Open Source Software in Robotics and Real-Time Control Systems

Gary Crum at OpenWest 2017

Background and some videos for context

- ASI history with some open source and USU academic roots:
 - <u>asirobots.com</u>

- DARPA: Defense Advanced Research Projects Agency
 - Grand Challenge prize competition in 2004 and 2005
 - Urban Challenge in 2007
 - <u>Robotics Challenge in 2012</u>

product example: Sharp Intellos Automated Unmanned Ground Vehicle

https://www.youtube.com/watch?v=zgEdFkyD9Hg

Introduction

- Robotics and Real-Time Control Systems
 - motors and actuators
 - movement, generally in real world or simulation
 - localization
 - navigation
- Following slides: Examples of open source software packages

Prime example: operating systems

- UNIX -> Linux, very open
 - increasingly useful for deterministic real-time systems such as robotics
- Arduino: minimal, free and open, bare-metal runtime software
- VxWorks
- INTEGRITY
- μC/OS-II
- ROS: Robot Operating System

Operating System characteristics

- Management of hardware resources
 - memory, storage
 - I/O to devices, such as digital and analog I/O
 - task/process/thread scheduling
- Communication and networking interfaces
 - TCP/IP on Ethernet and RF, e.g. WiFi
 - CAN: Controller Area Network
 - I2C, RS-232, RS-485
- Application Binary Interface and loading
 - init, system
- Shell command interpreter, bash, and tools such as ps: process status

Operating System licensing and openness

- Linux (e.g. kernel) is GPL
 - GPL: GNU General Public License
 - GNU: GNU's Not UNIX
- Some operating systems are open source, but not free
 - e.g. µC/OS-II
- Some operating systems are closed source
 - INTEGRITY
 - VxWorks
- Some operating systems have open source components
 - Apple macos and iOS, with Darwin kernel and BSD UNIX libraries and tools

UNIX evolution including Linux kernel

Debian Linux family tree

https://upload.wikimedia.org/wikipedia/commons/1/1b/Linux_Distribution_Timeline.svg

Development tools

- Closely tied to operating systems
- GNU Compiler Kit
- LLVM/Clang
- Modern C++
- Python
 - modern
 - free, open source
 - runs on inexpensive hardware
 - interpreted
 - many libraries
 - SciPy.org
 - cross-platform
 - core language of ROS: Robot Operating System

ROS: Robot Operating System

- Framework, especially for robotics communication
- uses publish/subscribe design pattern
- introduces useful concepts, abstraction and clean implementation
- nodes
- topics
- tf: transforms
- talker/listener nodes
- I/O drivers for motors, actuators, sensors including LIDAR

More on ROS: ROS packages incl. localization

- GPS input, NMEA 0183 parsing
 - NMEA: National Maritime Electronics Association messages such as \$GPGGA output by GPS/GNSS receivers
 - can provide accuracy within +/- 1cm when used with RTK: Real-Time Kinematics, differential corrections using RTCM: Radio Technical Commission for Maritime services NTRIP: Networked Transport of RTCM via Internet Protocol CORS: Continuously Operating Reference Station

More on ROS: higher-level ROS packages

- AMCL Adaptive Monte Carlo Localization, 2D
 - <u>http://wiki.ros.org/amcl</u>
- gmapping OpenSlam Gmapping
 - SLAM: Simultaneous Localization and Mapping
- loam_velodyne
 - LOAM: Laser Odometry and Mapping
 - BSD license, comes from CMU
- drivers for wheel encoders and odometry

Example: Gazebo: <u>http://gazebosim.org</u>

- from OSRF: Open Source Robotics Foundation
- Gazebo is Robot Simulator with 3D vizualization and robot model
- includes images, video, 3D point clouds, maps

Example: Open Source math libraries and tools

- Eigen: C++ template library for linear algebra
- Eigen is implemented in .hpp files
- modern alternative to classic LAPACK: Linear Algebra Package

```
#include <iostream>
#include <Eigen/Dense>
using Eigen::MatrixXd;
int main()
{
    MatrixXd m(2,2);
    m(0,0) = 3;
    m(1,0) = 2.5;
    m(0,1) = -1;
    m(1,1) = m(1,0) + m(0,1);
    std::cout << m << std::endl;
}</pre>
```

Example: Open Source math libraries and tools

- GNU Octave, a scientific programming language with GUI
 - much like Matlab, not including Simulink
 - also good for data analysis and plotting
 - can solve nonlinear differential equations
- DLIB, http://dlib.net/, machine learning and data analysis library

Example: OpenCL: Open Computing Language

- standard for parallel programming, heterogeneous systems
- from non-profit technology consortium Khronos Group
- includes code for making use of multiprocessing capability of multiple hardware implementations including:
 - Intel CPUs and GPUs
 - NVIDIA GPUs: Graphics Processing Units
 - FPGAs: Field-Programmable Gate Arrays

Example: OpenCV: Open Source Computer Vision Library

- library available under BSD license
- includes C++, C, Python and Java interface
- on Windows, Linux, macos, iOS and Android
- efficient, uses OpenCL
- for image processing
- used by some ROS code such as IAI Kinect library

Example: other Deep Learning implementations

- TensorFlow: open-source software library for Machine Intelligence
 - originated by Google, but made open and independent
- Keras: Deep Learning library for Python
 - can be used as simplified interface to TensorFlow
- Deep Learning can be used for image and object recognition

Example: Raspberry Pi and Arduino platforms

- Open, low-cost and easy with free examples,
- setting precedent and example, copied by others including low price
- Some packages can be partially open but have key closed components

Raspberry Pi 3 specifications

System-on-chip used	Broadcom BCM2837
<u>CPU</u>	1.2 GHz 64/32-bit quad-core ARM Cortex-A53
Memory	1 <u>GB LPDDR2</u> <u>RAM</u> at 900 MHz ^[2]
Storage	MicroSDHC slot
Graphics	Broadcom VideoCore IV at higher clock frequencies (300 MHz & 400 MHz) than previous that run at 250 MHz
Power	10.0 <u>W</u> (2 <u>A</u>)
Website	<u>raspberrypi.org</u>

Other examples from you? How about:

- Robotics competitions such as VEX and FIRST.
- ArduPilot for flying robots
- MIT Scratch
- Arduino and Pi robotics platforms including motors and wheels
- Academic projects, sometimes open at least for more academic use
 - example is CVXGEN: Convex problem solver, code generator from Stanford
 - used for NASA Mars landing code as well as by SpaceX for rocket landings

Any similar experience and interests?

Questions?

CrumResearch@gmail.com Tel. 801-449-1426