring at the figure one sees that 
 
 ẑ ' = Rx(θtmax) ẑ   and x̂' = x̂   =>  x' = x  
 ŷ' = Rx(θtmax) ŷ          (6.1) 
 
where θtmax = 23o. According to the rule that vectors rotate backwards from the unit vectors (see 
Appendix B), we then have in 2D that 

 r = Rx(θtmax)r'  => ⎝
⎛

⎠
⎞ y

 z   = ⎝
⎛

⎠
⎞ cosθtmax  -sinθtmax 

 sinθtmax  cosθtmax  ⎝
⎛

⎠
⎞ y'

 z'  => 

 
 y = cosθtmaxy' – sinθtmaxz' 
 z = sinθtmaxy' + cosθtmaxz'  .        (6.2) 
 
When θtmax = 0 this is clearly valid. When θtmax = π/2 we get y = -z' and z = y' which agrees with the 
picture -- just a validity check on the sign of the sine.  
 Now our interest is not so much in arbitrary points, but in points which lie on the red circle. For these 
points we have z' = 0 so the above becomes 
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 x = x'  
 y = cosθtmax y' 
 z = sinθtmax y'  .          (6.3) 
 
In Frame S' we can define spherical coordinates r',θ',φ' related to x',y,'z' according to the usual equations,  
 
 x' = r'sinθ'cosφ'  y' = r'sinθ'sinφ'  z' = r'cosθ'  . 
 
But again, for points on the red circle, θ' = π/2 and  r' = R so 
 
 x' = Rcosφ'   y' = Rsinφ'  z' = 0  .  
 
Inserting these expressions into (6.3) then gives 
 
 x  = Rcosφ' 
 y =  Rcosθtmax sinφ' 
 z =  Rsinθtmax sinφ' .         (6.4) 
 
Equations (6.4) give the Cartesian coordinates of the sun in Frame S. Recall that angle φ' appearing in 
(6.4) is given by,  
 
 φ' = ψ - α          (1.10) 
 ψ  =  Ω0t + 2e sin(Ω0t) + (5/4)e2 sin(2Ω0t)    // + order e3 which we ignore    (4.31)  
 α = π/2 - φper         (1.9) (6.5) 
 
where t = 0 is perihelion (Jan 3) and t = 1 is the next perihelion.  
 The velocity and acceleration of the sun's motion on the celestial sphere (as seen by our Frame S 
observer) can be obtained by differentiating (6.4). For example, 
 
 x•  = –R φ• ' sinφ' 
 y• =    R φ• ' cosθtmax cosφ' 

 z• =    R φ• ' sinθtmax cosφ'         (6.6) 
     
where from (4.18)  φ• '  = ψ•  = Ω0 [1 + 2e cos(Ω0t) + (5/2) cos(2Ω0t)] .  
 
 (b) Spherical coordinates θ, φ of the sun in Frame S 
 
In Frame S, for points on the celestial sphere, we can define spherical coordinates R,θ,φ related to x,y,z 
according to the usual relations,  
 
 x = Rsinθcosφ 
 y = Rsinθsinφ 
 z = Rcosθ .          (6.7) 
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Comparison of equations (6.7) with (6.4) shows that,  
 
 sinθcosφ = cosφ' 
 sinθsinφ  = cosθtmax sinφ' 
  cosθ = sinθtmax sinφ'    .         (6.8) 
 
Dividing the second equation by the first gives 
 
 tanφ = cosθtmax tanφ'   .         (6.9) 
 
We then have from the last line in (6.8) and (6.9),  
 
 θ(t) = cos-1[sinθtmax sinφ'(t)]  
 φ(t) = tan-1[cosθtmax tanφ'(t)]         (6.10) 
 r(t)  = R  
 
where φ' given by (6.5). Equation (6.10) gives the official Frame S spherical coordinates of the projection 
of the sun on the celestial sphere.  
 We now claim that our polar angle θ(t) is related to the tilt angle θt(t) introduced in Section 5 (which 
was the angle of tilt of the earth toward the sun at some time t)  by,   
 
 θ(t) = π/2 - θt(t).  => sinθt = cosθ .     (6.11) 
 
If this were true, the last line of (6.8) would say 
 
 sinθt = sinθtmax sinφ'  . 
 
But this is the same as (5.4). Therefore (6.11) is correct and, since θ is the polar angle or colatitude of the 
sun on the celestial sphere, θt must be the latitude or "declination" of the sun on the celestial sphere, as 
shown in Fig 6.1. Equations (6.10) can then be written as (the first equation then agrees with (5.5))  
 
 θt(t) = sin-1[sinθtmax sinφ'(t)]  // latitude (declination) of sun on celestial sphere 
 φ(t)  = tan-1[cosθtmax tanφ'(t)]  // longitude (right ascension) of sun on celestial sphere (6.12) 
  
where the sun azimuth φ', ψ and α as given by (6.5). Thus,  
 
 θt(t) = sin-1[sinθtmax sin(ψ-α)]  
 φ(t)  = tan-1[cosθtmaxtan(ψ-α)]  .         
 ψ  =  Ω0t + 2e sin(Ω0t) + (5/4)e2 sin(2Ω0t)    // + order e3 which we ignore    (4.31)  
 α = π/2 - φper         (1.9) (6.13) 
 
These equations gives the declination θt and right ascension φ of the sun on the celestial sphere during 
the year t = (0,1) where t = 0 is perihelion, Jan 3.  
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It is useful to think of a fictitious sun which orbits the earth in a perfectly circular orbit (e=0) and whose 
ecliptic lies in the equatorial plane of the celestial sphere (θtmax = 0). For this sun the above equations are 
 
 θt,f(t) = 0 
 φf(t)  = tan-1[tan(ψf - α)]   =  ψf - α   =  Ω0t - α      
 ψf  =  Ω0t  
 α = π/2 - φper      // fictitious sun  (1.9) (6.14) 
 
Interpretation of the second equation of (6.12): 
  
The equation in question and its time derivative are,  
 
 φ(t)  = tan-1[cosθtmax tanφ'(t)]        (6.12) 
 
 φ• (t)  = { cosθtmax / [cos2φ' + cos2θtmaxsin2φ']}  φ• ' .       (6.12)dot 
 
Near the equinoxes φ' = 0 and π one has cos2φ' ≈ 1 and sin2φ' ≈ 0 so then φ•  ≈ cosθtmax φ• '. The angular 

velocity φ•  at the equinoxes is slower than φ• ' by factor cosθtmax . The simple geometric reason for this, as 
Fig 6.1 shows, is that the two circular paths intersect at angle θtmax at the equinoxes, and the projection of 
speed on the ecliptic to speed on the equatorial circle is reduced by this factor at the equinoxes.   
 Near the solstices φ' = π/2 and 3π/2 one has cos2φ' ≈ 0 and sin2φ' ≈ 1 so then φ•  ≈ φ• '/ cosθtmax . At 

these two points φ•  runs faster than φ• ' by factor 1/cosθtmax . The geometric reason for this is slightly less 
obvious:  at solstice an "orange slice" of the celestial sphere is thinner at the ecliptic than at the equator so 
the projection of a speed on the ecliptic gets magnified by factor 1/ cosθtmax .  
 Both these situations are illustrated on the left of the following figure, where the red arrows indicate 
speed along the ecliptic and green arrows speed along the equatorial circle.  
 

 
 
The first graph  shows crudely how the ratio of angular speeds must therefore vary during the year where 
τ = 0 is March equinox (Me). In the case that φ• ' = constant, φ must be generally as shown on the far right, 
since the derivative of this graph gives the first graph minus 1. This situation applies to "the blue earth" 
below where e = 0 so φ• ' = Ω0. The actual plot is the blue curve in Fig 6.5 below, which begins at t = 0 
which is the Jan 3 perihelion. Thus we have a physical interpretation of "the tilt effect" on azimuthal 
velocity of the sun. More generally, this interpretation explains why the full equation of time shown as the 
red curve in Fig 6.5 has two "cycles" during the year. The lower amplitude cycle and the higher amplitude 
cycle create the small and large lobes of the analemma in Section 11. Roughly the difference between the 
red curve and the blue curve in Fig 6.5 is the black curve which accounts for "the eccentricity effect" on 
azimuthal speed as studied in Section 4. 
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(c) The Equation of Time 
 
The difference between the azimuth (right ascension) of the sun and that of the fictitious sun is known as 
"the Equation of Time" and is given by (6.13) and (6.14) above (using ψ and α as in (6.13) above)  
 
 Δφ(t)  ≡ φ - φf   = tan-1[cosθtmax tan(ψ-α)]  –  (Ω0t-α)      (6.15a) 
 
          = tan-1[cosθtmax tan(ψ-α)] – tan-1[ tan(Ω0t-α)]     (6.15b) 
  

          = tan-1 [
cosθtmax tan(ψ-α)– tan(Ω0t-α) 

1 + cosθtmax tan(ψ-α) tan(Ω0t-α) ]     (6.15c)  

 
where the last line follows from this identity from p 121 of Ref [5] 
 

     .     (6.16) 
 
There are other variations of (6.15). One can multiply top and bottom by cos(ψ-α)cos(Ω0t-α) to get 
 

 Δφ(t)   = tan-1 [
– sin(Ω0t-α) cos(ψ-α) + cosθtmax sin(ψ-α) cos(Ω0t-α) 
 cos(ψ-α)cos(Ω0t-α) + cosθtmax sin(ψ-α) sin(Ω0t-α)  ]  .   (6.15d)  

 
A somewhat peculiar form is given in equation (21) of Ref [3] as  
 

 –Δφ(t)  =  tan-1[
–sin(ψ-Ω0t) + tan2(θtmax/2) sin(ψ + Ω0t -2α)
 cos(ψ-Ω0t) + tan2(θtmax/2) cos(ψ + Ω0t -2α) ]    ≡   μ(t)  .   (6.15e) 

 
To verify (6.15e), comparing to (6.15c) we have to show that 
 

 (-1) 
cosθtmax tan(ψ-α)– tan(Ω0t-α) 

1 + cosθtmax tan(ψ-α) tan(Ω0t-α)    =   
–sin(ψ-Ω0t) + tan2(θtmax/2) sin(ψ + Ω0t -2α)
 cos(ψ-Ω0t) + tan2(θtmax/2) cos(ψ + Ω0t -2α)  ? 

 
Let θtmax = x, ψ = y, α = a, Ω0t = c, then we have to show that 
 

 
cosx tan(y-a)– tan(c-a) 

1 + cosx tan(y-a) tan(c-a)    =  (-1) 
–sin(y-c) + tan2(x/2) sin(y + c -2a)
 cos(y-c) + tan2(x/2) cos(y + c-2a)  ? 

 

  
A
B   = –  

C
D    ?  

 
 AD + BC = 0 ?  
 
This is a job for Maple, and the conclusion is that we can remove all the question marks above :  
 



Section 6:  Coordinates of the Sun on the Celestial Sphere 

  52 

 
Wiki provides a nice plot of the equation of time (see Ref [4] or Fig 6.8 below) which is based on the 
form (6.15e) above. Here is some of that code, where  Ω0 = 1 (year = 2π time units) , δ ≡ ψ-t, ε ≡ θtmax, κ 
≡ e. This δ is the same as our (4.32).  [ German Zähler = numerator, Nenner = denominator ]  
 

 

  

 

     Fig 6.2 
 
(d) Plots of φ (right ascension of the sun) and Δφ (equation of time)  
 
Note:  For all plots in this section and the next, the left edge of the plot is t = 0, perihelion, Jan 3.  
 
Defining q and s by 
 
 q  ≡ 2e sin(Ω0t) + (5/4)e2 sin(2Ω0t)   // ψ - Ω0t 
 s  ≡  Ω0t  + φper - π/2   // Ω0t - α  ;  s+q = ψ-α    (6.17) 
 
we shall make four versions of equation (6.13), φ(t)  = tan-1[cosθtmaxtan(ψ - α)], and we associate a color 
with each version (note that φred = φ = right ascension of the actual sun)  
 
 φred(t)      = tan-1[cosθtmax tan(s+q)] // the actual sun  
 φblue(t)    = tan-1[cosθtmax tan(s)]  // e = 0 so blue means tilt only 
 φblack(t)  = tan-1[tan(s+q)]  = s+q  // θtmax = 0 so black is eccentricity only 
 φgreen(t)  = tan-1[tan(s)] = s = φf(t)  // e = 0 AND θtmax = 0  (green is fictitious sun) (6.18) 
 
Our first task is to enter the four functions with 2012 parameters,  
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The function arctan2Pis is a special version of tan-1 which causes the arctangent to be a continuous 
function even if it goes out of the nominal range (0,2π). It keeps internal track of a certain winding 
number as discussed in Appendix A. The scale of the data is radians. The full ψ function is used in q, 
even though the e2 term really makes no significant difference (see Section 4). Here then is a plot of the 
four functions,  
 

 
 
 

 radians  
             Fig 6.3 
  
It is far more interesting to plot the equations of time which are these differences,  
 
 Δφred(t)       ≡ φred(t)     - φgreen(t)  
 Δφblue(t)     ≡ φblue(t)    - φgreen(t)  // e = 0  so only tilt is active 
 Δφblack(t)   ≡ φblack(t)  - φgreen(t)   // θtmax = 0 so only eccentricity is active   
 Δφgreen(t)   ≡ φgreen(t)  - φgreen(t) = 0       (6.19) 
  
 Δφpink(t)  ≡ Δφblue(t) + Δφblack(t)  = φblue(t) + φblack(t) – 2 φgreen(t)   (6.20) 
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where recall φgreen is for the fictitious sun:   
 

 
 

 radians   
             Fig 6.4 
 
Comment: The same plot is obtained with this single command (but see end of Appendix A) 
 

 
  
Looking at the vertical scale (radians), one sees that these Δφ differences are all quite small compared to 
the previous plot. Since the pink curve visibly deviates somewhat from the red curve, we see that the 
often assumed fact that Δφblue(t) + Δφblack(t)  = Δφred(t) is only approximately true, and this is due to 
the relative smallness of angle θtmax. But qualitatively, we see that the red curve is roughly the sum of the 
blue curve and the black curve, so the effects of orbital tilt (blue curve) and eccentricity (black curve) are 
roughly additive. We shall dispense with the pink curve from now on.  
 By adding a factor of 180/π we can replot in degrees,  
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 degrees   
             Fig 6.5 
   
Since 15 degrees of azimuth corresponds to one hour of earth rotation time (1 degree = 4 minutes), one 
often sees the equation of time plotted with minutes as the vertical scale ( factor now 4(180/π) ) 
       

 minutes  
             Fig 6.6 
In these plots the left edge t = 0 corresponds to perihelion or Jan 3.  
 The actual expressions for the three Δφ differences are 
 
 Δφred(t)       ≡ φred(t)     - φgreen(t) = tan-1[cosθtmax tan(s+q)] –  s 
 Δφblue(t)     ≡ φblue(t)    - φgreen(t) = tan-1[cosθtmax tan(s)] –  s 
 Δφblack(t)   ≡ φblack(t)  - φgreen(t) = (s+q) - s = q      (6.21) 
 
 q  ≡ 2e sin(Ω0t) + (5/4)e2 sin(2Ω0t)   // = ψ - Ω0t  
 s  ≡  Ω0t  + φper - π/2   // = Ω0t - α  ;  s+q = ψ-α    (6.17) 
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It seems clear that the mean value of Δφblack(t) = 2e sin(Ω0t) + (5/4)e2 sin(2Ω0t) will be zero over the 
year since it is an odd function of t (think of the year as running t = -1/2 to +1/2) and is periodic.  
 The mean of Δφblue(t) is also zero, but that fact is less obvious. One can write, using the trig identity 
(6.16) quoted above,  
 

 Δφblue(t) = tan-1[cosθtmax tan(s)]  - tan-1[tan(s)]   = tan-1 [
(cosθtmax – 1)tan(s)
1 + cosθtmaxtan2(s) ] ,   (6.22) 

 
where s = Ω0t - α  = Ω0t', where t' is a shifted time. Then the function is odd in t' and also periodic in t', so 
the blue mean is in fact 0. The mean of Δφpink(t)  ≡ Δφblue(t) + Δφblack(t)  is then exactly 0 as well. 
 The above argument fails on the red mean,  
 

 Δφred(t) = tan-1[cosθtmax tan(s+q)]  - tan-1[tan(s)]   = tan-1 [
cosθtmaxtan(s+q) – tan(s)

1 + cosθtmaxtan(s)tan(s+q) ] . (6.23) 

 
Nevertheless, the red mean is very small and we can regard it as being zero to a few parts in a million. 
Here are the means computed by Maple by approximating each integral as a sum of diy = 365 rectangles 
(Maple cannot integrate a function which uses arctan2Pis)  
 

 
 
Now replacing φred by its original symbol φ, and with φf = Ω0t - α as in (6.14), we have 
 
 red mean = 0 = < Δφred >  = <Δφ> = <φ> - <φf>   
so 
 <φf> =  <φ>  . 
 
This last equation says that during the year, the mean value of the azimuth of the fictitious sun is the same 
as the mean value of the azimuth of the actual sun. For this reason, the fictitious sun is often referred to as 
the mean fictitious sun. This fictitious sun is represented by the horizontal green line in the equation of 
time plots above, and the distance between the red curve and the green line is then the azimuthal distance 
between the actual sun and the mean fictitious sun at any instant of time t. As the plots show, the fictitious 
sun's right ascension matches that of the actual sun exactly four times per year (places where Δφ = 0). 
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Frequently the equation of time plot is shown in minutes with the vertical axis flipped (- 4 (180/π) ),  
 

 minutes   Fig 6.7 
 
As a check on our plotting methods, if we temporarily set our orbital parameters to those quoted above in 
Ref [4] , 
 
 e = .016722  θtmax = 23.45  φper  = 11.5o    α = π/2-φper = 78.5o 
 
we can replot the flipped Fig 6.7 and then superpose that on this wiki plot of Ref [4],  
 

 
             Fig 6.8 
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Here is the superposed result after axes are adjusted to match in both directions,  
 

 
             Fig 6.9 
 
and the plots are basically identical. Their parameters seem to match the year 1919 according to the 
NASA source http://aom.giss.nasa.gov/srorbpar.html ,  
 

       Table 6.1 
 
In Section 8 we shall investigate the significance of these Δφ plots in terms of sundials and analemmas.  
 

http://aom.giss.nasa.gov/srorbpar.html�
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(e) Plots of θt (declination of the sun) 
 
Using the same q and s shown in (6.17)  
 
 q  ≡ 2e sin(Ω0t) + (5/4)e2 sin(2Ω0t)   // ψ - Ω0t 
 s  ≡  Ω0t  + φper - π/2   // Ω0t - α  ;  s+q = ψ-α    (6.17) 
 
we can write the four "color" versions of the θt equation in (6.13) as  
 
 θt,red(t)  = sin-1[sinθtmax sin(s+q)]  // the actual sun  
 θt,blue(t) = sin-1[sinθtmax sin(s)]   // e = 0 so blue means tilt only 
 θt,black(t)  = 0    // θtmax = 0 so black is eccentricity only  
 θt,green(t)  = 0     // e = 0 AND θtmax = 0  (fictitious sun)  (6.24) 
 
Having Maple plot the red and blue functions in the same manner as done above,  
 

 
 
we find that θt,red  and θt,blue are nearly identical over the year, with the red being slightly above the 
blue near t = 75 and 275 days,  
 

 degrees  Fig 6.10 
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We can plot θt,red - θt,blue to see the small effect that eccentricity adds to the tilt-only curve:  
 

 
 

 degrees  
 
             Fig 6.11 
 
Since θt,blue(t) is an odd function of t and is periodic in t, we get < θt,blue(t)> = 0. Since the difference 
plotted above is mostly positive, it must be that the mean of <θt,red(t)> is positive. Computing the means 
we find 
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7. Coordinates of the Sun in an Arbitrary Frame S' Glued to the Earth 
  
(a) Setup:  θ1, φ1, φb, φb0, τ, tMe 
 
Frame S of Fig 6.1 continues as Frame S in this new drawing, a frame fixed relative to the celestial sphere 
with e1 = x̂, e2 = ŷ, e3 = ẑ. We discard Frame S' of Fig 6.1 and replace it with the one shown here, a new 
Frame S' glued to the rotating earth ( "east" basis vector e'1 points mostly away from the viewer),   
 

  Fig 7.1 
 
Star 1 is some star one sees looking from the earth through the March equinox point on the celestial 
sphere. In 2012 this happens to be somewhere in the Pisces constellation (but it is still called "the First 
Point of Aries" , where it was 2000 years ago). Recall (Section 3(d)) that the equinox moves 1/72 
degree along the ecliptic each year due to astronomical precession, causing it to also move on the celestial 
equator, so a new "Star 1" has to be found each year. Thus, Frame S very slowly rotates, a fact we ignore 
below.  
 
A system of spherical coordinates for Frame S has these unit basis vectors at the observer's location b on 
the earth's surface,  
 
 r̂ = e'3  θ̂ = - e'2     φ̂ = e'1  ,      (7.1) 
 
where we associate each of these unit basis vectors with a Frame S' unit basis vector. 
 Again, the earth is rotating counterclockwise in the above figure which is a snapshot at time t. The red 
Frame S'  rotates with the earth, the black Frame S is essentially fixed relative to the stars.  
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 The observation site is placed on the earth at polar coordinates (θ1, φ1) where as usual θ1 is measured 
down from the north pole (colatitude), and φ1 is the longitude measured east of the Greenwich meridian.  
 It is convenient now to define a shifted time coordinate τ ≡ t - tMe where tMe is the time from 
perihelion to March equinox as computed in (4.11). Then τ = 0 at March equinox which is the basic 
azimuthal reference time in Fig 7.1. This distinction is very important: 
 
 t = time ranging 0 to 1 year where t = 0 at perihelion  
 τ = time ranging 0 to 1 year where τ = 0 at March equinox 
 
 τ = t - tMe  .           (7.2) 
 
The time t was convenient for the work done in Section 4 concerning orbital eccentricity, while τ is 
convenient in our current context because τ = 0 when the sun is at 0o right ascension at March equinox, 
see Fig 3.5.  
 
Let φb0 be the right ascension that vector b had at τ = 0. Then at any later time,  
 
 φb = φb0 + ωsτ   = φbo + ωst – ωs tMe.       (7.3) 
 
We use the sidereal rate ωs because φb is relative to the celestial sphere which is at rest with respect to 
the stars. We use + ωs because the earth is rotating counterclockwise causing φb to increase.  
 Therefore, the location of the observation point is given in Frame S spherical coordinates by 
 
 b(τ) = (RE,θ1,φb(τ))  .           (7.4) 
 
The sun in Fig 7.1 is taken to be the projection of the sun on the celestial sphere. This sphere has a very 
large radius R >> rS-E >>> RE . The position of this sun projection in Frame S spherical coordinates is 
given by  
 
 r = (R, θ, φ)  =  (R, π/2- θt, φ)        (7.5) 
 
where the two angles φ and θt are given by (6.13) and appear in Figs 6.1 and 7.1.  Here φ is the right 
ascension and θt is the declination of the sun on the celestial sphere.  
 
In Cartesian coordinates the sun position (7.5) is 
 
 x  = R sin(π/2-θt) cosφ  =   R cosθt cosφ 
 y  = R sin(π/2-θt) sinφ   =   R cosθt sinφ 
 z  = R cos(π/2-θt)   =   R sinθt      
             (7.6) 
 r = x x̂ + y ŷ + z ẑ   = x e1 + y e2 + z e3 
 

where we have used sin(π/2-β) = cosβ and cos(π/2-β) = sinβ.  Equations (7.6) are the same as equations 
(6.7) since sinθ = cosθt and cosθ = sinθt. 
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(b) Obtaining a value for φb0 in terms of φG0 
 
Let φG(τ) be the right ascension of the projected Greenwich meridian at time τ. We know that at any time 
 
  φb(τ) – φG(τ) = φ1  
 
where it is understood that everything is mod 2π.  Therefore 
 
  φb(0) – φG(0) = φ1 
 or 
  φb0 = φ1 + φG0 .         (7.7) 
 
Here φG0 is the right ascension of Greenwich on the last March equinox. This can be obtained from 
 
  φG0  =   [ 12:00 –  (Greenwich mean time at March equinox) ] * 150 .    (7.8) 
 
For example, if at the March equinox (our τ = 0) the Greenwich clock read exactly noon = 12:00, then the 
Greenwich meridian was exactly facing the sun so its projection onto the celestial sphere had right 
ascension 0o. If the Greenwich clock instead read 11:00 = 11AM at equinox, then the projection of the 
Greenwich meridian onto the celestial sphere lay at right ascension + 15o at τ = 0.  
 Here is some data from http://aom.giss.nasa.gov/srver4x3.html  , 
 

 
 
                      Table 7.1 
For example, in 2012 the March equinox occurred at 05:20 GMT so we find 
 
 φG0  =   [ 12:00 –  05:20 ] * 150 = (12 - 5.33) * 150  = 100.05o = 1.75 radians 
 

http://aom.giss.nasa.gov/srver4x3.html�
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and then φb0 = φ1 + φG0 gives the constant φb0 which appears in the various equations below. 
 
(c) Cartesian coordinates x',y',z' and velocity of the sun in Frame S'  
 
We wish to know r', the position of the celestial sphere sun as viewed from rotating Frame S' . Our 
general relation is (see Fig 7.1) 
 
 r = r' + b .            
 
Since R  >> b = RE we have  
 
 r' ≈ r  .           (7.9) 
 
As shown in Ref [6] Appendix A (A.13.c), at some arbitrary point r,θ,φ in Frame S the Cartesian unit 
vectors are given in terms of the spherical unit vectors according to  
 
 x̂  = cosφsinθ r̂   + cosφcosθ θ̂  - sinφ φ̂ 
 ŷ  = sinφsinθ r̂   + sinφcosθ θ̂  + cosφ φ̂ 
 ẑ  = cosθ r̂ – sinθ θ̂  .          (7.10) 
 
We wish to apply these equations at our observation point b = (RE,θ1,φb), and we wish to convert to the 
Frame S'  basis vectors e'n, so we make these edits (using 7.1),  
 
 θ → θ1 φ → φb    r̂  → e'3  θ̂ → - e'2     φ̂ → e'1      
 
to get 
 
 x̂  = cosφb sinθ1 e'3  – cosφb cosθ1 e'2  –  sinφb e'1 
 ŷ  = sinφb sinθ1 e'3   – sinφb cosθ1 e'2  + cosφb e'1 
 ẑ  = cosθ1 e'3  + sinθ1 e'2 .        (7.11) 
 
Therefore 
 
 r'  ≈  r = x x̂ + y ŷ + z ẑ    
 
  = x (cosφbsinθ1 e'3  – cosφbcosθ1 e'2  – sinφb e'1)  
  + y (sinφbsinθ1 e'3   – sinφbcosθ1 e'2  + cosφb e'1) 
  + z (cosθ1 e'3  + sinθ1 e'2) 
 
  = [– x sinφb + y cosφb]e'1 
  + [– x cosφbcosθ1 – ysinφbcosθ1 + z sinθ1]e'2 
  + [   x cosφbsinθ1 + y sinφbsinθ1 + z cosθ1]e'3 
             (7.12) 
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  = x' e'1 + y' e'2 + z' e'3 
  
so that the Cartesian sun location coordinates in Frame S' are given by 
 
 x' = – x sinφb + y cosφb 
 y' = – x cosφbcosθ1 – ysinφbcosθ1 + z sinθ1 
 z' =   x cosφbsinθ1 + y sinφbsinθ1+ z cosθ1 .       (7.13) 
 
Next, into these three expressions we insert our previous results (7.6),  
 
 x  =   R cosθt cosφ 
 y  =   R cosθt sinφ 
 z   =   R sinθt          (7.6) 
 
to get: :  
 
 x' = - x sinφb + y cosφb 
  = - R cosθt cosφ sinφb + R cosθt sinφ cosφb 
  =  R cosθt[sinφ cosφb - cosφ sinφb]  
  =  R cosθt sin(φ –φb)  
 
 y' = – x cosφb cosθ1 – y sinφb cosθ1 + z sinθ1 
  = – R cosθt cosφ cosφb cosθ1 – R cosθt sinφ sinφb cosθ1 + R sinθt sinθ1 
  = R [sinθt sinθ1 – cosθtcosθ1(cosφ cosφb + sinφ sinφb) ]  
  = R [sinθt sinθ1 – cosθt cosθ1 cos(φ–φb) ]  
 
 z' =   x cosφb sinθ1 + y sinφb sinθ1+ z cosθ1 
  = R cosθt cosφ cosφb sinθ1 + R cosθt sinφ sinφb sinθ1 + R sinθt cosθ1 
  = R [cosθt sinθ1 (cosφ cosφb + sinφ sinφb  ) + sinθt cosθ1 
  = R [cosθt sinθ1 cos(φ-φb) + sinθt cosθ1]  
  = R [sinθt cosθ1  + cosθt sinθ1 cos(φ-φb)]  
 
The last three results may be summarized  (r' ≈ x' e'1 + y' e'2 + z' e'3 ) ,  
 
 x' =  R cosθt sin(φ –φb)  
 y' =  R [sinθt sinθ1 – cosθt cosθ1 cos(φ–φb) ] 
 z' =  R [sinθt cosθ1 + cosθt sinθ1 cos(φ-φb)]      (7.14) 
 
where θt and φ are given by (6.13) and φb by (7.3).   
 Equations (7.14) give the Cartesian coordinates of the sun's location on the celestial sphere in Frame 
S' which rotates with the earth.  
 As shown in Fig 7.1, the phase (φb–φ) takes all values in the range 0,2π during a 24 hour day, with φb 
doing most of the moving (in the positive direction). If we are only interested in using (7.14) to plot the 
daily trajectory of the sun, we can treat p ≡ (φb–φ) as a generic parametric argument p which runs 0 to 2π 
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during the day. Such an argument can then be written p = ωt as t runs 0 to 24 hours(ω = 2π/24 rad/hr). We 
then obtain this version of (7.14) suitable for plotting the daily trajectory of the sun :  
 
 x' =  – R cosθt sin(ωt)    // valid only for making trajectory plots 
 y' =    R [sinθt sinθ1 – cosθt cosθ1 cos(ωt) ] 
 z' =    R [sinθt cosθ1 + cosθt sinθ1 cos(ωt)]  .      (7.15) 
 
One might wonder now about the location of the mean fictitious sun in Frame S'. Recall from (7.3) the 
right ascension of the observer site (projected onto the celestial sphere)  
 
 φb(τ) = φb0 + ωsτ .         (7.3) 
 
For the mean fictitious sun we have from (6.14) that 
 
 φf = Ω0t - α            (6.14) 
 
but we want this in terms of time τ, so using (7.2) and tMe as in (4.12),  
 
 φf = Ω0(τ + tMe) - α   = Ω0τ  +  [Ω0 tMe - α]   = Ω0τ  +  k 
 k ≡  [Ω0 tMe - α]   = -.032437114 rad  (2012) .      (7.16) 
 
Angle k is thus the right ascension of the mean fictitious sun at March equinox τ = 0. Then the fictitious 
sun is described by 
 
 φf(τ)  = Ω0τ + k  // radians k =  -.032437114 rad  (2012) 
 θt,f(τ) = 0  // θtmax = 0        (7.17) 
 
so that, using the fact (1.6) that ωs - Ω0 = ω, for the mean fictitious sun we get 
 
 (φf-φb)  = Ω0τ + k – [φb0 + ωsτ]  = –ωτ + (k - φb0)      (7.18) 
     
and then (7.14) for the fictitious sun position in Frame S'  reads,  
 
 x'f =  – R sin(ωτ – k + φb0)  
 y'f =    R [–cosθ1 cos(ωτ – k + φb0) ] 
 z'f =    R [  sinθ1 cos(ωτ – k + φb0)]   .  // mean fictitious sun   (7.19)  
 
Viewing the fictitious sun from the north pole one gets 
 
 x'f =  – R sin (ωτ – k + φb0)  
 y'f =  – R cos(ωτ– k + φb0) ] 
 z'f =    0      // mean fictitious sun, North Pole (7.20) 
 



Section 7:  Coordinates of the Sun viewed from Frame S' 

  67 

As τ increases, these equations describe the fictitious sun rotating clockwise around the north pole, so as 
usual the sun rises in the east, 
 

    Fig 7.2 
 
The velocity and acceleration of both the actual and fictitious sun's apparent motions on the celestial 
sphere (as seen by our Frame S' observer) can be obtained by differentiating (7.14) and (7.19). The 

velocity requires expressions for θ•t and φ•   (φ•b = ωs) obtained from (6.13), and then acceleration requires 

θ••t and φ••. The results are easily obtained in Maple and then approximations can be made as needed.  
 
(d) Spherical coordinates θ',φ' of the sun in Frame S'  
 
Warning: The angle φ' here is totally unrelated to the angle called φ' which appears in Figs 1.3, 3.4 and 
6.1 and which is used throughout Section 6. 
 
We can convert the above equations to a spherical coordinate system (r',θ',φ') which has its origin at the 
Frame S' observation point on the surface of the earth with the z' axis pointing up: 
 

        Fig 7.3 
 
 
In this system, azimuth φ' = 0 is the east, and increases positively to the north. The noon sun always has φ' 
= ± π/2.  At equinox, the sun rises at φ' = 0 and sets at φ' = π.  
 The general plan for converting to spherical coordinates starts as follows :  
 



Section 7:  Coordinates of the Sun viewed from Frame S' 

  68 

 ρ'2 = x'2+ y'2 
 r'2 = x'2+ y'2 + z'2  .          (7.21) 
 
Since r' lies on a celestial sphere of radius R, we know ahead of time that r' = R and can confirm that in 
Maple using the x',y',z' expressions given in (7.14).  On the other hand, ρ' is a bit messy,  
 
 (ρ'/R)2 = (x'/R)2 + (y'/R)2   = [cosθt sin(φ –φb)]2 + [sinθt sinθ1 – cosθt cosθ1 cos(φ –φb)]2 
 
  = cos2θtsin2(φ –φb) + cos2γ         (7.22) 
   
where     
 
 cosγ ≡ sinθt sinθ1 – cosθt cosθ1 cos(φ –φb) .      (7.23) 
 
The relation between Cartesian and spherical coordinates is  
 
 x' = r'sinθ'cosφ'   y' = r'sinθ'sinφ'  z' = r'cosθ' 
 
where sinθ' is always positive since θ' lies in (0,π). Meanwhile,  
 
 ρ'2 = x'2+ y'2 = r'2sin2θ'  => ρ' = r' sinθ' ,      (7.24) 
 
so that 
 
 x' = ρ'cosφ'    y' = ρ'sinφ'  z' = r'cosθ'    (7.25) 
 
and we end up with 
 
 cosθ' = z'/r'  cosφ' = x'/ρ'  tanφ' = y'/x'  
 sinθ' = ρ'/r'  sinφ' = y'/ρ'  r' = R      (7.26) 
 
Installing the expressions (7.14) we then find that 
 
 cosθ' =  [sinθt cosθ1  + cosθt sinθ1 cos(φ-φb)]  
 sinθ' = ρ'/r' = cos2θtsin2(φ –φb) + cos2γ        (7.27) 
     
 cosφ' = x'/ρ'  = [cosθt sin(φ –φb)] / cos2θtsin2(φ –φb) + cos2γ   
 sinφ' = y'/ρ'   = [sinθt sinθ1  – cosθt cosθ1 cos(φ –φb) ]/ cos2θtsin2(φ –φb) + cos2γ    
 tanφ' = y'/x'  = [sinθt sinθ1  – cosθt cosθ1 cos(φ –φb) ]/ [cosθt sin(φ –φb)]    (7.28) 
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Therefore, we may write 
 
 θ' = cos-1[sinθt cosθ1  + cosθt sinθ1 cos(φ-φb)] 
 φ' = tan-1 ( [sinθt sinθ1  – cosθt cosθ1 cos(φ –φb) ] / [cosθt sin(φ –φb)] ) .   (7.29) 
  
In the above equations, the following objects appear:  
 
 θt = sin-1[sinθtmax  sin(ψ - α)]         (6.13) 
 φ  = tan-1[cosθtmax tan(ψ - α)]  .        (6.13) 
 ψ  =  Ω0t + 2e sin(Ω0t) + (5/4)e2 sin(2Ω0t)    // + order e3 which we ignore     (4.31)  
 α = π/2 - φper          (1.9)) 
 t = τ + tMe           (7.2) 
 φb  = φb0 + ωsτ  =  φ1 + φG0 + ωsτ   .      (7.3),(7.7) 
 
As the sun moves in the sky, equations (7.29) give the position of the sun in Frame S' spherical 
coordinates based at an observation point located at (θ1,φ1), where θ1 is the polar angle from the north 
pole (colatitude) and φ1 is the longitude east of the Greenwich meridian. Angle φG0 is the right ascension 
of Greenwich at the last March equinox.  



Section 8:  The Equation of Time Revisited 

  70 

8.  The Equation of Time Revisited 
 
(a) Definition of new azimuths Φ' and Φ's 
 
Recall the depiction of the Frame S' coordinate system given in Fig 7.3 which we replicate here with the 
addition of two new azimuthal angles Φ' and Φ's,   
 

      Fig 8.1 
 
For an observer in the southern hemisphere below latitude - 23o, the azimuth φ' of the sun follows a 
regular pattern all year long:  the sun rises generally in the east at φ' = 0 ± Δ, reaches noon in the north at 

φ' = π/2, sets generally in the west at φ' = π ∓ Δ, and hits midnight at φ' = 3π/2 = -π/2. The size of Δ 
varies with latitude and the time of year and is zero at equinoxes and maximal at solstices, as shown in 
Fig 9.5 below. For such an observer we might define a shifted azimuth in order to place midnight at the 
discontinuity point where 2π → 0,  
 
 Φ's ≡  π/2 + φ'  .           (8.1) 
 
The sun rises in the east at Φ's = π/2 ± Δ, reaches noon in the north at Φ's = π, sets in the west at Φ's = 

3π/2 ∓ Δ, and hits midnight in the north at Φ's = 2π = 0.  
 
For an observer in the northern hemisphere above latitude 23o, the appropriate sun-tracking azimuth 
would be this,  
 
 Φ'   ≡  π/2 – φ' .   // Φ's  = π – Φ'      (8.2) 
 

The sun rises in the east at Φ' = π/2 ∓ Δ , reaches noon in the south at Φ' = π, sets in the west at Φ' = 3π/2 
± Δ, and hits midnight in the north at Φ' = 2π = 0.  
 
For viewers in the tropic region between -23o and +23o, the "sun tracking azimuth" is Φ's for part of the 
year, and Φ' for another part of the year. For example, the Honolulu image in Fig 3.12 shows that Φ' is 
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appropriate for most of the year when the sun is in the south, but for part of the year near June solstice the 
Φ's azimuth is appropriate.  
 

 
  polar = 70 lat = 20  Honolulu, Mexico City, San Juan      Fig 8.2 
 
As we shall see in Section 11, it is not very useful to study the analemma for a tropical viewer using 
Frame S' polar coordinates θ',φ' using any of the three azimuths, but the direct calculation of the 
analemma "on film" using Cartesian coordinates x',y',z' always works.  
 We continue now assuming a northern hemisphere observer above 23o latitude, mainly because we 
shall be interested in the limiting case of the North Pole, and because we shall be studying analemmas 
photographed by such observers.  
 Using equation (7.29),  
 
 φ' = tan-1 [sinθt sinθ1  – cosθt cosθ1 cos(φ –φb) ]/ [cosθt sin(φ –φb)] ,   (7.29) 
 
we may relate Φ' to the position of the actual sun on the ecliptic this way, using (8.2), 
 
 Φ' = π/2 – tan-1 ( [sinθt sinθ1  – cosθt cosθ1 cos(φb-φ) ]/ [–cosθt sin(φb-φ)] ) .    
 
Then using the identity (A.12), 
 
 π/2 – tan-1([y]/[x])   =  π  + tan-1([-x]/[-y])       (A.12) 
 
this becomes, for the actual and fictitious suns,  
 
 Φ'  = π + tan-1 ([cosθt sin(φb-φ)] / [– sinθt sinθ1  + cosθt cosθ1 cos(φb-φ) ] )  
 Φ'f = π + tan-1 ( [sin(φb-φf)] / [cosθ1 cos(φb-φf) ] )   .     (8.3) 
 
Using the fact that Φ's  = π – Φ' , and the second line of (A.4) inverted,  
 
 tan-1( [y]/[x]) = π - tan([y]/[-x]),          (A.4) 
 
and the fact that -π and π represent the same angle, we can write for southern observers below -23o,  
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 Φ's    = π + tan-1 ([cosθt sin(φb-φ)] / [sinθt sinθ1  – cosθt cosθ1 cos(φb-φ) ] )  
 Φ's,f = π + tan-1 ( [sin(φb-φf)] / [– cosθ1 cos(φb-φf) ] )     (8.4) 
  
where the difference from (8.3) is that both bottom brackets are negated.  
 
At the north pole (8.3) becomes (on the second line, tan-1( tan(φb-φf) ) = (φb-φf) )  
 
 Φ'NP   = π + tan-1 ([cosθt sin(φb-φ)] / [cosθt cos(φb-φ) ] )   =  π + (φb-φ) 
 Φ'fNP = π + tan-1 ( [sin(φb-φf)] / [cos(φb-φf) ] )                   = π + (φb-φf)   (8.5) 
 
Taking the difference, we find that 
 
 Φ'NP – Φf'NP   = – (φ – φf)  
or        
 ΔΦ'NP  =  – Δφ .  =>  Φ'NP  =  Φf'NP – Δφ    (8.6) 
 
where Δφ is the "equation of time" shown in (6.15a), 
 
 Δφ(t)  ≡ φ - φf   = tan-1[cosθtmax tan(ψ-α)]  –  (Ω0t-α)      (6.15a) 
 ψ  =  Ω0t + 2e sin(Ω0t) + (5/4)e2 sin(2Ω0t)    // + order e3 which we ignore   .  (4.31)  
 
Recalling now that 
 
 φf(τ)  = Ω0τ + k  k =  -.032437114 rad  (2012)     (7.17) 
 
 φb(τ) = φb0 + ωsτ .         (7.3) 
 
We can write the second line of (8.5) as 
 
 Φ'fNP = π + (φb-φf)  = π + [φb0 + ωsτ] - [Ω0τ + k]  =  π + (ωs- Ω0)τ + (φb0-k) 
 
    = π + ωτ + (φb0-k)   // using (1.6)     (8.7) 
 
(b) Local Time, Sundial Time and the Equation of Time 
 
GMT. For our purposes here, we make no distinction between the various kinds of precision global time 
indicated by the letters GMT, UT, UT0, UT1, UTC and so on, so we will just use GMT. We are not 
concerned about tiny differences between these times due to things like the Chandler wobble mentioned 
at the end of Section 1 (a).  
 GMT means Greenwich Mean Time which is a 24 hour time system set so that the mean fictitious sun 
always passes over the Greenwich meridian (the prime meridian, longitude = 00) at GMT = 12:00. At this 
instant, the entire world experiences the same "day", perhaps Thursday. At GMT = 12:01 the world is still 
doing Thursday, except a tiny strip on the meridian opposite Greenwich has moved to Friday, and then 
Friday "grows" as time moves on. This meridian at φ1 = 180o is the GMT international date line, though 
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the actual date line has a deviation in the southern hemisphere. Thus it is that Samoa rings in the new year 
Jan 1 while it is still GMT noon Dec 31 in London (and 4AM in California).  
  
LMT. The corresponding time at an arbitrary Frame S' observer site is LMT meaning Local Mean Time, 
and it is given by 
 
 LMT = [ GMT + (φ1/15) ]  mod 24 .        (8.8) 
 
where φ1 is the site's longitude east of Greenwich, measured in degrees. At our observer site, the mean 
fictitious sun always crosses the local meridian at LMT =  12:00. So GMT is just LMT for Greenwich.  
 This LMT should not be confused with time zone times which are binned every 15o (more or less). 
 Our observer can set a local clock to his LMT using the above equation and obtaining live GMT from 
a website displaying GMT, from a GMT "clock app", or from a WWV broadcast (where GMT is called 
"coordinated universal time" or UTC).  
 
We know from (8.7) that Φ'fNP advances at the linear rate ωτ, so it can be related to LMT which advances 
at that same linear rate, albeit scaled to hours instead of degrees. We claim in fact that 
 
 LMT = 12(Φ'fNP/π)   // Local Mean Time     (8.9) 
 
We know that Φ'fNP  = π when the fictitious sun crosses the noon meridian, and there LMT = 12 = 12:00. 
Midnight occurs when Φ'fNP = 0 which is then LMT = 0. Since Φ'f is linear, (8.9) is thus proved.  
 
Let us now define another time LST based on the azimuth of the actual sun,  
 
 LST ≡ 12(Φ'NP/π)   // Local Sundial Time     (8.10) 
 
This LST clock reads 12:00 when the actual sun crosses the local meridian, Φ'NP = π. This is the time 
when a local sundial vane shows no shadow to either side, hence the name "local sundial time".  
 
Building an electronic LST clock: One could imagine constructing an electronic clock to display LST by 
having a feedback servo system which very slowly slews the clock rate so that it stays in daily sync with 
the event of the actual sun crossing the meridian every noon time (LST = 12:00). The design might be 
sophisticated in that it can remain in "lock" through some number of completely overcast days due to 
prediction based on recent past history. The clock rate is uneven because, during the year, the actual sun 
slowly wanders back and forth in right ascension relative to the mean fictitious sun by about ±15 minutes 
as indicated by the Equation of Time shown as the red curve in Fig 6.6. Our electronic LST clock is 
"better" than an actual sundial only because it displays time at all times, day and night, and even works on 
overcast days. 
 
Using (8.9), (8.10) and (8.6), we find that 
 
 LST – LMT   =  12(ΔΦ'NP/π)   =  – 12(Δφ/π)  . // hours and radians   (8.11)  
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Here are four ways to write this last equation 
 
 [LST – LMT]hrs  =  – 12(Δφrad/π)        (8.12) 
 
 [LST – LMT]hrs  =  – 12(Δφdeg/180)       (8.13) 
 
 [LST – LMT]min  =  – 60*12(Δφrad/π)  = – (720/π)Δφ     (8.14) 
 
 [LST – LMT]min  =  –60*12(Δφdeg/180)  = – 4 Δφdeg =  –  Δφmin .   (8.15) 
 
It is most common to express the equation of time in minutes, and from (8.14) and (6.15a) we write 
 
 EOT(t) ≡  [LST – LMT]min =  – (720/π)Δφrad  =  - 4 (180/π) Δφ(6.15a)  
 
  =  – (720/π) { tan-1[cosθtmax tan(ψ-α)]  –  (Ω0t-α) }  .     (8.16) 
 
A plot of this EOT(t) ~ –Δφ = φf-φ was already shown in Fig 6.7. Here we replicate that plot adding 
some horizontal gridlines  

 
             Fig 8.3 
 
The EOT(t) plot for the actual sun is of course the red curve, while the green line represents the fictitious 
sun. Recall that the left edge corresponds to t = 0, Jan 3, perihelion. On the upper half of this plot, we 
have – Δφ  > 0 so LST > LMT which means the sundial time is ahead of LMT, the sundial is "running 
fast", and the actual sun is ahead of the fictitious sun on the celestial sphere, φf > φ. The opposite of 
course is true for the lower half of the plot. 
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9. Noon and Midnight, Sunrise and Sunset 
 
Angle θ1 continues here to be the colatitude of the Frame S' observation site. Letting θLAT be the 
corresponding latitude, so that θLAT = π/2 - θ1, one can write all the equations below with these simple 
changes,  
 
 sinθ1  →  cosθLAT   cosθ1 →  sinθLAT cotθ1 → cotθLAT . 
 
(a) Conditions for Noon and Midnight 
 
The path of the sun in local Frame S' coordinates is given by 
 
 θ' = cos-1[sinθt cosθ1  + cosθt sinθ1 cos(φ-φb)] 
 φ' = tan-1 [sinθt sinθ1  – cosθt cosθ1 cos(φ –φb) ]/ [cosθt sin(φ –φb)]    (7.29) 
 
where 
 
 θt = sin-1[sinθtmax  sin(Ω0t + 2e sin(Ω0t) - π/2 + φper)] 
 φ  = tan-1[cosθtmax tan(Ω0t + 2e sin(Ω0t) - π/2 + φper)]      (6.13) 
 φb  = φb0 + ωsτ  =  φ1 + φG0 + ωsτ  with  τ = t - tMe             (7.3), (7.7), (7.2) 
 
and here is the picture showing the observer site Frame S' coordinates,  
 

       Fig 7.3 
 
Noon occurs when the local polar angle θ' assumes its smallest value during the day;  the sun is as much 
"overhead" as it will be for that day; it is at its closest to the zenith z' axis.  
 Looking at the first of equations (7.29) quoted above,  
 
 cosθ'  = [sinθt cosθ1  + cosθt sinθ1 cos(φ-φb)]  ,       (9.1) 
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we naively ask: what is the value of (φ-φb) at noon? The quantities cosθt and sinθ1 are always positive, 
so cosθ' is maximum when cos(φ-φb) = 1. Pondering the shape of cosθ' for θ' in 0,π (its legal range), one 
concludes that θ' is minimal when cosθ' is maximal. Therefore: 
 
 noon:  cos(φ-φb) = 1  φ = φb  φ = (6.13) quoted above 
 midnight:  cos(φ-φb) = -1  φ = φb + π     (9.2) 
 
These both imply that sin(φ-φb) = 0. Looking at the second of equations (7.29),  
 
 tan φ' =  [sinθt sinθ1  – cosθt cosθ1 cos(φ –φb) ]/ [cosθt sin(φ –φb)]    (7.29) 
 
we conclude that at noon, tanφ' = ±∞ so φ' = ±π/2. According to the figure above, this means that at noon 
the sun lies on the local meridian, a north-south line of longitude passing through the observation site.  
 
Having "done the math", we now peruse Fig 7.1 where things are completely obvious :  
 

      Fig 7.1 
 
When φb = φ, the Frame S' origin on the earth and the sun on the celestial sphere have the same azimuth 
angle, so this is noon. Midnight occurs when φb = φ + π and therefore cos(φ-φb) = -1.  
 
The conditions for noon and midnight of the mean fictitious sun are given by 
 
 fictitious noon:  cos(φf-φb) = 1  φf = φb  
 fictitious midnight:  cos(φf-φb) = -1  φf = φb + π    (9.3) 
 
where 
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 φf = Ω0t  - α  =  Ω0t  - π/2 + φper  =  Ωoτ + k with k = [ Ω0tMe - α ]    (6.14),(7.16) 
 φb  = φb0 + ωsτ  =  φ1 + φG0 + ωsτ  with  τ = t - tMe            (7.3), (7.7), (7.2) 
 
(b) Local time of Noon and Midnight : approximations 
 
From (8.12) we know that local mean time and local sundial time are related by 
 
 LMT = [LST + (12/π)Δφ] mod 24  ,       (9.4) 
 
where Δφ is the Equation of Time (in the form (6.15a)), 
 
 Δφ  = -φf + φ 
 
      = – Ω0t +α   + tan-1[cosθtmax tan(ψ-α)] .       (6.15a) 
 
Noon means the sundial has no side shadow and so LST = 12:00. From (9.4) this occurs at local time,  
 
 LMT(noon) = [12:00 + (12/π)Δφ] mod 24        (9.5) 
 
and we know this LMT will lie in the general range 11:45 to 12:15.  Similarly,  
 
 LMT(midnight) = [00:00 + (12/π)Δφ)] mod 24  .       (9.6) 
 
These results can be converted to GMT using (8.8) written as 
 
 GMT = [ LMT – (φ1/15)] mod 24        (9.7) 
 
where φ1 is the observer's longitude east of Greenwich in degrees.  
 For 2012 parameters, here is a plot of the LMT(noon) from (9.5) and (6.15a) above 
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               Fig 9.1 
 
The vertical lines were placed using days computed in (4.11). Note that 0.1 hour = 6 minutes.  
 
This is just a restatement of the equation of time Fig 6.6 with some LMT clock times added on the left. 
On September equinox, at solar noon the LMT clock reads 11:52 AM so "the sundial is running fast".   
 
Precision calculation of solar noon. In the discussion just above, one can roughly look up on the graph Δφ 
for a day of interest and use that to compute LMT(noon) using (9.5). To get a more precise result, one 
would use equation (6.15a) above to compute Δφ, but the question arises:  exactly what t should one use 
in (6.15a)?  If one knew the exact t of solar noon on our day of interest, that would be the right t to use, 
but of course one doesn't know the exact t of solar noon! We then have to make an approximation.   
 In Δφ(t=τ+tMe) we might set τ = 24d hours for day "d" of the year starting at March equinox. This 
approach corresponds to the left drawing below, 
 

 Fig 9.2 
 
where the red line shows how we approximate Δφ as being a constant for the entire day d. In this 
approach, things are a little hazy at the left end of the graph near τ = 0, but since Δφ is a slowly varying 
function over a range of a few days, this approximation will work pretty well.  
 A better approximation (right drawing) is to set τ in Δφ(t=τ+tMe) to be the time of noon for the mean 
fictitious sun, which we know is going to be ± 15 min from the noon of the actual sun. This occurs 
according to (9.3) when φf = φb + 2πd which from (7.1) tell us  –ωτ + (k - φb0) = 2πd. This then gives 
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the time of fictitious sun noon to be τ = 12 (k - φb0)/π + 24d hours, where φb0 = φ1 + φG0 as in (7.7) and 
constant k  is given in (7.16) as -.03243 radians for year 2012. Quantity φG0 is the right ascension of 
Greenwich at τ = 0. Setting d = 0, we find that the time of fictitious sun noon on day 0 occurs at τ0 =  12(k 
- φb0)/π.  For the picture as drawn, this would be a positive number. If the τ = 0 line falls in the right half 
of day d = 0, then this τ0 is a negative number.  
 Finally, one could find a numerically exact solution for t of actual solar noon on day d by solving a 
transcendental equation for a value of t on each day. That equation is just (9.2),  
 
 φ = φb           (9.2) 
           
Replacing φ from (6.13) and φb from (7.3), and with tMe from (4.12),  the above becomes 
 
 tan-1[cosθtmax tan{ Ω0t + 2e sin(Ω0t) + (5/4)e2 sin(2Ω0t) -π/2+φper}]  =  φb0 + ωst  – ωstMe 
or 
 cosθtmax tan{ Ω0t + 2e sin(Ω0t) + (5/4)e2 sin(2Ω0t) -π/2+φper}  =  tan(φb0 + ωst  – ωstMe) 
 
where one sees t appearing on both sides  ( t = τ + tMe from (7.2)).  
 
(c) Another approach to noon 
 
As noted above, noon occurs when (φ-φb)  = 0. We can write an expression for (φ-φb) as follows, using 
the facts that φ = φf + Δφ, φb = φb0 + ωsτ (7.3) and φf  =  Ω0τ + k (7.17) :  
 
 (φ-φb) = φf + Δφ - ωsτ - φb0  =  Ω0τ + k + Δφ - ωsτ - φb0 
 
   =  -ωτ +k+ Δφ- φb0   // since ωs = ω + Ω0 as in (1.6)  
 
   = -ωτ -  [φb0 - k – Δφ]]  
 
  =  -ωτ- κω   // κ ≡  [φb0 - k – Δφ]/ω 
 
  = - ω(τ+κ) 
 
  = -ωt'           (9.8) 
 
where we define a shifted time t' according to 
 
 t' =  τ + κ  κ = [φb0 - k – Δφ]/ω .       (9.9) 
 
In this shifted time t', which is specific to our selected day (since Δφ is specific), noon occurs at  
 
 t' = 0  // noon          (9.10) 
 
since this makes φ = φb.  This fact is not very exciting, but becomes useful in the next section.  
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(d) Sunrise and Sunset, Length of Day, Noon Elevation of the Sun 
 
Sunrise and Sunset 
 
Looking at Fig 7.3 above, the condition for nominal sunrise and sunset on a perfectly smooth spherical 
earth is  
 
 θ' = π/2 .   => cosθ' = 0 .        (9.11) 
 
Nominal means that the center of the sun passes through the horizon plane θ' = π/2. Looking then at the 
first equation of (7.29) we obtain the condition (sr = sunrise, ss = sunset) 
 
 [sinθt cosθ1  + cosθt sinθ1 cos(φ-φb)sr,ss]  = 0      (9.12) 
 
so that  
 
 cos(φ-φb)sr,ss  = – sinθt cosθ1 / (cosθt sinθ1)   = – tanθt cotθ1  .    (9.13) 
   
Since φ and θt are both complicated functions of time t, as shown in (6.13), this is a transcendental 
equation one would have to solve numerically for the times of sunsets and sunrises.  
 We can, however, use either of the approximation methods discussed in section (b) above. The first 
method would just set τ = 24d to evaluate θt(t=τ+tMe). As for the second method, using the fact that (9.13) 
says cos(φf-φb)sr,ss  = 0 for the fictitious sun, and the fact that (φf-φb)  = –ωτ + (k - φb0) from (7.18), 

one finds that (φf-φb)sr,ss  =  ± π/2 - 2πd where d = days, and then τ± = 12(k - φb0)/π ∓ 6 + 24d where 

the - is for sunrise and the + for sunset. This then just says τ±  = τnoon ∓ 6  hours, which seems pretty 
reasonable (all for the fictitious sun). 
 So, for our selected day, we compute θt(t=τ+tMe) from (6.13) and then sunrise and sunset occur when  
 
 cos(φ-φb)sr,ss  =  – tanθt,sr,sr cotθ1       (9.13)  
 
or, using (9.8),  
 
 cos(ωt'sr,ss)  =  – tanθt,sr,ss cotθ1  .        (9.14) 
 
If we assume the simpler approximation τ = 24d, then θt is the same for sunrise and sunset so that 
 
 t'sr = – (1/ω) cos-1[– tanθt cotθ1]   < 0  // sunrise θ1 = colatitude 
 t'ss = + (1/ω) cos-1[– tanθt cotθ1]   > 0  // sunset     
or             (9.15)  
 t'sr = – (1/ω) cos-1[– tanθt tanθLAT]  < 0  // sunrise θLAT = latitude 
 t'ss = + (1/ω) cos-1[– tanθt tanθLAT]  > 0  // sunset  
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where ω = 2π rad/day = (π/12) rad/hr. These times are relative to t' = 0 as noon. We know the LMT of 
noon from (9.5) and then (9.15) tells us the displacement from that noon time of sunrise and sunset. In an 
exact numerical solution (or using the more accurate approximation discussed above), one would find that 
these displacements are not quite the same because θt changes slightly between sunrise and sunset, but 
we ignore this fact in our simple approximation as illustrated in Fig 9.2. 
 Looking at (9.14), one sees there is no solution t' for sunrise or sunset when | tanθt cotθ1 | > 1. This 
occurs in the northern hemisphere for observers with θ1 < θt . For them the sun is either up all the time or 
down all the time so there are no sunrises or sunsets. The corresponding condition in the southern 
hemisphere is θ1 > π-θt .  
 Here is a plot of t'ss for a selection of northern hemisphere latitudes which uses (9.15) for t'ss and 
(6.24) for θt  [tp_ss = t'ss,  phip_sr  = φ'sr for making Fig 9.4 below ]  
 

 

  Fig 9.3 
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For the southern hemisphere, negate latitude labels in Fig 9.3 and reflect all curves vertically through the 
horizontal line at tss = 6 hours. This follows from (9.15) and the rule cos-1(-x) = π - cos-1(x).     
 
Example: In London (θLAT = 51.5o) at June solstice, t'ss ≈ 8.2 = 8:12. From Fig 9.1, noon occurs at LMT 
= 12:02, so nominal sunset would then be at about 8:14 PM. Since London is on daylight savings time, 
clock time of nominal sunset would then be 9:14PM. The official value is 9:21 PM, about 7 minutes later. 
Sunrise time would be 12:02 - 8:12 = 3:50 AM, but DST moves this to 4:50 AM. The official number is 
4:43 AM, about 7 minutes earlier (see comments in next section). http://www.sunrisesunset.com/England/  
 
Length of Day 
 
The nominal length of day is given by, 
 
 tday = 2 t'ss  = (24/π) cos-1[- tanθt cotθ1]  .       (9.16) 
 
Here we have assumed that "day" is twice the noon-to-sunset time, where sunset means the point at which 
the center of the sun passes through the horizon. Various adjustments are usually made to this result:  (1) 
sunrise is usually defined as occurring when the upper limb of the sun first appears, and sunset when the 
upper limb disappears, since this controls "daylight". This correction is a function of the angle the sun 
makes with vertical at the horizon when it rises and sets (see below); (2) when the sun is just below the 
horizon, it appears above the horizon due to refraction in the atmosphere. The diameter of the sun is about 
a half degree ( ~ 30 arc minutes) and the refraction effect is about the same size. Both these effects make 
the official "daylight" longer than our nominal value tday. As a ballpark estimate, these effects might add 
2 degrees to daylight or 8 minutes to the nominal value given above.  
       
Example:  At summer solstice, an observer at θLAT = 40o north latitude would have, 
 
 tday =  (24/π)cos-1[- tan(+23.4382o) tan(40o)] 
 

      
  = 14.844 hours   = 14 hr  51 min 
 
 tdaylight  ≈  tday + 8 min   ≈  15 hrs 
 
This would be the longest daylight of the year for this observation site.  
 
Sunrise azimuth 
 
We can install cos(φ-φb)sr of (9.13) into (7.29) to find the sun's azimuth at sunrise. From (9.8) we know 
that (φ-φb)sr =  -ωt'sr  >  0 so sin(φ –φb)sr > 0. Then,  
 
 
 

http://www.sunrisesunset.com/England/�
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 tanφ'sr    = [sinθt sinθ1  – cosθt cosθ1 cos(φ –φb)sr ] / [cosθt sin(φ –φb)sr] 
 
  =   [sinθt sinθ1  + cosθt cosθ1 tanθt cotθ1 ] / [cosθt 1 - tan2θt cot2θ1 ] 
  
  =   [sinθt sinθ1  + cosθt cosθ1 (sinθt/cosθt) (cosθ1/sinθ1)] / [cosθt 1 - tan2θt cot2θ1  ] 
 
  =   [sinθt sinθ1  + sinθt cos2θ1/sinθ1] / [cosθt 1 - tan2θt cot2θ1  ] 
 
  =   tanθt[sinθ1  + cos2θ1/sinθ1] / 1 - tan2θt cot2θ1   
 
  =    (tanθt/sinθ1) / 1 - tan2θt cot2θ1         
 
  =    (tanθt secθLAT) / 1 - tan2θt tan2θLAT    θLAT = latitude =  π/2-θ1  (9.17) 
 
Notice that φ'sr is an odd function of θt. This fact appears in the red circle pictures of Fig 3.12 where the 
azimuth of sunrise at winter and summer solstice are equal and opposite. For example, with θLAT = 40o,  
 

           
             Fig 9.4 
 
In this particular case the φ' sunrise azimuth at summer solstice is  +31.3o north of east,  
 

 
 
and therefore the sunrise azimuth at winter solstice is - 31.3o.  
 Here is plot of sunrise azimuth as a function of time of year for a set of northern hemisphere latitudes, 
using equation (9.17) for φ'sr and (6.13) for θt. The code is as shown above Fig 9.3 with the addition of 
these lines  [ phip_sr  = φ'sr ],  
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             Fig 9.5 
 
The curve for θLAT = 400 latitude peaks at ~31o at June solstice, in agreement with the calculation just 
done above. For latitudes in the arctic, the curves end where there is no daily sunrise. In the plotting 
mechanism, the curves end because the function goes complex.  
 The graphs are exactly the same for southern hemisphere latitudes, just negate the latitude labels. This 
follows from (9.17) which is even under θLAT → - θLAT.  
 Sunset azimuths are the same numbers, but are measured north of west instead of north of east.  
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Noon Elevation of the Sun 
 
The elevation of the sun above the horizon in terms of the sun's polar angle is given by 
  
 θel = π/2 - θ' .          (9.18) 
 
Then using (9.1) with (9.2), φ = φb,  one finds 
 
 sin(θelnoon)  =  cosθ'noon  = [sinθt cosθ1  + cosθt sinθ1] = sin(θt+θ1).    (9.19) 
 
The correct solution of sin(θelnoon) = sin(θt+θ1) for θelnoon  in this situation is as follows:  
 
 θ1+θt range:                    0                      π/2                             π 
 θelnoon = :      no noon            θ1+θt                 π - (θ1+θt)                  no noon   (9.20)  
 
For example, if  θ1+θt < 0  or θ1+θt > π there is no noon because the sun never rises.  If θ1+θt lies 
between 0 and π/2, then θelnoon = θ1+θt.  
 
Examples:   
 
θ1 = 50o (40o north latitude)              θ1+ θt  θelnoon  
 June solstice (θt= 23.4o)  73.4o  73.4o  high in sky 
 equinoxes (θt= 0)   50o  50o   
 Dec solstice (θt= -23.4o)  26.6o  26.6o  low in sky 
 
θ1 = 130o (40o south latitude)              θ1+ θt  θelnoon  
 June solstice (θt= 23.4o)  153.4o  26.6o  low in sky  
 equinoxes (θt= 0)   130o  50o 
 Dec solstice (θt= -23.4o)  106.6o  73.4o  high in sky 
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10.  Insolation 
 
(a) The tss function and hours of daylight 
 
In (9.15) the time tss from noon to sunset is given by ( we drop the prime on tss)  
 
 tss = (12/π) cos-1[- tanθt cotθ1]        (10.1) 
 
where cos-1 is in radians and tss in hours. Here θt is the declination (on the celestial sphere) of the sun at 
some time of year as shown in Fig 6.1, and θ1 is the colatitude (polar angle) of the observer site. Latitude 
θLAT = π/2 - θ1 is often used below:  sinθ1 = cosθLAT, cosθ1 = sinθLAT, cotθ1 = tanθLAT.  
 
Comment:  Although cos(-x) = cos(x), it happens that cos-1(-x) = π - cos-1(x), so one cannot "pull out" 
the minus sign in (10.1). On the other hand, both tan(x) and tan-1(x) are odd functions of x.  
 
This function tss(θt,θ1) plays an important role in the discussion below, so we want to write a precise 
expression for it, including the regions in which it is pinned to 12 or 0 hours, meaning the sun is up all the 
time or down all the time. Here is that expression (see Section 3 (f) and equation (3.2)),  
 
                                          north pole pin                   south pole pin 
  tss = 12  if:     (θt > 0 AND θ1 < θt) OR (θt < 0 AND θ1 > π - |θt| ) 
 
          south pole pin                      north pole pin 
  tss = 0   if:     (θt > 0 AND θ1 > π - θt) OR (θt < 0 AND θ1 <  |θt| ) 
 
  tss = ω-1 cos-1[- tanθt cotθ1]  = ω-1 cos-1[- tanθt tanθLAT]   otherwise  .  (10.2) 
 
Eq. (10.2) is implemented as tss(θt,lat) (θt radians, lat degrees) by this chunk of Maple code, where th1 = 
θ1, tht = θt, thLAT = θLAT, and lat = latitude :  
 

 
 
A 3D plot of this tss function is rather interesting,  
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       Fig 10.1 
 
This plot shows the regions where tss is pinned to 12 or 0. When tss = 12, the sun never sets and "day" is 
a full 24 hours long. When tss = 0 the sun never rises. By doubling the vertical axis, the above plot shows 
nominal daylight as a function of θt= tilt angle and θLAT = latitude.  
 Recall equation (5.5) for θt, where we now ignore the eccentricity of the earth's orbit,  
 
 θt(t) ≈ sin-1 { sinθtmax sin[Ω0t + φper - π/2]  }  .  // assumes e = 0   (5.5) 
 
In this equation, t = 0 corresponds to perihelion and Ω0 = 2π rad/year. The argument may be written 
 
 [Ω0t + φper - π/2]  =  Ω0(τ + tMe) - α   // (7.2) and (1.9)  
 
  = Ωτ + (Ω0 tMe - α)   = Ωτ    // (4.12)  
 
and our equation above can be expressed in terms of τ as  [θt(t) and θt(τ) are different functions ]  
 
 θt(τ) ≈ sin-1 { sinθtmax sin(Ω0τ)  }      // e = 0, τ = 0 is Me   (10.3) 
 
where τ = 0 is March equinox. Note that θt = 0 at τ = 0 as one would expect from Fig 3.5.  
 For insolation purposes, we want τ = 0 to be the June solstice, the time when θt is maximal. With this 
new time origin, the above becomes 
 
 θt(τ) ≈ sin-1 { sinθtmax cos[Ω0τ]  }    // e = 0, τ = 0 is Js   (10.4) 
or 
 θt(τ) ≈ sin-1 {  sinθtmax cos[2π (d/365.25)] }          (10.5) 
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where d is the days elapsed since the June solstice. Using (10.4) for θt in (10.2), we obtain a 3D plot of 
tss where the θt axis is replaced by a days d axis,  
 

 
 

      Fig 10.2 
 
Below is a slice of 3D Fig 10.2 taken in mid plot parallel to the left face (June solstice) 
 

 

     Fig 10.3 
 
The curve is of course continuous but has serious kinks at the pinning points. The plot below gives cross 
sections of Fig 10.2 parallel to the back face (but doubled in height).     
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             Fig 10.4 
 
The rectangular curve is for latitude = 90o (north pole, back wall of Fig 10.2). This curve is rectangular 
because at the north pole, the (nominal) sun is either up all day or down all day. The horizontal line for 
latitude = 0o reminds us that the day is always 12 hours long at the equator. These facts can be visualized 
by putting an observer on the north pole or equator in Fig 3.13 or 3.14 and remembering that the earth 
should be shrunk down to a small dot. Only the curves of latitude above the Arctic Circle pin at 24 hours 
on the top and pin at 0 hours on the bottom.  
 In the southern hemisphere the above plot is the same but one should negate all latitude labels.  
   
For some external verification of Fig 10.4, here is a web plot showing latitudes 70,50,34,23 and 0 : 
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              Fig 10.5 
     http://www.geog.ucsb.edu/ideas/Insolation.html 
                 
 
In the above we have assumed that "day" is twice the sunrise time, where sunrise means the point at 
which the center of the sun passes through the horizon (same for sunset). The ~ 8 minute adder correction 
for solar diameter and refraction was discussed in Section 9 (d). These effects and the small time 
distortion effect of orbital eccentricity are ignored in this entire Section.  
       
(b) Daily Insolation versus latitude and day of year 
 
The Frame S' polar angle θ' of the sun is given by (7.29) where we set (φ-φb) = -ωt' as in (9.8), where t' is 
a shifted time which causes noon to occur at t' = 0,  
 
 cosθ' = [sinθt cosθ1  + cosθt sinθ1 cos(ωt')]  .      (10.6) 
 
The solar power falling on 1 square meter of earth surface is proportional to cosθ'. This is simply because 
the area presented by 1 square meter of ground to the sun at angle θ' from vertical is only cosθ' square 
meters. For example, if θ' = π/2 at sunrise, then zero power is delivered to that square meter of ground. 
Our patch of ground does not care about the azimuth of the sun, only its elevation (π/2-θ'). If we assume a 
surface solar power flux of S watt/m2, then the solar energy delivered into 1 square meter of ground 
during one day (assume the ground is perfectly black and reflects nothing) is given by 
 

 insolation/S = 2 ∫
0
 tss  cosθ' dt  = 2 ∫

0
 tss   [sinθt cosθ1  + cosθt sinθ1 cos(ωt)] dt 

 

  = sinθt cosθ1 (2tss)  + 2 cosθt sinθ1  ∫
0
 tss  cos(ωt)dt  

 
  = sinθt cosθ1 (2tss)  + 2 cosθt sinθ1 (1/ω) sin(ωt)|tss0  
   
  = sinθt cosθ1 (2tss)  + (2/ω) cosθt sinθ1 sin(ωtss)      (10.7) 
 

http://www.geog.ucsb.edu/ideas/Insolation.html�
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where tss is given in (10.2). In terms of site latitude θLAT = π/2-θ1,  
 
 insolation =  S [ sinθt sinθLAT (2tss)  + (2/ω) cosθt cosθLAT sin(ωtss) ]    watts-hrs/m2/day (10.8) 
 
Daily Insolation plotted versus latitude  
 
The following is a plot of this daily insolation versus latitude at three times of the year (S = 1 watt/m2):  
 

 
 

      Fig 10.6 
 
where green, red and blue are for December solstice, equinox and June solstice. The kinks in the solstice 
curves are due to the kinks shown in tss at the pinning points in Fig 10.3. The blue June curve shows that 
as one moves north from the equator, insolation peaks around 41o, then starts to drop, but then rises again 
in the all-daylight region to have a final peak at the north pole (where the sun is up all the time). The units 
shown on this graph are watt-hours/m2/day assuming S = 1 watt/m2 from the sun.  
 As was noted in Section 1 (a), the solar flux is in fact 6.9% greater at summer solstice in the southern-
hemisphere compared to the northern due to the elliptical earth orbit. The annual average value of S is 
about 1.367 kW/m2, so we can then make this more practical version of the above plot where the vertical 
axis now shows kW-hrs/m2 per day:   
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             Fig 10.7 
which may be compared with this plot found on the web,  
     

                  Fig 10.8  
     http://www.applet-magic.com/insolation.htm 
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The 3D Daily Insolation function plotted versus latitude and day of year 
 
Here is a 3D plot showing the shape of the insolation function versus latitude and day of year (back to S = 
1). Two views of the same plot are shown.  
 

 
 

   
             Fig 10.9 
 
The front face of the cube on the left is the blue curve above, while a slice halfway back gives the green 
curve. 
 
Daily Insolation plotted versus day of year 
 
Slices parallel to the left face of the view on the left above (front face of the view on the right) give daily 
insolation versus day of year for various latitudes, which we shall now plot. Rather than express the result 
in watt-hrs/m2 per day, it is useful to express things in terms of watt-hrs/m2 per average hour of the day, 
so the units are then watt-hrs/m2/hr = watts/m2. In other words, this is the average power/m2 during the 
day and the number is then easily compared with the incident power flux 1367 watts/m2.  
 

 
 



Section 10:  Insolation 

  94 

 
             Fig 10.10 
 
An interesting fact here is that within 10o of the equator, daily insolation is not at a maximum at summer 
solstice. In fact, at the equator insolation is the same at summer and winter solstice and is at its lowest 
level of the year; it is maximal at the equinoxes. Again, Fig 3.13 and 3.14 show why this is so.  
 Negate the latitude numbers for the southern hemisphere.  
 Below is a web plot showing the same information for latitude 0,30,60 and 90. There is some small 
discrepancy in the vertical scale; the author does not say what value of S was used to make the plot.  
 

     Fig 10.11 
    http://www.physicalgeography.net/fundamentals/6i.html  

http://www.physicalgeography.net/fundamentals/6i.html�
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(c) Annual  Insolation plotted versus latitude 
 
Maple is happy to do some numerical integrations over the year of the daily insolation at selected 
latitudes. These integrals can be thought of as areas under the curves shown in Fig 10.10. The numbers 
are in kW-hrs/m2 per year:   
 

  
 
From this data we can create a normalized plot of annual insolation versus latitude. First we construct a 
left side and right side sequence of points,  
 

 
 
Then we plot the curve with gridlines, 
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             Fig 10.12 
 
The curve peaks at the equator as one might expect. (Mean temperature has a similar shape.) 
 The above graph may be compared to this web graph which was formed by averaging insolation at 
the two solstices and the two equinoxes:  
 

         Fig 10.13 
  
       http://www.applet-magic.com/insolation.htm  
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11. The Solar Analemma 
 
(a) The Sun Sphere and the Analemma 
 
In this section the word "ecliptic" means the path of the sun on some surface. On the celestial sphere, the 
ecliptic is the red circle shown in Fig 3.5. We imagine this red circle is inscribed or burned onto the 
celestial sphere by the moving sun, and then we can later view the entire circle. In this context, we shall 
show below that "the solar analemma is the sun's ecliptic on the sun sphere".  
 
What we call "the sun sphere" is a mental construct similar to, and aligned with, the celestial sphere of 
Section 3. The celestial sphere, enclosing the rate-ωs rotating earth, is at rest relative to the stars. The sun 
sphere, being a similar exterior cage affair having lines of longitude and latitude, rotates once per year 
(rate Ω0) relative to the distant stars (and the celestial sphere). Thus, the annual paths of the distant stars 
on the sun sphere are in fact white circles of latitude (declination). The fictitious sun, however, is at rest 
on the sun sphere! Recall that this fictitious sun executes a uniform annual path around the equator of the 
celestial sphere, having therefore an ecliptic equal to that equatorial circle. But the sun sphere rotates in 
the same direction and at the same speed as the fictitious sun, causing that sun to be at rest on it. If we 
now hop on board the sun sphere as a frame of reference, here is what we see:  (1) the fictitious sun at rest 
at a point on the sun sphere equator; (2) the earth rotating inside the sun sphere at rate ω = ωs – Ω0, 
which is to say, one rotation each 24 hours. (3) we also see the actual sun following some closed path on 
the surface of the sun sphere during the year, generally in the neighborhood of the fixed point of the 
fictitious sun. That closed path is called "the solar analemma"; the path is the actual sun's ecliptic on the 
sun sphere.  
 
We can and should imagine this analemma to be inscribed on the surface of the sun sphere. We could 
photograph this inscribed trail from the earth at any time after it was created. In practice, however, the sun 
leaves no such trail on the sun sphere, so in order to see the analemma we can take a series of 365 
multiple-exposure, stroboscopic, heavily filtered photos of the sun. These exposures are taken at the exact 
same local mean time every day from a rigidly mounted camera on the earth that is aimed generally in the 
known direction of the fictitious sun at that time of day. The camera film will then contain 365 white dots 
which trace out the continuous analemma locus. The film is then printed to obtain a photograph. A good 
representation of the analemma could be obtained by taking a photo perhaps every 10th day. Of course 
there are cloudy days and snowstorms and other disturbances (earthquakes!), so photographing the 
analemma is a challenging yet doable task.  
 In the strobe light of this camera stroboscope, the sun sphere is at rest, so in effect we are taking 
pictures of a fixed patch on the sun sphere. From a reference frame attached to the earth, the sun sphere 
rotates around the earth at rate -ω. The sun then appears to be executing a spiral path similar to that shown 
in Fig 3.7. The strobe camera samples this path once per rotation, and the strobed image is the analemma.  
 
As we shall see, the analemma has roughly the shape of a skinny bowling pin 
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    Bowling pin                      Analemma          Fig 11.1 
 
Sometimes analemmas are plotted with the angle axes having different scales, but in the plot above the 
two scales are the same.  
 The vertical extent of the analemma is caused by the earth's tilt. Looking at the actual sun ecliptic on 
the celestial sphere in Fig 3.5 or Fig 6.1, one sees that the sun varies between -23o to 23o relative to the 
celestial equator, so we expect the angular height of the bowling pin analemma on the sun sphere to be 
46o, which is a fairly large angle.  
 The horizontal extent is due to the azimuthal variation of the actual sun's position from that of the 
fictitious sun. This difference is the Equation of Time (6.15). Here we plot Δφ in degrees using the code 
shown above (6.4) but with a scaling factor (180/π) and with n = tMe to diy + tMe with tMe from (4.11), 
 
 

              Fig 11.2  
 
The plot shows a peak-to-peak deviation of about 7.5 degrees (green line is the fictitious sun). The left 
end of this graph is τ = 0, the March equinox, and corresponds to the gap we have intentionally left in the 
analemma drawing above. The analemma path goes up to the northeast from this gap. The narrower upper 
part of the bowling pin corresponds to the two smaller bumps on the left of the Equation of Time in the 
first half of the year, and then the wider bottom part is due to the two larger bumps which end the year. 
The shape of the equation of time curve results from a combination of the effect of the earth's tilt on the 
sun's azimuthal speed, and the effect of the earth's orbital eccentricity on that same speed, as was shown 
in Fig 6.5. Since each pair of bumps is not perfectly symmetric, the analemma is not left/right symmetric 
though it appears that way above (see Figs 11.18 and 11.26 below).  
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(b) Qualitative appearance of the inscribed analemma in photos 
 
As just explained, the analemma is aligned vertically along that sun-sphere line of longitude which 
contains the fictitious sun. In this snapshot, taken from a foggy and snowless north pole, we have turned 
off the sun, and we are viewing the previously "inscribed" analemma on the sun sphere. We can only see 
that part of the analemma which lies above the horizon plane, but we show the full analemma anyway  
(Maple, Stellarium Visio and Irfan)  
 
 

 
                     Fig 11.3 
 
The gridlines are those of the sun sphere. Notice that all the lines of longitude meet the horizon plane 
vertically, but bend toward the center going up since they must meet directly overhead of the viewer. The 
above picture will look the same regardless of the local mean time of the photo. One could wait an hour, 
the earth would rotate 15o, and then one could take another photo aiming the camera again at the 
inscribed analemma. The analemma will look exactly the same as it did in the first photo. In other words, 
the inscribed analemma just moves in azimuth as the earth rotates. 
 Now what does this same analemma look like around 8AM local mean time when viewed from 40o 
north latitude on the earth, instead of from the north pole?  The picture below is approximate, but 
demonstrates the basic facts.  
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                     Fig 11.4 
 
For this viewer, the "cage" of the sun sphere has latitude and longitude lines which appear as above. The 
sun-sphere equator is marked top center (it hits the letter E). The north pole of this cage is at the North 
star, behind the viewer and up in the sky. The analemma is still lying along its same sun-sphere line of 
longitude, but that line of longitude is tipped to the left due to the new observer location and the ~8 AM 
time of day.  
 If the observer waits 4 hours till noon, the inscribed analemma will move to the right and will become 
vertical at noon, lining up with the local meridian. At 4 PM in the afternoon the analemma will be off to 
the right and will be tipped to the right, a mirror image of the above drawing, reflected through the right 
edge of the picture which is the meridian.  
 Here is a genuine 34-shot strobed analemma which we will use below in section (g) as a case study 
(photographer's latitude 44.7o ; shot at 8 AM local mean time;  credit and reference given there)  
 

      
                    Fig 11.5 
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For the observer in Fig 11.4, the analemma can never be horizontal because its longitude line is not 
visible when horizontal. If the viewer moves to the equator, however, then at 6 AM local mean time the 
analemma will be exactly horizontal,  
 

 
                     Fig 11.6 
 
The qualitative images of the imaginary inscribed analemma shown above are those that would appear on 
the film of a camera. In the following section, we shall compute the exact shape of the analemma in 
"angle space" and not in "camera film space". In angle space, we shall find that the analemma pattern 
bends away from the center as we move away from local noon. Later, however, we shall compute the 
image of the analemma as it appears on film ("screen space") and this bending of the angle-space 
analemma goes away, and the approximate images above are realized. The exact shape and tilt of the film 
analemma depends, due to perspective effects, on the exact direction in which the camera is pointed.  
 
(c) Calculation of the analemma in angle space 
 
In this section we develop the equations used in our Maple program to compute the analemma. The math 
is described here, while the program itself is described in section (e) below. The notion of local mean time 
LMT was presented above in Section 8 (b).  
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1. Location of the actual sun and the mean fictitious sun 
 
The location of the actual sun for our Frame S' observer at polar angle θ1 is given by 
 
 θ' = cos-1[sinθt cosθ1  + cosθt sinθ1 cos(φb-φ)]     (7.29) 
 φ' = tan-1 ( [sinθt sinθ1  – cosθt cosθ1 cos(φb –φ) ] / [– cosθt sin(φb –φ)] )   (7.29) 
 Φ'  = π + tan-1 ([cosθt sin(φb-φ)] / [– sinθt sinθ1  + cosθt cosθ1 cos(φb-φ) ] ) (8.3) 
 
 θt = sin-1[sinθtmax  sin(ψ-α)]       (6.13) 
 φ  = tan-1[cosθtmax tan(ψ-α)]        (6.13)  
 ψ  =  Ω0t + 2e sin(Ω0t) + (5/4)e2 sin(2Ω0t),   t = τ + tMe   (6.13), (7.2) 
           
 φb  = φb0 + ωsτ  with  φb0 = φ1 + φG0  .    (7.3),(7.7) (11.1) 
 
Angles θ',φ' are the spherical angles of the actual sun in Frame S' as in Fig 7.3, while Φ' = π/2-φ' as in 
(8.2). Angles θt and φ are the declination and right ascension of the actual sun in Frame S as in Fig 7.1. 
Angle φ1 is the east longitude of the observer site relative to Greenwich, and φG0 is the right ascension 
that Greenwich had at the last March equinox, τ = 0. Angle θtmax is the famous 23o tilt (obliquity). Rate 
Ω0 = 2π radians per year, and ωs = ω + Ω0 is the sidereal rotation rate of the earth as in (1.6), where ω = 
2π/24 radians per hour is the solar rotation rate of the earth. The dimensionless e is the eccentricity of the 
earth's orbit, while α = π/2 - φper where φper is the 13o perihelion angle shown in Fig 1.3. Time tMe is the 
time of March equinox relative to perihelion t = 0 as in (4.12). 
 
For the fictitious sun, having e = 0 and θtmax = θt = 0, these equations reduce to  
 
 θ'f = cos-1[sinθ1 cos(φb-φf)] 
 φ'f = tan-1 ( [–cosθ1 cos(φb –φf) ] / [–sin(φb –φf)] )    
 Φ'f = π + tan-1 ( [sin(φb-φf)] / [cosθ1 cos(φb-φf) ] )   .   (8.3)  
 
 θt,f = 0 
 φf  = Ω0t - α  =  Ω0τ + k       (7.17) 
 k = [Ω0tMe - α]        (7.16) 
 φb  = φb0 + ωsτ  with  φb0 = φ1 + φG0  .    (7.3),(7.7) 
 (φb - φf) = (φb0 + ωsτ) – (Ω0τ + k)  = ωτ + (φb0- k)    (1.6)   (11.2) 
 
The difference Δφ  ≡ φ - φf is then obtained by subtracting φf above from φ in (6.13) above, and the 
result matches (6.15a),  
 
 Δφ  = – Ω0τ – k  + tan-1[cosθtmax tan(ψ-α)]     (6.15a)  (11.3) 
 
This function is called "the equation of time" and has this characteristic shape in degrees instead of 
radians (see Fig 6.5 which has t = 0 as its left edge; the figure here has τ = 0 as its left edge),  
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             Fig 11.2 
 
According to (11.2) and the fact that Δφ  ≡ φ - φf we get 
 
 (φb-φf) = ωτ + (φb0- k)  
 (φb-φ) = (φb-φf) - Δφ  =  ωτ + (φb0- k) - Δφ        (11.4) 
 
and these phases may be inserted into expressions above as needed.  
 
2. Relationship between local time LMT and master time τ :  shooting times τN 
 
In this section, ω = π/12 rad/year, and time τ is measured in hours.  
 
Recall from Section 8 that : 
 
 LMT = 12(Φ'fNP/π)          (8.9) 
 
where this fictitious-sun-tracking North Pole azimuth has the form ωτ + constant,  
 
 Φf'NP   = { ωτ + π + φb0 - k } mod 2π  .       (8.7) 
 
Here τ is our "master time" which is 0 at the last March equinox. Then, 
 
 LMT = (12/π) Φ'fNP  =  (12/π) {  ωτ + π + φb0 - k } mod 2π  
 
  = { (12/π) [ωτ + π + φb0 - k] } mod [(12/π)2π]  
 
  = { (12/π) [(π/12)τ + π + φb0 - k] } mod 24  
 
  = { τ + 12 +  (12/π)(φb0 - k) } mod 24       (11.5) 
 
If τN are the times of analemma daily photo shoots, we can solve (11.5) for τN in terms of day N and the 
LMT at which those shoots are taken,  
 
 { τN + 12 +  (12/π)(φb0 - k }  = LMT  + 24N, N = integer 
 
 τN =  [ LMT – 12 –  (12/π)(φb0 - k)]   + 24N,  N = 0,1,2.... 
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which is to say 
 
 τN  = τ0  + 24N,  N = 0,1,2.... τ0 =  [ LMT – 12 –  (12/π)(φb0- k)]   (11.6) 
 
In other words, N corresponds to the number of the day of the Nth photograph. N = 0 marks a day in the 
vicinity of the March equinox. Notice that, with ω = π/12 rad/hr,  
 
 ωτN = ωτ0 + N(2π)  => ωτN mod 2π  = ωτ0  mod 2π  
 sin(ωτN + a) = sin(ωτ0 + a)   cos(ωτN + a) = cos(ωτ0 + a)     (11.7) 
 
3. Location of the actual and fictitious strobed suns in terms of LMT 
 
The phase appearing in the first three equations of (11.1) may be written,  
 
 (φb-φ)N =  (ωτN + (φb0- k) - Δφ(τN))   = (ωτ0 + (φb0- k) - Δφ(τN)) // (11.2) and (11.7)  
 
 =  (ω[ LMT – 12 –  (12/π)(φb0-k)] + (φb0- k) - Δφ(tN))  // (11.6)  and ω = π/12 
 
 =  (ω[ LMT – 12] –  (φb0-k) + (φb0- k) - Δφ(τN)) 
 
 =  (ω[LMT- 12] - ΔφN) .         (11.8) 
 
We then arrive at this strobed version of (11.1) and (11.3),  with ω = 12/π and τ in hours,  
 
 θ'N = cos-1[sinθtN cosθ1  + cosθtN sinθ1 cos(ω[LMT- 12] - ΔφN)] 

 Φ'N =  π +  tan-1( 
[cosθtN sin(ω[LMT- 12] - ΔφN)]

 [– sinθtN sinθ1 + cosθtN cosθ1 cos(ω[LMT- 12] - ΔφN) ] )  

  
 θtN = sin-1[sinθtmax  sin(ψN-α)]  
 ψN  =  Ω0tN + 2e sin(Ω0tN) + (5/4)e2 sin(2Ω0tN),    tN  = τN(yrs) + tMe    (6.13) 
 
 ΔφN  = – Ω0τN(yrs) – k  + tan-1[cosθtmax tan(ψN-α)]  
 
 τN(yrs) =  [τ0  + 24N] / (diy*24)    N = 0,1,2...364  
 τ0 =  [ LMT – 12 –  (12/π)(φb0-k)]        (11.9) 
 
and for the fictitious sun, this strobed version of (11.2),  
 
 θ'fN = cos-1[sinθ1 cos (ω[LMT- 12] )] 
 Φ'fN = π + tan-1 ([sin (ω[LMT- 12])] / [cosθ1 cos (ω[LMT- 12]) ]) .    (11.10) 
 
As expected,  the strobed fictitious sun position is independent of strobe time τN. Its analemma is a dot.  
 Equations (11.9) lend themselves to a hand calculation of the analemma, but in our Maple code below 
we shall instead use the continuous-time equations (11.1) and create data arrays by sampling (strobing)  
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these equations with τ = τN from (11.9). In that code ω is expressed in radians/year, so the τN strobing 
times appearing there are τN(yrs). 
 
4. View of the continuous θ',Φ' data before strobing 
 
One should remember that during the year, the functions θ' and Φ' of (11.1) [ the position of the sun as 
seen from Frame S' ] oscillate every day. Here is a typical view of θ' during a year, with a zoomed section 
below (the dark red areas in the upper image are just an aliasing artifact)  
 

 
 

      Fig 11.7 
 
The daily strobing picks out a slow sinusoidal curve which tracks the envelope. In these plots, the value  
θ' = 1.57 = π/2 is that of the points of daily sunrise and sunset. In the first plot, the sun reaches maximum 
elevation (smallest θ', lowest excursion of the bottom of the envelope) at June solstice located at τ  = tJs - 
tMe = .4623 - .2084 = .2539,  using numbers from (4.11).  
 
Meanwhile, Φ' is even more violent in its activity,  
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  Fig 11.8 
 
During each day, angle Φ' of the observed sun increases from 0 to 2π and then jerks back to 0 again 
because the value is always shifted to the range (0,2π). The jerk point is Φ' = 0 which is midnight for a 
northern hemisphere observer, so we don't need to worry about our solar photographer strobing right on 
those vertical lines.  
   
(d) Calculation of the analemma in film-space 
 
The equations developed in section (c) above are used in our Maple program to compute the angle-space 
analemma. Here we show a method (installed at the end of the same Maple program) for computing the 
analemma as it appears on film.  
 
1. Overview 
 
In computer graphics language, one has "the scene" whose points have Cartesian coordinates r  = x,y,z  in 
some Frame S. As viewed by our Frame S' observer, points in the scene have Cartesian coordinates r' = 
x',y',z' and spherical coordinates R,θ',φ'. Our analemma observer has a camera which he points in some 
direction generally not aligned with the axes of Frame S'. That camera then defines a Frame Sc in which 
point r' now has coordinates rc= xc, yc, zc . This Frame Sc is often called "the eye coordinate system" 
and the transformation from r' to rc is called "the eye transformation", but we shall replace the word eye 
with the word camera. The unit vector ẑc is the direction in which the camera is pointing, x̂c is "to the 
right", and ŷc is "up". We can imagine the camera viewfinder providing a "rectangular view" of the scene. 
This view is a chunk of solid angle bordered by four planes. The intersection of this solid angle with a 
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plane whose normal is ẑc and which is some arbitrary distance out in front of the camera is a rectangle 
called "the viewport". Each 3D point in the scene rc= xc, yc, zc maps to some 2D point on the viewport, 
rv = xv,yv. The final step is to transform these viewport coordinates to coordinates on our piece of film, or 
to coordinates on a photo printed from this film. This last step is called "the screen transformation" and 
we end up with rs = xs, ys. In the case of a camera, the lens might introduce some distortion in going 
from the viewport to screen coordinates, but we shall assume this does not happen.  
 The process just described runs on millions of electronic devices on a daily basis. 
 We now carry out the steps of the program outlined above.  
 
2. The transformation from Frame S to Frame S' 
 
The first step is already done. Equation (7.14) provides the Cartesian coordinates of points in Frame S',  
 
 x' =  R cosθt sin(φ –φb)  
 y' =  R [sinθt sinθ1 – cosθt cosθ1 cos(φ–φb) ] 
 z' =  R [sinθt cosθ1  + cosθt sinθ1 cos(φ-φb)]      (7.14) 
 
where  
 
 (φb-φ) = (φb-φf) - Δφ  =  ωτ + (φb0- k) - Δφ  ,       (11.2) 
 
and R is the radius of the celestial sphere. These points are of course positions of the sun on that sphere.  
 
3. The transformation from Frame S' to Frame Sc of the camera (eye transformation)  
 
The next step is geared to a northern hemisphere observer, and we recall Fig 7.3 to the stand,  
 

        Fig 7.3 
 
For a southern hemisphere observer, we replace do south↔north, east↔west, and Φ' → Φ's.  
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Imagine a camera at the origin of the above figure which is facing south. For this camera we have 
 
 ẑc ≡ straight ahead to the south  = -e'2  = - ŷ' 

 ŷc ≡ up =  e'3 = ẑ' 
 x̂c ≡ to the right  = west = -e'1 = - x̂'  .       (11.11) 
 
Imagine that the point marked "sun" is the location of the fictitious sun at some LMT for the observer. We 
want this point to appear at the center of the camera image. Rather than rotate the camera, we will move 
the sun to achieve our goal. We have to do this set of rotations on the sun point to get the sun at camera 
image-finder center:  
 
 r'new = Re'1(π/2-θ'f ) Re'3( -[π-Φ'f]) r'fictsun  .       (11.12) 
 
For reasons to be given in a moment, let us define these new variables 
 
 αt ≡ π/2 - θ'f 
 αp ≡ Φ'f - π           (11.13) 
 
so that the sun transformation (11.12) becomes  [  r'new = (x'new, y'new, z'new)  ]  
 
 r'new = R r'fictsun          
 R ≡ R1(αt) R3(αp) .         (11.14) 
 
Then, given the usual active rotation matrices, 
 

 R1(θ) = 
⎝
⎜
⎛

⎠
⎟
⎞  1  0  0  

  0  cosθ  -sinθ  
  0  sinθ  cosθ  

   R2(θ) = 
⎝
⎜
⎛

⎠
⎟
⎞  cosθ  0  sinθ  

  0  1  0  
  -sinθ  0   cosθ  

  R3(θ) = 
⎝
⎜
⎛

⎠
⎟
⎞  cosθ  -sinθ  0  

  sinθ  cosθ  0  
  0  0  1  

 , (11.15) 

 
we find that, with help from Maple,  
 

R ≡ R1(αt) R3(αp)  = 
⎝⎜
⎜⎛

⎠⎟
⎟⎞

  1  0  0  
  0  cosαt  -sinαt  
  0  sinαt  cosαt  

 
⎝⎜
⎜⎛

⎠⎟
⎟⎞

  cosαp  -sinαp  0  
  sinαp  cosαp  0  

  0  0  1  
 = 
⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞  cosαp  -sinαp  0  

  cosαtsinαp   cosαtcosαp   -sinαt  
  sinαtsinαp   sinαtcosαp   cosαt  

 . 

             (11.16) 
Then according to the first line of (11.14) we have  
 
 x'new = cosαpx' - sinαpy' 
 y'new = cosαtsinαp x' + cosαtcosαpy'  -sinαt z' 
 z'new = sinαtsinαpx' + sinαtcosαpy' + cosαt z' .      (11.17) 
 
Now consider this vector r'new expanded two ways 
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 r'new  = x'newx̂'  + y'newŷ' + z'new ẑ' 
     =   xcx̂c     + ycŷc    +    zcẑc        (11.18) 
 
On the first line we replace the unit vectors as shown in (11.11) to get 
 
 r'new  = - x'newx̂c  - y'new ẑc + z'newŷc       (11.19) 
 
Comparing the last two equations we must have xc =  - x'new, yc = z'new and zc = - y'new.  Thus,  
 
 xc  = - cosαpx' + sinαpy' 
 yc  = sinαtsinαpx' + sinαtcosαpy' + cosαt z' 
 zc  =  -cosαtsinαp x' - cosαtcosαpy'  + sinαt z'      (11.20) 
 
and this then is the "eye transformation" taking points from Frame S' to Frame Sc of the camera. 
 
Active vs Passive:  camera pan and tilt 
  
In the above development we moved the sun to a camera-centered position using rotation R. As shown in 
Appendix B, the same result is obtained (sun at camera center) if the camera (and its rigidly attached 
axes) are instead rotated by R-1 and the sun is left where it is in the sky. The camera rotation is then 
 
 R-1 = R3(-αp) R1(-αt)  = Rz'(-αp) Rx'(-αt) .       (11.21) 
 
Looking at Fig 7.3 just above, and using the right hand rule, this says that the camera is first "tilted up" by 
angle αt , and it is then "panned" clockwise by αp . If we imagine the camera attached to some kind of 
polar angle mount, it is this mount that is in fact "panned", not the camera itself, but we shall still refer to 
this as a "pan" action. So αt and αp are the camera tilt and pan parameters. It is the equations (11.13) 
which cause the tilted then panned camera to point to the sun at film center, but we could then imagine 
adjusting αt and αp slightly to make the camera point to some location near the sun, or perhaps to some 
other location altogether. In the particular case illustrated by Fig 7.3, perhaps αt = 50o and αp = -120o. 
This model for the operation of the camera platform has implications for the way an analemma appears on 
film, as discussed in Appendix D.  
 
4. The transformation from Frame Sc to the camera film (viewport transformation) 
 
Since we have only one screen in mind (as opposed to a different screen for each different TV monitor 
resolution, say) we let the viewport be the screen and then we do the viewport transformation and 
dispense with the screen transformation. The viewport transformation is easily obtained from this picture,  
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                    Fig 11.9 
 
where one point of interest rc is shown on the celestial sphere of radius R, and where the "viewport" is 
positioned some arbitrary distance z0 to the right of the camera marked "eye". The viewport 
transformation taking us to our screen coordinates is then (by similar triangles  yc/zc = ys/z0),   
 
 xs = z0(xc/zc) 
 ys = z0(yc/zc) .          (11.22) 
 
This shows the famous "perspective divide" (by zc for each point) that used to be very expensive to do in 
computer hardware, but which has become cheap thanks to Moore's Law. If angle α were 450, one would 
have yc = zc and then ys = z0. In the Maple code we set z0 = 1.  
  
Comments: In the above picture, regardless of the tilt and pan of the camera relative to "south", the 
camera points to a scene-center point C, distance R away, which lies on a spherical surface (celestial 
sphere) whose local region is perpendicular to the camera's pointing direction. The picture above is then 
obtained by "rolling" the camera about its axis so the point rc = (xc,yc) lies in the plane of paper defined 
by xc = 0. It is not assumed that the sphere is "flat" in the region of interest, so the screen transformation 
is accurate even if the angle α  is large, as it in fact is in an analemma situation.  
 
5. Putting the pieces together 
 
The Frame S' positions of the sun are given by 
 
 x' =  R cosθt sin(φ –φb)  
 y' =  R [sinθt sinθ1 – cosθt cosθ1 cos(φ–φb) ] 
 z' =  R [sinθt cosθ1  + cosθt sinθ1 cos(φ-φb)]      (7.14) 
 
 (φb-φ) = (φb-φf) - Δφ  =  ωτ + (φb0- k) - Δφ  .       (11.2) 
 
The camera coordinates of the sun position are 
 
 xc = -cosαpx' + sinαpy' 
 yc =  sinαt sinαp x'  + sinαt cosαp y' + cosαt z' 
 zc = -cosαt sinαp x'  - cosαt cosαp y' + sinαt z'       (11.20) 
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and the film coordinates are 
 
 xs = zo(xc/zc) 
 ys = zo(yc/zc)  .          (11.22) 
 
We shall point the camera to the static location of the fictitious sun since this point is roughly at the center 
of the analemma. Recall that this point is given by (11.10)  
 
 θ'f = cos-1[sinθ1 cos (ω[LMT- 12] )] 
 Φ'f = π + tan-1 ([sin (ω[LMT- 12])] / [cosθ1 cos (ω[LMT- 12]) ])    (11.10) 
  
where ω = 2π/24 radians per hour. As noted in (11.13) and the discussion above, the parameters αt and αp 
in (11.20) are the camera tilt and pan parameters where 
 
 αt = π/2 - θ'f // tilt up to strobe-time elevation of the fictitious sun   
 αp  = Φ'f - π // pan clockwise to the strobe-time location of the fictitious sun   (11.23) 
 
The Maple code allows for adjustments to these angles to accommodate a camera which is pointed at 
some other point near the analemma. As the battery of equations above suggests, the appearance of the 
analemma on the film will be dependent on the direction in which the camera is pointed.  
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(e) A tour of Maple code which computes angle-space and screen-space analemmas 
 
The Maple code is freely available from the author upon request. The code appearing below is in screen 
clips to improve clarity and save time.  
 
In Maple, # is the comment character and % refers to "the last thing computed". A command ending with 
; displays its output, one ending with : suppresses its output. The parameters shown here are for our 1999 
Ukraine "case study" discussed in section (g) below. In the first block of code, Maple is initialized, a 
plotting package is activated, and then constants are entered 
 

 
 
Next, some one-time calculations are carried out,  
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A procedure to do the mod 2π operation is specified, with some "noise reduction" installed,  
 

 
 
and then comes the arctan2Pi routine described in detail in Appendix A,  
 

 
 
Equation (4.10) is written as a function and then tMe and k area computed from that function,  
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Equations for the position of the sun in Frame S are then entered (θ and φ with θt = π/2 - θ),  
 

 
 
Next, equations for the position of the sun in Frame S' are entered (θ' and φ' with Φ' = π/2 – φ'),   
 

 
 
The photographer's local mean time LMT is then entered, and the function tstrobe(N) is defined,  
 

 
 
The analemma data arrays are then generated, sampling the continuous functions θ' and Φ' using tstrobe,  
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The first two plots are θ' and Φ' (left edges are τ = 0, March equinox) 
 

 
 
The next plot is the analemma in angle space, where Φ' is the horizontal axis and θEL = 90-θ' the vertical: 
 

  Fig 11.10 
  
The final section of the code computes the analemma in the film "screen space". as summarized in 
Section 11 d (5). The user can enter tilt and pan offsets to move the camera's pointing direction away 
from the point of the mean fictitious sun. Since photographers generally don't document the exact point at 
which their analemma camera was pointed, and since this is sometimes further confused by cropping 
and/or compositing in a background photo after the fact, some trial and error might be needed to "fit" the 
analemma computed by the Maple program to a published photo. For Mr. Rumyantsev's photo we use a 
pan adjust of -6o as indicated by the cross hair location on the plot below.  
 This block of code allows entry of these offsets and computes the αt and αp tilt and pan parameters,  
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The final block of code then computes and plots the analemma as it appears in a photo, again as 
summarized in Section 11 d (5). The viewport distance is set z0 = 1 unit from the camera :  
 

 

  
 
                      Analemma on the multiple-exposure film   Fig 11.11 
      
If this blue screen-space analemma (with no pan offset) is superposed on the red angle-space analemma 
without altering the aspect ratio of either image, we find 
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       Fig 11.12 
 
The blue screen-space analemma reliably represents the near symmetry of the analemma along its long 
axis, but the red angle-space analemma is bent as shown.  
 Here is a very crude explanation of this bending. The drawing below shows a slice of the celestial 
sphere near the pole for emphasis :  
 

       Fig 11.13 
    
 
The blue region is a patch of physical space (a patch of the sky) on the slice between two blue lines of 
right ascension. When this region is mapped to angle space (red rectangle), the physical blue region is 
stretched as indicated by the arrows. In the middle of the blue region is a straight blue line, and this gets 
warped into the red curve. The blue line represents the nearly-straight analemma photo, while the red 
curve represents the angle-space analemma.  
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(f) An Analemma Gallery 
 
1. Analemmas for an observer at the North Pole  
 
These curves are made for the blue, black and red earths discussed in Section 6 (d). The red earth is the 
real earth, the blue earth's sun has a tilted but circular orbit, while the black earth's sun has an elliptical 
orbit but no tilt. At the north pole, θ' and Φ' are simply related to θt and Δφ as follows, 
 
 θ' =  θ =  π/2-θt => θ'EL = π/2-θ'  = θt  // north pole 
 Φ' = π  + ωτ - (k-φb0) - Δφ .     // north pole   (11.24) 
 
The first equation θ' = θ is obvious since at the north pole, the polar angle of the sun is the same in Frame 
S' as in Frame S. It can also be shown from (7.29) with θ1 = 0. The second equation comes from (8.5) 
which says Φ'NP = π + (φb-φ), from Δφ ≡ φ-φf, and then from the last line of (11.2). The main idea of this 
equation is that ωτN = ωτ0 mod 2π so under daily strobing, Φ'N = constant - ΔφN, so Φ'N maps out the 
equation of time which gives the horizontal extent of the analemma of Fig 11.14 below.   
 
Blue Earth Analemmas at the North Pole (eccentricity = 0) 
 
When e = 0, (4.12) shows that tMe  = α/Ω0 and then (7.16) says k = 0, so these plots have e = k = 0.  

 
       
   12 noon  e = k = 0.           Fig 11.14 
 
This is the "prototype analemma" and we have much to say about it that won't be repeated for later 
analemmas.  A blowup is shown on the right (see also labeling in Fig 11.1).  
 Again, this is the "blue earth" situation of Section 6 (d) and (e). The plots in the middle are θ'  and Φ', 
where the left edge of the plots are at March equinox, τ = 0. For the analemma plot, Φ' is the horizontal 
axis in degrees, and elevation = θEL = π/2 – θ' = θt is plotted vertically in degrees. Both axes are shown 
with the same scale. Looking south at noon every day for a year, the sun will trace out the blue analemma, 
but only the top half is visible above the horizon. The topmost point is the day of June solstice (the day 
elevation is the highest), the bottom is December solstice, and the horizon is the equinox. The path starts 
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at March equinox on the horizontal axis. It then goes up and to the right because Φ' is moving positive. 
The days then trace out the "8" pattern like a car on a racetrack of this shape.  
 This blue earth analemma is symmetric in both directions. Although this seems obvious from the 
plots shown of θ' and Φ', and although it perhaps seems intuitive, actually showing this symmetry from 
the analemma equations requires a bit of work, and that work has been relegated to Appendix C.  
 The analemma is centered in the south at 180o because the photos are taken at noon and the fictitious 
sun is at Φ' = 180o every day at noon. The analemma's vertical extent above the horizon is 23o. Its 
horizontal extent is about 5o.  
 
If we take photos in the morning instead of at noon, the analemma retains its shape but shifts to the left, as 
is reasonable since it is morning. From (8.6) and (8.7) we know that Φ' = π  + ωτ - (k-φb0) - Δφ, so if we 
do morning shots instead of noon shots, ωτ is a smaller number at each τ = τN and Φ'N moves to the left. 
Since Δφ is a slow function of τ, it does not change much in going to a morning strobe time. Here then is 
the 9 AM analemma,  
 

   
   north pole 9 AM  e = k = 0.       Fig 11.15 
 
Of course the afternoon-shot analemma will be shifted to the right of 180o instead of to the left.  
 
Black Earth Analemmas at the North Pole (tilt = 0) 
 
The black earth has no tilt, so the analemma has no vertical extent. For example, at noon the analemma is 
a horizontal locus centered at 180o. The width of this locus is about 4o (see black curve in Fig 6.5).  
 

     
 
   north pole 12 noon  θtmax= 0.      Fig 11.16 
 
Morning or afternoon photography again just shifts this locus left or right.  
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Red Earth Analemmas at the North Pole (actual earth) 
 
We now have the full equation of time and here is the noon analemma (blowup on right) 
 

       
   north pole 12 noon  actual      Fig 11.17 
 
The equation of time (-Δφ) has less amplitude in the summer than in the winter as the red Φ' graph shows, 
so the analemma is narrower on the top than on the bottom. Again, only the upper part is visible. The 
vertical extent is still 230 on the visible part. The horizontal extent is now about 7o on the (non-visible) 
bottom and 2.50 on the top (see red curve Fig 6.5).  
 Again, morning or afternoon photography again just shifts this locus left or right.  
 Allowing the horizontal axis to have a different scale from the vertical, the plot on the right above has 
this appearance, where the left/right asymmetry is more visible,  
 

       Fig 11.18 
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2. Analemmas for observers at other latitudes in the northern hemisphere. 
 
Blue Earth Analemmas at the Latitude 70o (eccentricity = 0) 
 
Here is the noon analemma. The upper and lower lobes are different but not too different, and the 
analemma his lifted almost clear of the horizon:   
 

    
 
   latitude = 70o     12 noon  e = k = 0     Fig 11.19 
 
Now a new effect appears. If the photos are shot in the morning or afternoon, the analemma shifts 
horizontally of course, but now the top tilts away from 180o 

   
 
   latitude = 70o     9 AM  e = k = 0    Fig 11.20 
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   latitude = 70o     3 PM  e = k = 0    Fig 11.21 
 
In these last cases, Appendix D Fig D.2 says the tipping angles away from vertical are about ± 15o for the 
film analemmas, which roughly align with the angle space ones shown above.  
 
Red Earth Analemmas at the Latitude 70o (actual) 

   
 
   latitude = 70o     12 noon  actual     Fig 11.22 
 
The analemma now looks like our bowling pin of Fig 11.1, it is more asymmetrical vertically. Morning 
and afternoon shooting causes horizontal shift and tilt of the top away from 180o just as in the blue case.  
 
Red Earth Analemmas at the Latitude 40o (actual) 
 
The change here is that the analemma is shifted to a higher elevation in the sky,  
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   latitude = 40o     12 noon  actual     Fig 11.23 
 

  
   latitude = 40o      9 AM  actual     Fig 11.24 
 

    
   latitude = 40o      3 PM  actual     Fig 11.25a 
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Now the angle-space analemmas in morning or afternoon are shifted, tilted, and bent away from the 1800 
line. Figure D.2 gives the film analemma tipping angles as ± 40o away from vertical. Here is the three 
corresponding film analemmas: 
 

      Fig 11.25b 
 
Red Earth Analemma at the Latitude 51.4791o 
 
Our computed analemma is on the left. On the right it is superposed on a red analemma which appears on 
the wiki page http://en.wikipedia.org/wiki/Analemma .  
 

     
             Fig 11.26 

http://en.wikipedia.org/wiki/Analemma�
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Red Earth Analemmas at the Latitude 24.5o 

     
   latitude = 24,5o    12 noon  actual     Fig 11.27 
 
Now the top of the analemma in our (Φ', 90-θ') angle space experiences a horizontal stretching at the top 
similar to the "Greenland Effect" on a Mercator projection map. The camera film analemma is shown in 
blue on the right and does not exhibit the angle space distortion. The distortion is worst at noon because 
that drives the upper end of the analemma closer to 90o elevation.  
 
Red Earth Analemmas at the Latitude 20o 
 
We have entered the tropical zone, and the angle-space analemma pulls apart at the top : 

    
   latitude = 20o       12 noon  actual     Fig 11.28 
 
The above plots are completely accurate in angle space. First look at the black θ' plot on the right. Starting 
at March equinox, the strobed sun position goes to higher elevation and lower polar angle θ' until it 
reaches polar angle 0. At that point it goes "over the top", the polar angle starts increasing again, and at 
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some point the azimuth Φ' crosses our Fig 7.3 discontinuity between 0o and 360o. The camera film 
analemma on the right is normal. Here is the 20o latitude image from Fig 3.12 showing this over-the-top 
behavior,  
 

   
 
Whenever the "up" z' axis in Frame S' hits the interior of the analemma, this azimuthal discontinuity will 
be encountered as the year progresses.  
 
Red Earth Analemmas at the Latitude 5o (actual) 
 
Now the angle-space analemma rips apart at a lower point, things are more dramatic, but the camera film 
analemma on the right is just fine. We pass through the azimuthal discontinuity three times!   

    
   latitude = 20o       12 noon  actual     Fig 11.29 
 
Moving to 2 PM, the analemma lays over to the right,  



Section 11:  The Solar Analemma 

  127 

 
 
   latitude = 20o       2 PM  actual     Fig 11.30 
 
It might seem strange that this analemma tilts over so far only 2 hours after noon. This is the subject of 
Appendix D. Fig D.2 says that the blue analemma is in fact tilted 80o to the right from vertical.  
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(g) Analemma case study from the Crimea (Ukraine) 
 
Mr. Vasilij Rumyantsev, who works at the Crimean Astrophysical Observatory (CrAO) in the town of 
Nauchny, has a nice analemma picture up on the web at http://vrum.chat.ru/Photo/Astro/analema.htm 
which is reproduced on the left below (1998-9). His removable but rigidly mounted camera took a shot 
about every 10 days. Although the strobe sun photos were taken in the early morning, the background 
picture was taken in the evening. His web page provides an angle-space representation of the analemma, 
shown on the right below. Probably this was a planning picture he obtained from his own analemma-
generating program.  
 
 

    Fig 11.31 
 
His web page provides enough information for us to test out our Maple analemma generating code against 
his, and to then see how his actual photo compares to our screen space prediction.  
 
Note:  As of Dec 2012 the Ukraine seems intent on "terminating" the independent Crimean Astrophysical 
Observatory, founded 1945, probably for budgetary reasons, see http://www.crao.crimea.ua/ . 
 
The photos were taken close to the observatory's solar telescope which is close to the following 
coordinates,  
 

http://vrum.chat.ru/Photo/Astro/analema.htm�
http://www.crao.crimea.ua/�
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Therefore we use,  
 
 φ1  =   longitude = 34.000 + 0/60 + 57.1/3600 = 34.016o 

 θLAT =  latitude   = 44.000 + 43/60 + 36/3600 = 44.727o  . 
 

The analemma was taken Aug 1998 to Aug 1999, so we can use the March 1999 equinox data (source 
given in Section 7 (b)) 
 

 
 
so we take the GMT of March equinox as 01:41.  Mr. Rumyantsev indicates his pictures were taken every 
10 days (more or less) at exactly GMT = 05:45. From this we compute his LMT from (8.8),  
 
 LMT(t) = [ GMT(t) + (φ1/15) ]  mod 24 . 
 
      = [05:45 + 34.016/15] mod 24 = 5.75+2.26773 = 8.01773  ≈  8:01 AM . 
 
Finally, the orbital parameters in 1999 were (source given in Section 1 (a))  

 
 
so θtmax = 23.4399, ε = .016704 and φper = 12.878o.  
 Entering this data into the Maple program, we get the red analemma shown in Fig 11.10 above. If we 
superpose that red analemma on his data and carefully align the axes, here is the result : 
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    Fig 11.32 
 
The break in our red curve (above 3-16) shows the March equinox which is in agreement with his data. 
This seems to show that our angle-space Maple program agrees with whatever program he used to 
generate his planning analemma.   
 We now superpose our blue screen-space analemma plot of Fig 11.11 on Mr. Rumyantsev's photo 
without altering the aspect ratio of either image. We had to set our pan adjust to -6o to get things to line 
up (cross hairs are 6o to the left of the fictitious sun location).  
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      Fig 11.33 
 
The fit is reasonable but unfortunately not perfect in the smaller summer lobe. As shown in the previous 
figure, our computed angle-space analemma agrees exactly with that of Mr. Rumyantsev, so the photo 
mismatch is either due an error in our screen space calculation, or to a problem with the camera mount, 
the former seeming more likely since the winter lobe matches so well.  
 The first known analemma photograph was taken by Dennis di Cicco in 1978-9, Ref [7] . Since that 
time, perhaps 10 people have put up analemma photos on the web.  
 A notable effort is that of Greek photographer Anthony Ayiomamitis who uses multiple cameras to 
do simultaneous analemma photos during the same year. He does this with cameras mounted in his yard 
near Athens, each one strobing at a different hour of the day (circa 2002-2004). To add interest, he used 
Photoshop to composite in photos of various Greek ruins. We did Maple fits to several of his photos with 
results similar to that shown above. The first link below shows a collection of Mr. Ayiomamitis's 
analemma photos which demonstrates the effect of time of day, in agreement with our analemma gallery 
comments above. The second link gives details of his efforts (five web pages) :  
 
 http://www.perseus.gr/Astro-Solar-Analemma.htm 
 http://www.astrosurf.com/luxorion/analemma.htm  
 

http://www.perseus.gr/Astro-Solar-Analemma.htm�
http://www.astrosurf.com/luxorion/analemma.htm�
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Appendix A:   A Note on Various Arctangent  Functions 
 
When bandying about equations, as we have done freely in this document, one can be cavalier about the 
meaning of functions like tan-1. But when it comes time to actually compute something, or to make a 
proper plot of some function, subtle problems arise which can be very annoying. This appendix describes 
issues involving the arctangent function in various forms. These issues are of course present not only in 
Maple implementations, but in any calculational method of doing something at the nuts and bolts level.  
 
(a) arctan2Pi(y,x) and comparison with arctan(y/x) and arctan(y,x)  
 
Consider these two equations,  
 
 x = cosφ 
 y = sinφ 
         
where φ runs through the range (0,2π) so that r = (x,y) moves in a circle. Given x and y, how do we find 
φ? Consider this picture,  
 

       Fig A.1 
 
From the signs of x and y, we can certainly determine the quadrant of (x,y). So here is how we find φ :  
 
 If (x,y) is in Quadrant I, then φ = α  where  α ≡ tan-1(|y|/|x|) 
 If (x,y) is in Quadrant II, then φ = π – α  
 If (x,y) is in Quadrant III, then φ = π + α  
 If (x,y) is in Quadrant IV, then φ = 2π - α   .       (A.1) 
 
This algorithm is implemented in the following Maple function arctan2Pi(y,x), where we put the 
arguments in order y,x since it reminds us of tan-1(y/x) :  
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Here are two 3D plots of arctan2Pi(y,x), showing its scale invariant shape,  
 

 
 

 

    
             Fig A.2 
 
As one takes a spiral hike around the quadrants going I, II, III, IV the value φ = arctan2Pi(y,x) increases 
smoothly. When using this function, we stick to the range  0 ≤ φ < 2π to avoid the discontinuity. 
 
NOTE:  All equations below are followed by an implicit "mod 2π". When checking an equation of the 
form a = b in Maple, one must show that mod(a-b,2π) = 0. In particular notice that π = -π in this world 
since mod( π - (-π),2π) = mod(2π,2π) = 0.   
  
In general, the function arctan2Pi(y,x) has these properties, as one can show by exhausting all the cases in 
Fig A.1,  
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 arctan2Pi (-y,x)  = 2π  –  arctan2Pi (y,x)  // negate y 
 arctan2Pi (y,-x)  =  π  –  arctan2Pi (y,x)  // negate x 
 arctan2Pi (-y,-x) =  π  +  arctan2Pi (y,x)  // negate x and y  .   (A.2) 
 
These rules differ considerably from the principle branch rule that 
 
  tan-1(-z) = - tan-1(z) .  
 
To verify (A.2) we run this Maple code [ modf(a,b) computes a mod b, see Sec 11 (e)  ]  
 

 
 
and all three plots come out looking like this (two views of the same 3D plot) 
 

       Fig A.3 
 
 Rather than write arctan2Pi everywhere, we have adopted this notation,  
 

 tan-1( [y]/[x] ) = tan-1( 
[y]
[x]  ) ≡  arctan2Pi(y,x)  .      (A.3) 

 
One must not "move signs around" carelessly, thinking of tan-1(-z) = - tan-1(z) .  In fact, from (A.2),  
 
 tan-1( [–y]/[x] )   = 2π  –  tan-1( [y]/[x] ) 
 tan-1( [y]/[–x] )   =   π  –  tan-1( [y]/[x] ) 
 tan-1( [–y]/[-x] )  =   π  + tan-1( [y]/[x] )   .       (A.4) 
 
Here are some examples of (A.4) :  
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 tan-1( [sinφ]/[cosφ] )    = φ   
 tan-1( [-sinφ]/[cosφ] )   = 2π – φ      
 tan-1( [sinφ]/[-cosφ] )   =  π – φ  
 tan-1( [-sinφ]/[-cosφ] )  =  π + φ  .        (A.5) 
 
Sometimes we use this abbreviated notation 
 
 tan-1(a tanβ) ≡  tan-1( [a sinβ]/[cosβ] ) if a  ≥ 0      (A.6) 
  
as in (6.12) and (6.13).  Of course if a = 1, then tan-1(tanβ) = β.  Similarly,  
 
 tan-1( [c]/[ab] )  = tan-1( [a-1c]/[b] )  if a  > 0      (A.7) 
 
with corollary 
 
 tan-1( [ac]/[ab] )  = tan-1( [c]/[b] )   if a  > 0   .     (A.8) 
 
The important fact in such identities is that the quadrant does not change.  
  
The cotangent can be handled similarly. We first define  
 
 cot-1([x]/[y])   ≡  tan-1([y]/[x])  = arctan2Pi(y,x) .       (A.9) 
 
We claim that, just as for the regular tan-1 and cot-1 functions,  
 
 cot-1([x]/[y]) = π/2 – tan-1([x]/[y]) .        (A.10) 
 
This can be verified for (x,y) in any quadrant by showing that the following is true, 
 
 arctan2Pi(y,x) = π/2 – arctan2Pi(x,y) . 
 
Testing this claim, we find that the code 
 

 
 
produces the same null plot shown in Fig A.3. Combining (A.10) with (A.9) then gives 
 
 tan-1([y]/[x]) = π/2 – tan-1([x]/[y]) .        (A.11) 
 
From (A.11) and (A.4) one may show that  
 
 π/2 – tan-1([y]/[x])   =  π  + tan-1([-x]/[-y])       (A.12) 
 
which we once again verify in Maple. We find that this code, 
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produces the usual null plot of Fig A.3.  
 In the special case (x,y) = (1,y), we know that the normal tan-1(y/x) = tan-1(y) lies in -π/2 to π/2. For 
our situation this is Quadrant I or Quadrant IV and we then obtain ( don't forget the implicit mod 2π)  
 
 tan-1( [y]/[1]) = tan-1(y)         (A.13) 
 
then using the second equation of (A.4) we get 
 
 tan-1( [y]/[-1]) = π – tan-1(y) .        (A.14) 
 
Other arctan functions in Maple 
 
Maple contains a built-in function arctan(y,x) with two arguments. Here is a plot of this function where 
the axes are the same as in the left side of Fig A.2 for arctan2Pi(y,x) :  
 

   Fig A.4 
 
The output range of this function is (-π,π) rather than (0,2π), which is not what we want for our purposes. 
It turns out that we can simulate arctan2Pi(y,x) by arctan(-y,-x) + π,  
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  Fig A.5 
 
but it seemed better to write our own clearly defined function arctan2Pi to be sure what it does.  
 The following three plots using the three arctangent functions demonstrate our motivation in using the 
arctan2Pi function for our (0,2π) region of interest:  
 

 
 

        
             Fig A.6 
(b) arctan2Pis(y,x) 
 
First, we demonstrate what this "s" version of arctan2Pi does:  
 

 
 

                 Fig A.7 
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As a (x,y) vector winds around the origin multiple times, the arctangent increases smoothly so that the 
result tan-1(tanz) = z  is realized for z over a larger range than 2π.  
 Here is the inelegant code for this function : 
 

 
 
The function remembers the x,y quadrant of the previous call to the function and compares that with the 
x,y quadrant of the current call. If the 4→1 boundary is crossed, a winding number "wind" is upticked by 
1, and if it crosses the other way it is downticked. Then 2π*wind is added to the arctan2Pi(y,x) result. 
This function must be initialized before it is used to evaluate a function for some sweep of a variable,  
 

 
 
As an illustration of the motivation for using this arctan2Pis function, consider the seemingly simple plot 
of four curves (as in Fig 6.3) which lie very close together. Here is the code using arctan2Pis  :  
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       Fig A.8 
 
When these curves are plotted with the other three arctangent functions, we get these annoying results, 
( the cases are arctan2Pi(y,x), then arctan(y,x), then arctan(y/x) ) 
 

 
             Fig A.9 

 
             Fig A.10 
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             Fig A.1 
The following drawing shows how our four different arctangent functions use different branches of the 
infinitely-branched general arctangent function:  
 
  

  
             Fig A.12 
 
The normal function φ = tan-1(z) uses only the principle branch and returns φ in -π/2 to π/2.  
 
Technical Code Note:  The code which generates Fig 6.4 is stated above that figure, and the functions like 
f_red are defined in terms of the arctan2Pis function. Since this function is designed only for use in a 
clean "run" from left to right in a plot of a single function, where it internally manages its winding 
number "wind", it seems odd that there are no "spikes" in the plots like Fig 6.4. There, the plot algorithm 
evaluates d_red = f_red - f_green which means arctan2Pis is applied first to f_red and then to f_green, and 
then after the next plot increment arctan2Pis is again applied to f_red and then to f_green. So the use of 
arctan2Pis alternates between the red and green functions, violating the coder's intent. It nevertheless 
turns out that things really do work even though the red and green functions cross the axis near t = 0.2  
(76 days) at different times, and this is regardless of how fine the plotting steps are.  
 



Appendix B:  Active and Passive Rotations 

  141 

Appendix B:   The Active and Passive Views of Vector Rotation 
 
(a) Active view 
 
Let Frame S have orthonormal basis vectors en for n = 1,2,3.  Let V be some vector in Frame S which has 
components Vn.  Here is the expansion of vector V on these basis vectors,   
 
 V = ΣnVnen   where  Vn = V • en .      (B.1) 
 

Suppose we create a new vector in Frame S, called V', by applying some rotation R to vector V,  
 
 V' = RV  meaning V'i = ΣjRijVj .     (B.2) 
 
We refer to this as " the active rotation of vector V into vector V',  all in Frame S ".  We can expand this 
new vector V' on the same basis vectors en as follows, 
 
 V' = ΣnV'nen   where  V'n = V' • en     (B.3) 
 
where the numbers V'n are the components of vector V' in Frame S.  
 
The interpretation of the numbers V'n as just described is "the active point of view of a rotation". Here is a 
simple example of such an active rotation where R = Rz(ψ).  
 

         Fig B.1 
 
(b) Passive view 
  
There is another way to interpret the numbers V'n.  Suppose we create a new reference Frame S' which 
has unit basis vectors e'n which are related to those of Frame S as follows:  
 
 e'n  = R-1en   n = 1,2,3       (B.4) 
 
That is to say, these vectors are rotated "backwards" compared to what is shown in (B.2).  
 
The new interpretation of the numbers V'n is (we claim) that these numbers are the components of the 
vector V when it is observed from Frame S'. That is to say, we claim that the expansion of vector V in 
Frame S' looks like this, where Vn' are as given in (B.3).  
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 V = ΣnV'ne'n  where  V'n = V • e'n .     (B.5) 
 
Dotting both sides of V = ΣnV'ne'n into e'm shows that V'n = V • e'm  (since e'n• e'm = δn,m), so basically 
we want to show that V'n = V • e'n  of (B.5) is the same as V'n = V' • en  of  (B.3) .  Proof: 
 
 V'n = V' • en    // from  (B.3) 
 
  = [RV] • [Re'n]   // from (B.2), and (B.4) inverted 
 
  = [RV]T [Re'n]   // the above just written in matrix notation, T = transpose vector 
 
  = VTRTRe'n   // rule for applying T to product of matrices/vectors 
  
  = VT e'n   // RTR = 1 because a rotation is a real orthogonal matrix 
  
  =  V  •  e'n   // going back to dot product notation 
 
  = V'n     // from (B.5) 
 
Thus the numbers V'n  appearing in (B.3) and (B.5) are in fact the same numbers so our claim is verified. 
Here is a simple example of such a passive rotation. Notice that the vector V stays put, and the unit 
vectors are rotated backwards relative to the active rotation shown in the previous picture,  
 

          Fig B.2 
 
(c) Summary 
 
The numbers V'n can be interpreted in two ways, active and passive:   
 
(1) The V'n are the components of a vector V' in Frame S (with en) obtained from V' = RV .  
 
(2) The V'n are components of the vector V in Frame S', where e'n  = R-1en for Frame S'.  
 
Suppose we know that there is some matrix R-1 such that the basis vectors of Frame S' are related to 
those of Frame S in this way 
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  e'n  = R-1en . 
 
If we want to compute the components of a vector V in Frame S', we may use this formula, 
 
 V' = RV  .  
 
The simple rule is that "vectors rotate backwards from the unit vectors". This rule is invoked just after 
equation (6.1).   
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Appendix C:  Shape of the north pole analemma when e = 0  
 
(a) Parametric equation for the analemma 
 
We assume that the orbit of the earth is circular (e = 0, "blue earth" of Section 6 (d) ). When e = 0, we 
have the following set of facts:  
 
 φ' = Ω0τ  // since circular orbit, φ' as in Fig 3.4 measured from March equinox  
 ψ  = Ω0t  // since circular orbit, ψ as in Fig 3.4 measured from perihelion 
 τ = t - tMe  // valid for any e       (7.2) 
 tMe  = α/Ω0   //α ≡ (π/2-φper) as in (1.9)      (4.12) 
 k = [Ω0 tMe - α] = 0          (7.17) 
 φ' = ψ - α  // valid for any e       (1.10) 
       
From the first and last lines we get this e = 0 fact,  
 
 ψ - α = Ω0τ .          (C.1) 
 
The units are taken to be hours for t and τ and tMe and radians per hour for Ω0.  
 
Now, at the north pole the continuous functions one samples to get the two axes of the analemma have 
this simple form, as was shown in (11.24),  
 
 vertical = θ'EL= θt = sin-1[sinθtmax  sin(Ω0τ)]  // (11.24), (11.1) 
 horizontal = Φ' = π  + ωτ + φb0 - Δφ    // (11.24)  
 Δφ  = – Ω0τ – k  + tan-1[cosθtmax tan(Ω0τ)]   // (11.3)    (C.2)  
 
Using s = ψ-α = Ω0τ from (6.17), one can write Δφ in the alternate form given in (6.22),  
 

 Δφ = tan-1 [
(cosθtmax – 1)tan(Ω0τ)
1 + cosθtmaxtan2(Ω0τ) ] .       (C.3) 

 
Strobing Φ' at LMT on day N gives 
 
 Φ'N = π  + ωτN + φb0 - ΔφN 
 τN =  [τ0  + 24N];           (11.9) 
 τ0 =  (LMT – 12) –  (φb0/ω)  . // since k = 0, ω = π/12 rad/hr     (11.9) 
 
Since ω = π/12, and since Φ'N is really mod 2π, we can replace ωτN → ωτ0 in Φ'N. That is to say, 
 
 ωτN = ω[τ0  + 24N] = ωτ0 + (π/12)24N  = ωτ0 + 2πN .     (C.4) 
 
Then 
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  Φ'N = π  + ωτN + φb0 - ΔφN 
  = π  + ωτ0 + φb0 - ΔφN 
  = π  + ω[(LMT – 12) –  (φb0/ω)] + φb0 - ΔφN 
  = π  + ω(LMT – 12) - ΔφN  .        (C.5) 
 
This result can also be obtained directly from the Φ'N equation in (11.9) by setting θ1 = 0.  
 Strobing θt in (C.2) and Δφ in (C.3) gives, along with (C.5),  
 
 θt,N  = sin-1[sinθtmax  sin(Ω0τN)] 
 Φ'N = π  + ω(LMT – 12) - ΔφN 

 ΔφN = tan-1 [
(cosθtmax – 1)tan(Ω0τN)
1 + cosθtmaxtan2(Ω0τN) ] 

 τN =  [τ0  + 24N];  
 τ0 =  [ LMT – 12 –  (φb0/ω)] .        (C.6) 
 
To reduce clutter, we now define these symbols,  
 
 c ≡ cosθtmax 
 s ≡ sinθtmax 
 β ≡ Ω0τN   
 x ≡ Φ'N - π - ω(LMT – 12)  =  - ΔφN 
 y ≡ θt,N  ,           (C.7) 
 
so the first three equations in (C.6) may then be written 
 
 y  = sin-1[s sin β] 
 x = - ΔφN 

 ΔφN = tan-1 [
(c – 1)tan(β)
1 + ctan2(β) ] ,         (C.8) 

 
which we restate one more time as 
 

 x = - tan-1 [
(c – 1)tan(β)
1 + ctan2(β) ] 

 y  =  sin-1[s sin β] .          (C.9) 
 
As the parameter β ranges from 0 to 2π ( treating β now as a continuous parameter),  (x,y) traces out the 
continuous blue-earth analemma in angle space. Just to make sure we are on track, we can plot this locus 
(with unequal axis scales each in radians),  
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    Fig C.1 
 
Plotting for a θtmax = 10,20...90 shows that the analemmas get larger as θtmax increases, and also change 
shape. The triangular analemma is for θtmax = 90.  
 

 

           
    10o through 400           300 through 900   Fig C.2 
 
(b) Locus of the analemma in angle space:  symmetry 
 
The curves above certainly appear to be symmetric in both directions. We can rewrite (C.9) as 
 

 tanx = -  [
(c – 1)tan(β)
1 + ctan2(β) ] 

 siny = s sinβ .          (C.10) 



Appendix C: Shape of the e=0 analemma  

  147 

 
From the second of (C.10) one gets (the goal is to eliminate β),  
 
 sin2β = sin2y/s2 
 cos2β  = 1 – sin2y/s2 
 => tan2β = sin2y/s2 / [1 – sin2y/s2]  = sin2y / [s2 – sin2y] .     (C.11) 
 
The first equation of (C.10) can be squared to yield 
 
 tan2x  = (c-1)2tan2β / (1 + c tan2β)2 .       (C.12) 
  
Using (C.11) in (C.12),  
 
 tan2x =  { (c-1)2(sin2y / [s2 – sin2y]) } / {1 + c(sin2y / [s2 – sin2y]) }2 
 

Multiply top and bottom by [s2 – sin2y]2 to get 
 
 tan2x =  { (c-1)2sin2y  [s2 – sin2y]} / {[s2 – sin2y] + c(sin2y ) }2 

or  
 tan2x =  { (c-1)2sin2y  [s2 – sin2y]} / [s2 – sin2y + csin2y ]2 

or 
 tan2x =   (c-1)2sin2y (s2 – sin2y) / [s2 + (c-1)sin2y ]2  .     (C.13) 
 
Thus β has been eliminated and we have obtained the locus of the analemma. We can verify (C.13) by 
doing a scanning "implicit plot" in Maple as follows:  
 

  Fig C.3 
 
The locus (C.13) is extremely non-linear in (x,y) space, but does expose the symmetry we have been 
seeking:  if x→ –x or y→–y (or both), the locus is unchanged.  
 



Appendix C: Shape of the e=0 analemma  

  148 

(c) How β varies along the analemma 
 
Recall the earlier parametric equation for the analemma,   
 

 x(β) = - tan-1 [
(c – 1)tan(β)
1 + ctan2(β) ] 

 y(β)  =  sin-1[s sin β]  .         (C.9) 
 
Using these facts 
 
 tan(β+π) = tanβ  tan(2π-β) = -tanβ tan(π-β) = -tan(β) 
 sin(β+π) = -sinβ  sin(2π-β) = -sinβ sin(π-β) =  sin(β) 
 
one finds 
 
 x(β+π) = x(β)  x(2π-β) = -x(β)  x(π-β) = -x(β) 
 y(β+π) = -y(β)  y(2π-β) = -y(β)  y(π-β) = y(β)  
or 
 x,y  → x,-y   x,y  →  -x,-y  x,y → -x,y 
 mirror in x=0  invert   mirror in y=0 
 
Here then is the situation with parameter β in (0,2π) for a typical e=0 analemma 
 

         Fig C.4 
 
Note that continuous β = Ω0τ  = φ', the azimuth angle of Fig 1.3 and Fig 3.4. Thus,  
 
 β=φ' 
 0  March equinox 
 π/2  June solstice 
 π  September equinox 
 3π/2 December solstice 
 2π  March equinox 
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(d) Limit of analemma shape for small θtmax :  Gerono! 
 
We have seen in Fig C.2 how the analemma approaches a pair of triangles in the limit θtmax → 900. In 
the opposite limit that θtmax → 0, there is also an interesting limiting shape. Recall again,  
 

 x = - tan-1 [
(c – 1)tan(β)
1 + ctan2(β) ]  c = cosθtmax 

 y  =  sin-1[s sin β]   s = sinθtmax  .      (C.9) 
 
When θtmax is small, s is small, and so y is small. Since c → 1, x is also small.  Looking at (C.13) 
 
 tan2x =   (c-1)2sin2y (s2 – sin2y) / [s2 + (c-1)sin2y ]2      (C.13) 
 
we then have, for very small θtmax,  
 
 x2 ≈ (c-1)2y2 (s2 – y2) / [s2 + (c-1)y2 ]2  .  
 
Now insert c ≈ 1-s2/2  so that (c-1) ≈ - s2/2 to get 
 
 x2 ≈  ( s4/4)y2 (s2 – y2) / [s2  - (s2/2)y2 ]2 
  
 x2 ≈  ( 1/4)y2 (s2 – y2) / [1  - (1/2)y2 ]2 
 
 x2 ≈  y2 (s2 – y2) / [2  - y2 ]2 
 
 x2 ≈  y2 (s2 – y2)/4 
 
 4x2 = s2y2- y4  .  // in limit θtmax  → 0 
 
Rescale to new variables 
 
 Y = (1/s) y   
 X = (2/s2)x 
 
and the small-θtmax analemma becomes 
 
 Y4 – Y2 + X2 = 0  . 
 
This closed quartic curve is known as the lemniscate of Gerono (not of Bernoulli),  
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  Fig C.5 
 
Wiki shows this curve with the axes swapped,  
 
 x4 – y2 + x2 = 0 
 

    
        http://en.wikipedia.org/wiki/Lemniscate_of_Gerono        Fig C.6 
  

http://en.wikipedia.org/wiki/Lemniscate_of_Gerono�
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Appendix D:  Calculation of how much the analemma is tipped on film     
   
(a) Calculation of the tip angle from vertical 
 
We shall compute this analemma tip angle as a function of colatitude θ1 of the observer site, and LMT, 
the local mean time of the strobe photos.  
 The plan here is to create a vector Δr' which represents the long direction of an analemma. We make 
this arrow point from the December solstice end of the analemma to the June solstice end. The arrow is 
then shrunk in length and mapped into screen space, where it becomes (Δxs,Δys). We then compute the 
tip angle of this vector on the film away from vertical as follows 
 
 tip ≡  angle from vertical = tan-1(Δxs/Δys)  .       (D.1) 
 
For an arrow with Δxs = 0, tip = 0o, a vertical analemma.  
For an arrow with Δys = Δxs, tip = tan-1(1) = 45o, tipped to the right. 
For an arrow with Δys = - Δxs, tan-1(-1) = -45o, tipped to the left. 
 
To simplify matters we shall use the blue earth analemma which has e = 0. As shown in Appendix C (b), 
this analemma is symmetric both vertically and horizontally. The vertical symmetry implies that Δφblue 
= 0 at both solstices, but here is a direct calculation of this claim. We first assemble a few facts,  
 
 φ' = Ω0τ  // since circular orbit, φ' as in Fig 3.4 measured from March equinox  
 ψ  =  Ω0t  // since circular orbit, ψ as in Fig 3.4 measured from perihelion 
 τ = t - tMe           (7.2) 
 tMe  = α/Ω0 .           (4.12) 
 
Then from (6.22), 
 

 Δφblue(t) = tan-1 [
(cosθtmax – 1)tan(s)
1 + cosθtmaxtan2(s) ]  = tan-1 [

(cosθtmax – 1)sin(s)cos(s)
cos2(s) + cosθtmaxsin2(s)  ]  (6.22) 

 
where s = ψ-α since q = 0, see (6.17). But from the facts collected above,  
 
 s = ψ-α = Ω0t- α = Ω0(τ + tMe) - α  = Ω0τ  + Ω0 tMe - α  = Ω0τ + α - α  = Ω0τ  = φ'  .  
 
At the two solstices, as shown in Fig 3.4 we have s = φ' = π/2 and 3π/2. For either value cos(s) = 0 and 
therefore Δφblue(t) = 0.  
 In this case we conclude from (11.8) that, 
 
 (φb-φ)N  = (ω[LMT- 12]) .  N = day of either solstice strobe time, since ΔφN = 0 (11.8) 
 
Recalling then (7.14) which gives the Frame S' Cartesian coordinates of the sun,  
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 x' =  R cosθt sin(φ –φb)  
 y' =  R [sinθt sinθ1 – cosθt cosθ1 cos(φ–φb) ] 
 z' =  R [sinθt cosθ1  + cosθt sinθ1 cos(φ-φb)] ,      (7.14) 
 
we can install (11.8) in three places and then evaluate the result at the two solstices, θt = ± θtmax,  
 
 x' =  – R cosθtmax sin (ω[LMT- 12])  
 y' =  R [sinθtmax sinθ1 – cosθtmax cosθ1 cos(ω[LMT- 12]) ] 
 z' =  R [sinθtmax cosθ1  + cosθtmax sinθ1 cos(ω[LMT- 12])]  // June solstice  (D.2) 
 
 x' =  – R cosθtmax sin (ω[LMT- 12])  
 y' =  R [-sinθtmax sinθ1 – cosθtmax cosθ1 cos(ω[LMT- 12]) ] 
 z' =  R [-sinθtmax cosθ1  + cosθtmax sinθ1 cos(ω[LMT- 12])]   . // Dec solstice  (D.3) 
 
Our difference arrow of interest is then 
 
 Δx' = 0 
 Δy' = 2 R sinθtmax sinθ1 
 Δz' = 2 R sinθtmax cosθ1         (D.4) 
 
which is independent of LMT. This may seem strange, but a little pondering with a globe prop and one's 
right hand to model the Frame S' axes shows it to be true.  
 Recall next the eye transformation to camera coordinates of (11.20),  
 
 xc = -cosαpx' + sinαpy' 
 yc =  sinαt sinαp x'  + sinαt cosαp y' + cosαt z' 
 zc = -cosαt sinαp x'  - cosαt cosαp y' + sinαt z' .      (11.20) 
 
Applying this to the vector Δr' of (D.4) gives (matrix transformations are linear so this is allowed)  
 
 Δxc = -cosαpΔx' + sinαpΔy' 
 Δyc =  sinαt sinαp Δx'  + sinαt cosαp Δy' + cosαt Δz' 
 Δzc = -cosαt sinαp Δx'  - cosαt cosαp Δy' + sinαt Δz'      (11.20) 
or 
 Δxc = sinαp2 R sinθtmax sinθ1 
 Δyc =  sinαt cosαp 2 R sinθtmax sinθ1+ cosαt 2 R sinθtmax cosθ1 
 Δzc =  - cosαt cosαp 2 R sinθtmax sinθ1+ sinαt 2 R sinθtmax cosθ1  
or 
 Δxc =  (2Rsinθtmax) sinαpsinθ1 
 Δyc =  (2Rsinθtmax)[ sinαt cosαp sinθ1+ cosαt cosθ1 ] 
 Δzc =  (2Rsinθtmax)[- cosαt cosαp sinθ1+ sinαt cosθ1 ]  .     (D.5) 
 
Now we scale down our arrow so it is very short, and we imagine that the tail of the arrow is now sitting 
at the central point of the blue analemma (the fictitious sun location), still pointing to the June solstice end 
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of the analemma. That central point has xc = yc = 0 since the camera is pointing right at this point. So we 
think of this small (differential) arrow as 
 
  Δxc =  ε sinαpsinθ1 
 Δyc =  ε [ sinαt cosαp sinθ1+ cosαt cosθ1 ] 
 Δzc =  ε [- cosαt cosαp sinθ1+ sinαt cosθ1 ]  ε << 1  .    (D.6) 
 
The reason for this scaling down is the next processing step, the perspective transformation,  
 
 xs = zo(xc/zc) 
 ys = zo(yc/zc) ,           (11.22) 
 
which is a nonlinear transformation, so we can't just claim Δxs = zo(Δxc/Δzc). Instead we differentiate 
(11.22) to get 
 
 Δxs = zo(zcΔxc- xcΔzc)/zc2  = zo(zcΔxc)/zc2 
 Δys = zo(zcΔyc- ycΔzc)/zc2  = zo(zcΔyc)/zc2      (D.7) 
 
where we have used the fact that xc = yc = 0 for the tail end of our differential arrow. Then the tip angle is 
given by 
 
 tip ≡  tan-1(Δxs/Δys)  =  tan-1(Δxc/Δyc)  
 
    = tan-1( [sinαpsinθ1] / [ sinαt cosαp sinθ1+ cosαt cosθ1 ]) .     (D.8) 
 
[ It happens that one gets this same result assuming Δxs = zo(Δxc/Δzc) which was dismissed above.]  
 
From (11.10) and (11.23) we find that 
 
 αt = π/2 - θ'f    θ'f = cos-1[sinθ1 cos (ω[LMT- 12] )] 
 αp  = Φ'f - π  Φ'f = π + tan-1 ([sin (ω[LMT- 12])] / [cosθ1 cos (ω[LMT- 12]) ]) 
 
which implies that 
 
 αt = sin-1[sinθ1 cos (ω[LMT- 12] )] 
 αp = tan-1 ([sin (ω[LMT- 12])] / [cosθ1 cos (ω[LMT- 12]) ])  .    (D.9) 
 
The final result for the analemma tip angle is then this :  
 
 tip(θ1, LMT)  = tan-1( [sinαpsinθ1] / [ sinαt cosαp sinθ1+ cosαt cosθ1 ]) 
 αt = sin-1[sinθ1 cos (ω[LMT- 12] )] 
 αp = tan-1 ([sin (ω[LMT- 12])] / [cosθ1 cos (ω[LMT- 12]) ])  .    (D.10) 
 
The tip angle is a function of θ1 and LMT, as one would expect.  
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We duly enter equations (D.10) into Maple,  
 

 
 
and make a 3D plot of tip(θ1, LMT) 
 

 
 

   

    Fig D.1 
 
What the plot shows is that near the equator θ1 = π/2 ≈ 1.57, the analemma is vertical at LMT = 12, but as 
soon as one moves to 12.01 the analemma instantly tips over to its right, tip = π/2, and at 11.99 it tips to 
its left, tip = -π/2. Moving up a bit from the equator, say to latitude 5o, the tip is still fast, but not 
instantaneous. Probably this situation is clearer in the following plot,  
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   Fig D.2  
 
Again, at the equator the analemma tips over instantly as one moves away from noon. At 2o latitude the 
tipping over is fairly quick, being perhaps 75o laid over to the right for an LMT = 12:30 PM analemma. 
We confirm the graph with direct calculation,  
 

 
 
On the other hand, at 40o latitude, the analemma tips 45o to the right at about 4 PM,  
 

 
 
For the southern hemisphere, just negate the latitude labels in Fig D.2.  
 
(b) Physical explanation of the tip angle behavior 
 
An explanation of the fast tip-over near the equator is as follows. Imagine sitting in a swivel chair looking 
due south from a site at the equator, camera in hands. At noon the fictitious sun is exactly overhead, so 
one must tilt the camera up 90o to make it point at the fictitious sun which marks the center of the 
analemma. There is no need for panning, the analemma appears vertical on the film, since it runs north-
south on the celestial sphere (see Fig 11.3). At LMT = 12.001 PM, the fictitious sun has moved a little to 
the west, so one must swivel that chair 90o to the west in order to point the camera at the new fictitious 
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sun position. But then the analemma is horizontal on the film since the viewer is pointing up and west but 
the analemma is still north-south! It "tipped over" instantaneously on the film as we moved away from 
noon. Similarly at LMT = 11.999 one must instead swivel the chair 90o to the east, so the analemma is 
horizontal the other way.  
 In our film projection method, we are only allowed to tilt and then "pan" about the vertical axis to 
match the polar angles of the fictitious sun; we are not allowed to "roll" the camera about its zc axis, nor 
are we allowed to truly pan it about the yc camera axis. 
 Now we move say to 2o north latitude. Some fast chair swiveling is still required to track the sun 
through noon with the camera, but the swiveling is not quite as violent. At 12:30 PM the fictitious sun has 
moved 7.5o west (15o per hour), and it is 2o to the south. Here is a picture 
 

          Fig D.3 
 
The swivel angle is then tan-1(7.5/2) = 75o , which is a lot of swivel (though not 90o) so the analemma 
still being north-south on the celestial sphere is tipped to the right by 75o. It only took a half hour to get it 
tipped down this great amount. This is in agreement with the above graph and calculation.  
 One can simulate this perspective effect by making a rectangular viewport with two hands and 
pretending it is the camera. Find a room with a swivel chair which has parallel lines of some sort running 
north-south on the ceiling. A directly overhead line is the noon analemma, while a parallel line to the west 
is the analemma slightly after noon.  
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