#### End Fed Half Wave MultiBand Antennas

Mike Mladejovsky WA7ARK Prescott Hamfest June 1, 2019

# What motivated this presentation

- I got into a long running debate about EFHW on QRZ.com Antenna Forum
- It has been going on for months...
- The key issues:
  - Need for a "counterPoise"
  - Coax is the other half of the antenna
  - Effects of Current on the coax

#### What is an End Fed Half Wave Antenna?

- Let's call it a "EFHW"
- Works on a similar principle to a Zepp and J-Pole
- ~0.5 Wave-Length wire on lowest band (130ft on 80m, 67ft on 40m)
- Fed from one end using a transformer in a box

#### What is an End Fed Half Wave Antenna?

- Transformer is a 1:49 or 1:64 UnUn (not 1:4 or 1:9 used on random wire antennas)
- 50 Ohm Coax from transformer to station
- Multi-Band (works on all harmonics)
- Deploy it horizontal, sloping, inverted-L, inverted-V
- Commercial example: MyAntennas EFHW-8010-2K
- Pass it around (I want it back!)





#### 1:49 Transformer schematic





#### My test set-up for the 8010

- Mostly Horizontal
- ~35ft Above Ground
- Tried Variable Coax length
- Grounded only at IC7300
- Optional external grounds

8

CM current
measurement

## Actual SWR measurements

- Started with 58ft of foam RG8 (benign)
- No ground connection except at IC7300
  - On purpose to see if any RF "problems"
  - No CMC
- Measured SWR using RigExpert AA-600
- Actual Plots for 80m to 10m follow:













| <sup>4</sup> <sup>III</sup> EFHW8010u12.antdata - AntScope — □ ×  |  |  |  |  |  |  |  |                          |  |                                                                                                  |                  |       | ×           |       |        |        |        |       |       |  |  |
|-------------------------------------------------------------------|--|--|--|--|--|--|--|--------------------------|--|--------------------------------------------------------------------------------------------------|------------------|-------|-------------|-------|--------|--------|--------|-------|-------|--|--|
| <u>File E</u> dit <u>V</u> iew Configure Measurement <u>H</u> elp |  |  |  |  |  |  |  |                          |  |                                                                                                  |                  |       |             |       |        |        |        |       |       |  |  |
| <u> </u> L' 📂 H   T→   & B 🗟   😂   🗹 💥 Q   123   🍄 FQ   M   旨 💡   |  |  |  |  |  |  |  |                          |  |                                                                                                  |                  |       |             |       |        |        |        |       |       |  |  |
| Range: 24.950 ± 0.100 MHz, 100 points                             |  |  |  |  |  |  |  |                          |  |                                                                                                  |                  | SV    | VR          |       |        |        |        |       |       |  |  |
|                                                                   |  |  |  |  |  |  |  |                          |  |                                                                                                  |                  |       |             |       |        |        |        |       |       |  |  |
|                                                                   |  |  |  |  |  |  |  |                          |  |                                                                                                  |                  |       |             |       |        |        |        |       |       |  |  |
| 5                                                                 |  |  |  |  |  |  |  |                          |  |                                                                                                  |                  |       |             |       |        |        |        |       |       |  |  |
|                                                                   |  |  |  |  |  |  |  |                          |  |                                                                                                  |                  |       |             |       |        |        |        |       |       |  |  |
|                                                                   |  |  |  |  |  |  |  |                          |  |                                                                                                  |                  |       |             |       |        |        |        |       |       |  |  |
| 4                                                                 |  |  |  |  |  |  |  |                          |  |                                                                                                  |                  |       |             |       |        |        |        |       |       |  |  |
|                                                                   |  |  |  |  |  |  |  |                          |  |                                                                                                  |                  |       |             |       |        |        |        |       |       |  |  |
|                                                                   |  |  |  |  |  |  |  |                          |  | Fq = 24.944 MHz<br>SWR = 1.54<br>Return loss = 13.48 dB<br>Z = 75.2 + j8.6 Ohm<br> Z  = 75.7 Ohm |                  |       |             |       |        |        |        |       |       |  |  |
|                                                                   |  |  |  |  |  |  |  |                          |  |                                                                                                  |                  |       |             |       |        |        |        |       |       |  |  |
| 3                                                                 |  |  |  |  |  |  |  |                          |  |                                                                                                  |                  |       |             |       |        |        |        |       |       |  |  |
| Phase = 6.5 °                                                     |  |  |  |  |  |  |  |                          |  |                                                                                                  |                  |       |             |       |        |        |        |       |       |  |  |
|                                                                   |  |  |  |  |  |  |  | Zpar = 76.1 + j667.1 Ohm |  |                                                                                                  |                  |       |             |       |        |        |        |       |       |  |  |
| 2                                                                 |  |  |  |  |  |  |  |                          |  |                                                                                                  | ar = 4<br>ble: L | ength | ⊓<br>(1/4)∘ | = 1.9 | 3 m, L | .engtl | n(1/2) | = 3.9 | 7 m - |  |  |
|                                                                   |  |  |  |  |  |  |  |                          |  |                                                                                                  |                  |       |             |       |        |        |        |       |       |  |  |
| 1.5                                                               |  |  |  |  |  |  |  |                          |  |                                                                                                  |                  |       |             |       |        |        |        |       |       |  |  |
| 1                                                                 |  |  |  |  |  |  |  |                          |  |                                                                                                  |                  |       |             |       |        |        |        |       |       |  |  |
| 24.850 24.950 MHz                                                 |  |  |  |  |  |  |  |                          |  | 2                                                                                                | 25.0             | 50    |             |       |        |        |        |       |       |  |  |
| Points in the graph: 100+1                                        |  |  |  |  |  |  |  |                          |  |                                                                                                  |                  |       |             |       |        |        |        |       |       |  |  |



### Summary of SWR measurements

- 3.5 to 3.82Mhz: IC7300's internal 1:3 tuner
- 80m band: external manual tuner (Palstar)
- 40m band: no tuner needed
- 30m band: <u>external</u> tuner
- 20m band: no tuner
- 15m band: no tuner
- 17m band: internal 1:3 tuner
- 12m band: no tuner
- 10m band: internal tuner<sub>a7ark</sub>

# Modeling the EFHW

- Using NEC to learn how it works
- Compare it to Center-Fed Dipole
- Show feed-point impedences
- Overlay current distributions
- Overlay SWR plots
- Overlay Patterns
- Show CM effects





#### SWR of EF vs CF



22

# Takeaways from CF/EF simulations

- Current distribution almost identical on fundamental band
- 3.6 MHz Azimuth Patterns identical
- Tail (counterpoise) is a required part
- EF tail is tiny, only 7.7ft out of 134.6ft
- Ratio is for 2450 Ohm (1:49 transformer)
- Tail current is only 15% of peak in wire
- Not a big stretch to cut off tail

#### EFHW as a multi-band antenna

- EF resonates on all harmonics,
- Resonance not exact integer multiples
- Requires Compensation coil, about 6ft from transformer
- Aligns the SWR dips on harmonics
- Coil makes it "longer"
- Show simulation
- Show Patterns



wa7ark







# Move the first SWR null to 75m

- The EFHW-8010 has the lowest SWR at ~3.58MHz
- Not good if your interest is 75m
- There is a new EFHW-7510-2K model
- Adds a 300pF capacitor to center of the long wire.
- How does that work?

![](_page_27_Figure_0.jpeg)

## **Compensation capacitor**

- 80m: current is max at center of long wire
- 40m: current is min at center of long wire
- Capacitive reactance makes antenna shorter only on 80m
- not on 40m on up
- Capacitor becomes a short on higher bands
- Position juggled with compensation coil.

# **Azimuth Patterns**

- Identical to dipole on fundamental
- On Higher Harmonics:
  - "lobes"
  - Some Gain
  - Deep Nulls
- Might need two antennas?
- Look at what the simulator predicts:
- Observed

![](_page_30_Figure_0.jpeg)

![](_page_31_Figure_0.jpeg)

#### Coax is really three conductors

- Two are Center-to-Inside-of-Shield
  - Called Differential (TEM) Mode of coax
  - Carries power to antenna.
  - Fields completely cancel inside coax

• Third conductor is the outside of Shield

- Acts as a real wire in the near-field
- Modifies the pattern/SWR
- Follows the coax back to the shack
- Called Common Mode (CM) on coax

![](_page_33_Figure_0.jpeg)

![](_page_34_Figure_0.jpeg)

![](_page_35_Figure_0.jpeg)

# Vary coax length on EFHW

- 80m EFHW (coax only)
- Coax grounded
- No CMC
- Vary coax from 45ft (0.16wl) to 265ft (0.97wl)
- Watch the movie:

## Now let's fix it

- Mitigation
  - Common Mode Choke (see example)
  - Ground near transformer.

![](_page_38_Figure_0.jpeg)

#### What simulation shows about coax shield

- CM Current on coax shield comes from:
  - Mutual coupling between EF wire and coax, especially if coax-to-ground path becomes resonant (dominant effect
  - Transformer secondary current (small effect)
- When Standing-Wave forms on coax shield
  - Radiates and distorts pattern
  - Changes feed-point Z and SWR
  - Conducts RF < into shack</li>
  - Conducts noise > to receiver front-end

## CM on coax during testing

- I used the EFHW-8010 test set up shown
- 100W to antenna, Max wire current ~1.4A
- I used a CM current meter I built (0.6A f.s.)
- Tried w/wo CM choke, Ground at window
- Tried various coax lengths to find resonances
- Tried all bands where no tuner needed
- Highest CM sometimes outside (Standing W)

# Current Transformer/Detector for measuring CM current on coax

![](_page_41_Picture_1.jpeg)

#### Measured CM at rig end (circled values cause "buzz" in computer speakers

| coax Len= | 40.8  | 55.6        | 69.02 | 80.1        | 102.8 | 115.1 | 162.3 |
|-----------|-------|-------------|-------|-------------|-------|-------|-------|
| frequency | mA    | mA          | mA    | mA          | mA    | mA    | mA    |
| 3.500     | 116   | 64          | 240   | 104         | (499) | 65    | 70    |
| 3.600     | 79    | 61          | 116   | 42_         | 338   | 61    | 60    |
| 7.000     | 585 ) | 178         | 240   | <u>412)</u> | 264   | 178   | 77    |
| 7.150     | 240   | 129         | 215   | 215         | 190   | 129   | 55    |
| 7.300     | _141  | 129         | (314) | 129         | 166   | 129   | 60    |
| 14.000    | 573   | 240         | 190   | 116         | 45    | 48    | 0     |
| 14.100    | 511   | 240         |       | 92          | 43    | 44    | 0     |
| 14.200    | 437   | 190         | 166   | 79          | 42    | 41    | 0     |
| 14.300    | 363   | 153         | 116   | 67          | 40    | 0     | 0     |
| 14.350    | 289   | <u>14</u> 1 | 104   | 67          | 0     | 0     | 0     |
| 21.000    | 215   | 598         | 227   | 129         | 0     | 0     | 0     |
| 21.100    | 166   | 536         | 203   | 116         | 0     | 0     | 0     |
| 21.200    | 141   | 511         | 166   | 92          | 0     | 0     | 0     |
| 21.300    | 104   | 412         | 141   | 67          | 0     | 0     | 0     |
| 21.400    | 42    | 289         | 116   | 42          | 0     | 0     | 0     |
| 28.300    | 166   | 141         | 42    | 0           | 0     | 0     | 0     |
| 28.500    | 104   | 116         | 18    | 0           | 0     | 0     | 0     |
| 28.700    | 129   | 166         | 55    | 0           | 0     | 0     | 0     |

Finding the Coax "monopole" resonance on 80m

- Added coax in 2ft steps
- 0.25wl resonance in coax shield at 66ft
- CM meter pinned at 100W (0.6A = f.s.)
- Had to reduce power to ~10W
- Can see the coax resonance in SWR plot:

# Coax resonance shows in 80m SWR plot

![](_page_44_Figure_1.jpeg)

45

# Grounding coax shield at Entry Panel

- Shunts CM current to earth
- Eliminates it inside shack (verified)
- Changes the path length (for better/worse)
- CM might still be high between entry panel and the transformer to:
  - Distort pattern
  - Pick up noise
  - Change SWR

wa7ark

# Adding Common Mode Choke

- CMC = 10 to 17t of small coax on FT240-31
- Analogy: break resonance in guy wire
- Placement (recall simulation)
  - No closer than ~0.1 lowest-band wl to Xfrmr
  - Optimum location on one band may not be optimum on others
  - Locate where coax turns corner below antenna.

wa7ark

• May not need; if CM, then experiment.

# Grounding coax/transformer

- Add second earth ground to coax shield under antenna
- Low-mounted transformer (invertedV or L), use Gnd wingnut on box?
- Horizontal/Sloper EFHW fed from tower case study, have some inconsistency between simulation and measurement of actual ant.

# Home-building

- Certainly do-able
- Just wire, toroids, capacitor, coax, insulator, box and hardware
- Web is full of resources, some of it bad
- Steve Ellington's videos on YouTube
- FT140-43 toroid for QRP
- Use two or three stacked FT-240-43 for 100W to QRO.

## **Conclusions: Advantages**

- Useful antenna for multi-band operation
- Lots of bands with no-tuner or tuner built-in rig
- Fed from one end sometimes more convenient
- Simple to deploy Horiz, Sloped, V or L
- Useful for limited space, RV, SOTA, FD
- Home-brewable

# **Conclusions: Disadvantages**

- Patterns with deep nulls on certain headings
- Common-mode can be problematic
  - RF in the shack
  - Noise coupled to coax in the shack
- I would:
  - Plan for CM Choke (added cost)
  - Plan for a ground rod

So, to summarize my take on the debate as far as it has come:

- 1. There is no such thing as an End Fed Half Wave (EFHW) antenna.
- 2. There is such a thing as an Extremely Off Center Fed (EOCF) Antenna, which is what we have been discussing.
- 3. An isolated EOCF antenna requires at least a minimal (0.05wl) counterpoise to work.
- 4. The current into the counter poise is small compared to the peak current in the active part of the antenna (~20%).
- 5. The counterpoise can be a 0.05 to 0.4 wl wire without affecting SWR hardly at all.
- 6. If a coax feeds a three-terminal auto-transformer, the coax shield can be the counterpoise, and the short wire is redundant.
- 7. The current on the coax shield can be choked, as long as the choke is no closer than 0.05wl to the transformer.
- 8. The current on the coax shield can be shunted into the earth with a ground rod.
- 9. In certain installations, you might have to do both 7 and 8 to prevent RF getting into things in the shack.