Chapter 10

Rasterization and Shading

“Colors are the smiles of nature. When they are extremely
smiling, and break forth into other beauty besides, they
are her laughs, as in the flowers.”

Leigh Hunt: The Seer, 1840

“Colors speak all languages.”
Joseph Addison: The Spectator, June 27, 1712

10.1 Overview

With rasterization, we finally get to see how the geometry described to Direct3D
gets turned into pixels on the screen. Direct3D uses a process called scanline
rendering to produce pixels from primitives. The term scanline comes from the
structure of a video monitor, where lines of pixels are scanned by the electron
beam during display.

Once vertex processing has completed, the primitives have been transformed
into screen space, where one unit equals the size of a pixel on the render target.
Points, lines and triangles are processed into pixels through a set of rasterization
rules. The rasterization rules define which pixels are generated by a primitive in
a consistent fashion so that when two primitives meet at a coincident vertex, no
gaps appear between primitives and that all pixels are generated exactly once
for coincident but non-overlapping geometry.

Each pixel generated by rasterization will be associated with a depth value,
an RGBA diffuse color, an RGB specular color, a fog factor, and one or more
sets of texture coordinates. The values generated by rasterization are passed
to subsequent stages of the graphics pipeline for per-pixel processing and then
incorporation into the render target.

379

380 CHAPTER 10. RASTERIZATION AND SHADING

Before getting into the details of scanline rendering, we’ll first take a look at
the shading and filling possibilities provided by Direct3D. Shading refers to how
Direct3D computes the colors for the pixels, while filling refers to how Direct3D
decides to generate pixels for the interior of primitives. Then we’ll look at how
scanline rendering generates pixels for the primitives supplied by Direct3D.

10.2 Shading and Filling

Rasterization is also referred to as “shading” and “filling” as different shades of
the vertex colors are used to fill the interior of primitives. The simplest method
of shading and filling is to pick a constant color and fill the interior of a primitive
with that color. For objects constructed from triangles, this leads to a faceted
appearance when each triangle’s color is chosen based on lighting, and leads to
a solid color filled silhouette of the object when all the triangles are filled with
the same color.

When the triangles approximate a smooth surface and each vertex contains
the normal of the true surface, then each vertex can have a different color
computed for it during lighting. We can shade the triangle using the colors at
the vertices to compute colors for the interior!. RS Shade Mode defines how
Direct3D computes the interior colors for a primitive and is value taken from
the D3DSHADEMODE enumeration.

typedef enum _D3DSHADEMODE {
D3DSHADE_FLAT =1,
D3DSHADE_GOURAUD 2,
D3DSHADE_PHONG 3

} D3DSHADEMODE;

Flat shading computes a single color for the entire filled portion of the prim-
itive. The color chosen is that associated with the first vertex in the primitive.
If a triangle with vertices {4, B, C} is specified, the vertex data used for flat
shading is that associated with the vertex A. Similarly, for a line segment with
vertices A, B, flat shading will use the color associated with vertex A. Flat shad-
ing does not provide a realistic rendering for smooth surfaces approximated by
triangles.

Gouraud shading linearly interpolates between the vertices to produce the
associated vertex data for points of the interior of the primitive. So if a line
segment A, B has the color white associated with vertex A and black associated
with vertex B, then a point midway between A and B will have the color that is
50% white, halfway between white and black. For a triangle, the points in the
interior of the triangle have a color that is a linear combination of the colors at
the vertices, depending on the point’s distance from each vertex. Points along
the edges of the triangle are colored similarly to a line, as a linear interpolation
between the colors at the two vertices defining the edge.

L1As we only have colors at the vertices of a triangle from lighting, the “interior” also
includes the pixels along the edges of the triangle

10.2. SHADING AND FILLING 381

Phong shading is not supported by Direct3D, but is described here for com-
pleteness. In chapter 8 we described how lighting was computed at the vertices
to produce vertex colors, which are used by shading. Phong shading interpo-
lates the normal across the triangle and computes the lighting at each pixel
to produce “per-pixel lighting”. This produces a more realistic shading of the
surface, but is more expensive to compute as lighting is a complex computation.
While Direct3D does not support Phong shading directly, it is still possible to
perform per-pixel lighting using textures as we will see in chapter 11.

RS Fill Mode, with a value of type D3DFILLMODE, defines which portions of
primitives are drawn and shaded. The point fill mode draws only the vertices
of primitives. The wire frame fill mode draws the edges of primitives, including
non-degenerate edges of degenerate triangles. The solid fill mode draws the
entire interior of primitives, skipping degenerate triangles.

typedef enum _D3DFILLMODE {
D3DFILL_POINT =1,
D3DFILL_WIREFRAME = 2,
D3DFILL_SOLID 3
} D3DFILLMODE;

We have discussed shading and filling as if only the diffuse color was involved
in the interpolation. However, Direct3D can also interpolate other data associ-
ated with each vertex: the opacity (alpha), the specular color, the depth, the
fog factor and the associated texture coordinates. Each of these values can be
interpolated across the primitive by the device.

D3DCAPS9: : ShadeCaps defines the shading capabilities of the device. All
devices support flat shading with no interpolation of the associated vertex data.
Each bit set in ShadeCaps defines which portion of the vertex color components
are interpolated across the primitive. If texturing is supported by the device,
then it interpolates texture coordinates across a primitive.

#define D3DPSHADECAPS_COLORGOURAUDRGB 0x00000008L
#define D3DPSHADECAPS_SPECULARGOURAUDRGB 0x00000200L
#define D3DPSHADECAPS_ALPHAGOURAUDBLEND 0x00004000L
#define D3DPSHADECAPS_FOGGOURAUD 0x00080000L

We saw in chapter 7 that a perspective projection introduces a depth dis-
tortion to primitives, causing primitives closer to the viewer to appear larger
than those farther away. Perspective projections also introduce a distortion
in the interpolation of vertex data. A device can compensate for this with
additional work in the interpolation of vertex color components when the D3D-
PRASTERCAPS_COLORPERSPECTIVE bit of RasterCaps is set. Similarly, texture
coordinates are interpolated with perspective correction if the D3DPTEXTURE-
CAPS_PERSPECTIVE bit of TextureCaps is set.

#define D3DPRASTERCAPS_COLORPERSPECTIVE 0x00400000L
#define D3DPTEXTURECAPS_PERSPECTIVE 0x00000001L

382 CHAPTER 10. RASTERIZATION AND SHADING

Y2 B

Y1 —1—

Yo C

Lo T T2

Figure 10.1: Scanline rendering of triangle ABC. The two dimensional points
(z0,y1), (x2,y2) and (x1,y0) correspond to the vertices A, B, and C, respec-
tively, after they are projected onto the screen.

10.3 Scanline Rendering

Scanline rendering is essentially a two-dimensional for loop over the pixel cen-
ters covered by a triangle. Before we discuss exactly what constitutes a “pixel
center” or what “covering” means, let’s take a look at the scanline rendering
algorithm.

In figure 10.1 the triangle ABC is shown after it has been projected to
screen space. This triangle has three edges AB, BC, and C'A that form a
boundary around the pixels we want to fill, assuming we’re using a solid fill
mode. We’d like to write our two-dimensional loop to iterate over the pixels
inside the boundary formed by the edges, but the edges edges could be in any
orientation on the screen. If we sort the edges based on the coordinates of their
vertices, then we can write a doubly nested loop that iterates over scanlines
inside the boundary and then the pixels within each scanline.

The loop will iterate from the bottom of the screen to the top of the screen
for each scanline and then from the left side of the screen to the right side
within each scanline. First, we sort the edges of the triangle based on the
smallest y coordinate in each edge. This gives us an edge list {(z1, y0), (z2,¥2)},
{(xlv y0)7 (1'0, yl)}v {(an yl)v (x27 yQ)}

Now we can process this list of edges in order of increasing y coordinate to
generate scanlines between the edges. We loop over the scanlines, in order of

10.4. SOURCE PIXEL GENERATION 383

increasing ¥y, maintaining a list of active edges. Initially the active edge list is
empty. Every time we loop on a scanline, we look at the list of edges sorted by
y and move all edges that intersect this scanline to the active edge list. We keep
the active edge list sorted by increasing x every time an edge is added to the list.
With a list of edges that are active for the current scanline, we can loop through
the edges, generating pixels between each pair of active edges. In the case of a
single triangle, only 2 edge will be active at any time, but this algorithm scales
up to rendering multiple triangles at the same time. At the end of each scanline,
we increment the scanline counter y and remove any edges from the active edge
list whose maximum y coordinate is smaller than the scanline counter.

For the triangle ABC, horizontal spans between the sides AC and BC will
be produced, followed by spans between the sides AB and BC. The list of all
edges and active edges will proceed as follows:

Y Edge List Active Edge List
0<y<wo {(@1,90), (¥2,92)
{(-’131,?]0), (anyl)
{(z0, 1), (72, 92)
{(@o,91), ()

)

)

}
}
i
}

vo<y<wy {(xo,y1) (w2,92)} {(=1,%),(x0,y1)},
{(z1,90), (v2,92) }
n <y<y2 {(zo,y1), (z2,92) }
{(90173/0)» ($2,y2)}

Y2 <y

10.4 Source Pixel Generation

Now that we’ve seen how scanline rendering works, we can return to the question
of what constitutes a “pixel center” and how a triangle is determined to “cover”
a pixel center. In figure 10.2 we show the same triangle as in figure 10.1,
showing the pixel centers and which centers are covered by the triangle. The
pixels covered by a primitive are the source pixels for pixel processing.

For pixels in the interior of a triangle, they are clearly covered by the triangle
and are filled as shown in the figure. The interesting case happens for pixels
on or near the edge of the triangle. We want to select pixels for filling such
that when two triangles coincide at their edges, each pixel is covered by exactly
one and only one of the triangles. Direct3D accomplishes this by using a left-
filling convention for determining which pixel centers are covered by a triangle.
The left-filling convention means that each horizontal span of pixels generated
through scanline rendering of a triangle is considered to be closed on the left
and open on the right. In the figure, you can see that for the left side of each
span, pixels whose centers are inside the triangle or on the edge of the triangle
are filled by the left-filling convention. Pixels on the right side of each span are
not considered inside the triangle if their pixel center coincides with the edge.

If another triangle shared the edge BC of the triangle shown, then the pixels
along the edge would be filled by the other triangle. This ensures that the pixels
along the boundary will be filled by exactly one triangle, even though the edge

384 CHAPTER 10. RASTERIZATION AND SHADING

O|e|oe|e|e|e|e|e|e|o|e|o|e/o|e|/o|e /o|e|e]|e
1|oe|oe|o|o|e|e|oe|e|e|e|o|e|e|e|o /o e |o|e|e
2 e|e|e|o|o|o|o|o|o|e|e|e|o|o|e]|le]| orF] .
3le|e|e|o|o|o oo e|o|e|e|e| ot¥|+|+ oo
Ao o o|o|o|o|o|o|lo|le|arF|+|+|+|+ o oo
Slefe|ele|e]e|olsrF[+|+|+|+|+|+] |||
Glofo|e|olorF[+|+|[+|+|+|+|+ [+ o|e|e|e|s
T e |erF [+ |+ |+ |+ [+ [H[H+ e o]]
Sle| o PR(F|+|+|+|+ |+ |+|+|+ | o|e|e|o|e]e]e
Qe ||| o Nt |+ |4+ 44|+ e|o|e e o e|e]e
10| o [o e || o Rl+|+|+|+ e|oe|e|e e e e|le]e
11| o | o | o | o | o | o | ekt |4 o|oe|eo e e le|lo|eo|e]|e
12| e | o | o | 0| e | o |e|e S S N R IR B O S S IS
13| o |0 | o | e | e | oo | e e |o|e|e|e|o|o /e /e oo e
0123456 7 8 910111213 14151617 18 19

Figure 10.2: Rasterization of a triangle. Scanlines in screen space are numbered
in screen space starting from 0 at the top of the screen, with y increasing
downwards. Pixels in screen space are numbered from 0 at the left of the
screen, with x increasing to the right. Pixel centers are shown with a solid dot
and rasterized pixel centers are shown with a cross through the dot.

is shared. The vertex C'is an interesting case because it is not filled even though
you might think it should be filled. However, the pixel at (8,12) is not filled
for this triangle because it is the right-most pixel in the span for that scanline.
If another triangle shared the edge BC, then it the pixel (8,12) would be filled
for that triangle.

Point Primitives

The rasterization of point and line primitives are similar to triangle primitives,
but somewhat simplified because of the reduced dimensionality of these prim-
itives. For points, the pixel center nearest to the projected coordinates of the
point is considered covered by the point. Point sprites are conceptually raster-
ized as two textured triangles, although the exact method of rasterization is up
to the device, following the rules for triangle rasterization.

Line Primitives

Line segments are rasterized in one of two ways, depending on their slope. For
projected segments with a horizontal extent larger than their vertical extent,
rasterization proceeds horizontally, where pixel centers vertically closest to the

10.5. SOURCE PIXEL DATA 385

line are considered covered by the line. Similarly, for projected segments with a
vertical extent larger than their horizontal extent, rasterization proceeds verti-
cally where pixels centers horizontally closest to the line are considered covered
by the line. In this manner, the pixels closest to a line are considered covered by
the line, each covered pixel is generated only once, and the line never exceeds a
single pixel in cross section.

There are times when it is convenient to have several lines coincide at a
point, but have the coincident point rasterized only once. RS Last Pixel controls
whether or not the last pixel of a rasterized line is generated. When TRUE,
the last pixel is generated, otherwise the last pixel is not generated during
rasterization. You can draw all but one of the coincident lines with RS Last
Pixel disabled and draw the final coincident line with RS Last Pixel enabled to
get the coincident point rasterized only once. The coincident vertex should be
the second vertex in the line segment for this to work properly.

Lines can be antialiased with RS Antialiased Line Enable. When set to TRUE,
all line primitives are rendered with an antialiasing filter, providing a smoother
looking line. Patterning and antialiasing do not affect triangles drawn in wire-
frame mode, only line primitives. Using RS Antialiased Line Enable, we can use a
two-pass technique to provide a smooth silhouette to a polygonal object. First,
the polygonal object is drawn. Next, RS Antialiased Line Enable is set to TRUE
and the silhouette of the object is drawn with line primitives. Care must be
taken to provide the appropriate surface normal and color vertex components
with the line primitives so that they match the solid object. As this involves
drawing two primitives over top of the same pixels, care must be taken so that
the proper visibility is applied with the Z buffer. See chapter 14 for more details
on the Z buffer and visibility.

RS Antialiased Line Enable is supported if the D3DLINECAPS_ANTIALTIAS bit
of D3DCAPS9: :LineCaps is set.

#define D3DLINECAPS_ANTIALIAS 0x00000020L

Many devices do not support line patterning or antialiasing, so alternative
methods need to be found if these features are important. Lines can be patterned
using textures, as we will see in chapter 11. Textures also provide a way to render
triangles in such a manner that they appear as wide lines, or as antialiased lines.
Multisampling can also be used to perform whole scene antialiasing, as described
in chapter 14.

10.5 Source Pixel Data

Scanline rendering determines the x and y coordinates for each source pixel
generated for a primitive. The z value for each vertex is also interpolated across
the primitive to generate a depth value for each source pixel. Vertices may
also have texture coordinates that are interpolated by the scanline rendering
algorithm and associated with each generated source pixel. Texture coordinate
processing is discussed in detail in chapter 11.

= = e
UL W N = O

386 CHAPTER 10. RASTERIZATION AND SHADING

Diffuse and specular lighting vertex components are interpolated between
vertices according to the value of RS Shade Mode. The diffuse lighting compo-
nent’s alpha channel determines the transparency of the vertex and is interpo-
lated between vertices to generate the transparency for each source pixel. The
specular lighting component’s alpha channel contains the fog factor for each ver-
tex and is interpolated between vertices to generate a fog factor for each source
pixel. The associated information is passed to subsequent stages of the pipeline
for pixel processing and incorporation into the frame buffer.

A device with a hardware rasterizer sets the D3DDEVCAPS_HWRASTERIZATIONDit
of D3DCAPS9: :DevCaps. Cards without hardware rasterizers are extremely old
and it is very unlikely you will encounter a card without this capability. This
bit is informational in nature.

10.6 rt Rasterize Sample Application

This sample application demonstrates the rasterization related render states RS
Last Pixel, and RS Antialiased Line Enable.

The entire source code is included in the samples accompanying this book.
Listed here is rt _Rasterize.cpp, containing the “interesting” code of the sam-
ple. The sample uses small helper classes that encapsulate reusable Direct3D
coding idioms. Their meaning should be straightforward and all such helper
classes are placed in the rt namespace to highlight their use.

Listing 10.1: rt_Rasterize.cpp: Demonstration of rasterization related render
states.

© 00 O U i W N =

—_ =
- o

(O
S © ®

it
// File: rt_Rasterize.cpp

//

// Desc: DirectX window application created by the DirectX AppWizard

=
#include <cmath>

#include <stdio.h>

#define STRICT

#include <windows.h>

#include <commctrl.h>

#include <commdlg.h>

#include <basetsd.h>

#include <atlbase.h>

#include <d3dx9.h>

#include "DXUtil.h"

#include "D3DEnumeration.h"

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

10.6. RT_RASTERIZE SAMPLE APPLICATION

#include "D3DSettings.h"
#include "D3DApp.h"
#include "D3DFont.h"
#include "D3DUtil.h"

#include "resource.h"
#include "rt_Rasterize.h"

#include "vertices.h"

#include "rt/app.h"
#include "rt/colorsel.h"
#include "rt/hr.h"
#include "rt/misc.h"
#include "rt/states.h"
#include "rt/vertexbuf.h"

387

[I1177777777777777777777717777777777777777777777777777177777

// s_circle_vertex: :FVF

// s_grid_vertex: :FVF

/7

// FVF codes for the circle and grid vertices.

//

const DWORD

s_circle_vertex::FVF = D3DFVF_XYZ | D3DFVF_DIFFUSE;

const DWORD

s_grid_vertex::FVF = D3DFVF_XYZRHW | D3DFVF_DIFFUSE;

const UINT

CMyD3DApplication: :NUM_CIRCLE_VERTICES = 200;

f == e e e e
// Global access to the app (needed for the global WndProc())

e
CMyD3DApplication* g_pApp = NULL;

HINSTANCE g_hInst = NULL;

=
// Name: WinMain()

// Desc: Entry point to the program. Initializes everything, and goes into a

// message-processing loop. Idle time is used to render the scene.

e

INT WINAPI WinMain(HINSTANCE hInst, HINSTANCE, LPSTR, INT)

67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112

388

//
//
//
//
//
//

CHAPTER 10. RASTERIZATION AND SHADING

CMyD3DApplication d3dApp;

g_pApp &d3dApp;
g_hInst = hlnst;

: :InitCommonControls();
if (FAILED(d3dApp.Create(hInst)))
return O;

return d3dApp.Run();

Name: CMyD3DApplication()

Desc: Application constructor. Paired with ~“CMyD3DApplication()
Member variables should be initialized to a known state here.
The application window has not yet been created and no Direct3D device
has been created, so any initialization that depends on a window or
Direct3D should be deferred to a later stage.

CMyD3DApplication: :CMyD3DApplication()

CD3DApplication(),

m_show_text (true),

m_animate(false),

m_last_pixel(true),
m_antialias_lines(false),
m_show_grid(false),

m_show_circle(false),
m_alpha_blending(true),
m_grid_fg(D3DCOLOR_ARGB(100, 255, 255, 0)),
m_circle_fg(D3DCOLOR_ARGB(100, 0, 255, 255)),
m_background (D3DCOLOR_XRGB(0, 0, 0)),
m_grid(),

m_num_grid_segments(0),

m_circle(),

m_bLoadingApp (true),

m_font(_T("Arial"), 12, D3DFONT_BOLD),
m_input(),

m_rot_x(0.0f),

m_rot_y(0.0f)

m_dwCreationWidth = 500;

10.6. RT_RASTERIZE SAMPLE APPLICATION 389

113 m_dwCreationHeight = 375;

114 m_strWindowTitle = TEXT("rt_Rasterize");
115 m_d3dEnumeration.AppUsesDepthBuffer = TRUE;

116 m_bStartFullscreen = false;
117 m_bShowCursorWhenFullscreen = false;

118

119 // Read settings from registry

120 ReadSettings();

121}

122

123

124

125

126 //—=—=— e

127 // Name: ~CMyD3DApplication()

128 // Desc: Application destructor. Paired with CMyD3DApplication()

120 /e
130 CMyD3DApplication::~CMyD3DApplication()

131 {

132}

133

134

135

136

R
138 // Name: OneTimeSceneInit()

139 // Desc: Paired with FinalCleanup().

140 // The window has been created and the IDirect3D9 interface has been
141 // created, but the device has not been created yet. Here you can
142 // perform application-related initialization and cleanup that does
143 // not depend on a device.

144 /) o
145 HRESULT CMyD3DApplication::0OneTimeScenelInit()

146 |

147 // TODO: perform one time initialization

148

149 // Drawing loading status message until app finishes loading

150 : :SendMessage (m_hWnd, WM_PAINT, O, 0);

151

152 m_bLoadingApp = false;

153

154 return S_OK;

155

156

157

158

390 CHAPTER 10. RASTERIZATION AND SHADING

159

160 /-
161 // Name: ReadSettings()

162 // Desc: Read the app settings from the registry

163 [/ mmm
164 VOID CMyD3DApplication::ReadSettings()

165 |

166 HKEY hkey;

167 if (ERROR_SUCCESS == ::RegCreateKeyEx (HKEY_CURRENT_USER, DXAPP_KEY,

168 0, NULL, REG_OPTION_NON_VOLATILE, KEY_ALL_ACCESS, NULL, &hkey, NULL))
169 {

170 // TODO: change as needed

171

172 // Read the stored window width/height. This is just an example,

173 // of how to use ::DXUtil_Read*() functions.

174 ::DXUtil_ReadIntRegKey(hkey, TEXT("Width"), &m_dwCreationWidth, m_dwCrea
175 ::DXUtil_ReadIntRegKey(hkey, TEXT("Height"), &m_dwCreationHeight, m_dwCr
176

177 : :RegCloseKey (hkey) ;

178 }

179}

180

181

182

183

184 //—=——— e

185 // Name: WriteSettings()
186 // Desc: Write the app settings to the registry

187
188 VOID CMyD3DApplication::WriteSettings()

189 {

190 HKEY hkey;

191

192 if (ERROR_SUCCESS == ::RegCreateKeyEx (HKEY_CURRENT_USER, DXAPP_KEY,

193 0, NULL, REG_OPTION_NON_VOLATILE, KEY_ALL_ACCESS, NULL, &hkey, NULL))
194 {

195 // TODO: change as needed

196

197 // Write the window width/height. This is just an example,

198 // of how to use ::DXUtil_Writex() functions.

199 ::DXUtil_WriteIntRegKey(hkey, TEXT("Width"), m_rcWindowClient.right);
200 ::DXUtil_WriteIntRegKey(hkey, TEXT("Height"), m_rcWindowClient.bottom) ;
201

202 : :RegCloseKey (hkey) ;

203 }

204 }

205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250

10.6. RT_RASTERIZE SAMPLE APPLICATION 391

// Name: InitDeviceObjects()
// Desc: Paired with DeleteDeviceObjects()

// The device has been created. Resources that are not lost on

// Reset() can be created here -- resources in D3DPOOL_MANAGED,

// D3DPOOL_SCRATCH, or D3DPOOL_SYSTEMMEM. Image surfaces created via

// CreatelmageSurface are never lost and can be created here. Vertex

// shaders and pixel shaders can also be created here as they are not

// lost on Reset().
ittt
HRESULT CMyD3DApplication::InitDeviceObjects()

{

// Init the font
m_font.InitDeviceObjects(m_pd3dDevice);

return S_0OK;

// Name: RestoreDeviceObjects()
// Desc: Paired with InvalidateDeviceObjects()

// The device exists, but may have just been Reset(). Resources in
// D3DPOOL_DEFAULT and any other device state that persists during
// rendering should be set here. Render states, matrices, textures,
// etc., that don’t change during rendering can be set once here to
// avoid redundant state setting during Render() or FrameMove().
Y e e R
HRESULT CMyD3DApplication::RestoreDeviceObjects()
{
{

HMENU menu = TWS(::GetMenu(m_hWnd));
const bool enabled = (m_d3dCaps.LineCaps & D3DLINECAPS_ANTIALIAS) != 0;
rt::enable_menu(menu, ID_OPTIONS_ANTIALIASLINES, enabled);
if ('enabled && m_antialias_lines)
{
m_antialias_lines = false;
rt::check_menu(menu, ID_OPTIONS_ANTIALIASLINES, false);

251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296

392

CHAPTER 10. RASTERIZATION AND SHADING

}

// create grid vertices

const UINT num_rows = (m_d3dsdBackBuffer.Height+15)/16;

const UINT num_cols = (m_d3dsdBackBuffer.Width+15)/16;

m_num_grid_segments = num_rows*(1 + num_cols);

const UINT num_grid_vertices = m_num_grid_segments*2;

THR (m_pd3dDevice->CreateVertexBuffer(sizeof (s_grid_vertex)*num_grid_vertices
D3DUSAGE_WRITEONLY, s_grid_vertex::FVF, D3DPOOL_MANAGED, &m_grid, NULL))

{
rt::vertex_lock<s_grid_vertex> lock(m_grid);
s_grid_vertex *vtx = lock.data();
UINT i;
for (i = 0; i < num_rows; i++)
{
*vtx = s_grid_vertex(0, i*16.f, m_grid_fg);
vtx++;
*vtx = s_grid_vertex(float(m_d3dsdBackBuffer.Width), i*16.f, m_grid_
vtx++;
}
for (i = 0; i < num_rows; i++)
{
for (UINT j = 0; j < num_cols; j++)
{
*vtx = s_grid_vertex(j*16.f, i*16.f + 1, m_grid_fg);
vtx++;
*vtx = s_grid_vertex(j*16.f, (i+1)*16.f, m_grid_fg);
vtx++;
3
}
}

// create circle VB
THR (m_pd3dDevice->CreateVertexBuffer(sizeof (s_circle_vertex)*NUM_CIRCLE_VERT
D3DUSAGE_WRITEONLY, s_circle_vertex::FVF, D3DPOOL_MANAGED, &m_circle, NU

{
rt::vertex_lock<s_circle_vertex> lock(m_circle);
s_circle_vertex *vtx = lock.data();
for (UINT i = 0; i < NUM_CIRCLE_VERTICES; i++)
{
vtx[i] = s_circle_vertex(i*D3DX_PI*2.f/(NUM_CIRCLE_VERTICES-1),
m_circle_fg);
}
}

// Set the world matrix

297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342

10.6. RT_RASTERIZE SAMPLE APPLICATION 393

D3DXMATRIX matIdentity;
D3DXMatrixIdentity(&matIdentity) ;
THR (m_pd3dDevice->SetTransform(D3DTS_WORLD, &matIdentity));

// Set up our view matrix. A view matrix can be defined given an eye point,
// a point to lookat, and a direction for which way is up. Here, we set the
// eye five units back along the z-axis and up three units, look at the

// origin, and define "up" to be in the y-direction.

D3DXMATRIX matView;
D3DXVECTOR3 vFromPt

D3DXVECTOR3(0.0f, 0.0f, -5.0f);
D3DXVECTOR3 vLookatPt D3DXVECTOR3(0.0f, 0.0f, 0.0f);
D3DXVECTOR3 vUpVec D3DXVECTOR3(0.0f, 1.0f, 0.0f);
D3DXMatrixLookAtLH(&matView, &vFromPt, &vLookatPt, &vUpVec);
THR (m_pd3dDevice->SetTransform(D3DTS_VIEW, &matView));

// Set the projection matrix

D3DXMATRIX matProj;

FLOAT fAspect = ((FLOAT)m_d3dsdBackBuffer.Width) / m_d3dsdBackBuffer.Height;
D3DXMatrixPerspectiveFovLH (&matProj, D3DX_PI/4, fAspect, 1.0f, 100.0f);

THR (m_pd3dDevice->SetTransform(D3DTS_PROJECTION, &matProj));

// Restore the font
m_font.RestoreDeviceObjects();

return S_OK;

// Name: FrameMove ()
// Desc: Called once per frame, the call is the entry point for animating

//

the scene.

HRESULT CMyD3DApplication: :FrameMove ()

{

// Update user input state
UpdateInput () ;

// Update the world state according to user input
D3DXMATRIX matWorld;

D3DXMATRIX matRotY;

D3DXMATRIX matRotX;

if (m_animate || (m_input.m_left && !m_input.m_right))

343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388

394

CHAPTER 10. RASTERIZATION AND SHADING

m_rot_y += m_fElapsedTime;
else if (m_input.m_right && !m_input.m_left)
m_rot_y —-= m_fElapsedTime;

if (m_animate || (m_input.m_up && !m_input.m_down))
m_rot_x += m_fElapsedTime;

else if (m_input.m_down && !m_input.m_up)
m_rot_x —-= m_fElapsedTime;

m_rot_x = std::fmodf (m_rot_x, 2.f*D3DX_PI);
m_rot_y = std::fmodf(m_rot_y, 2.f*D3DX_PI);

: :D3DXMatrixRotationX (&matRotX, m_rot_x);
::D3DXMatrixRotationY (&matRotY, m_rot_y);

::D3DXMatrixMultiply (&matWorld, &matRotX, &matRotY);
THR (m_pd3dDevice->SetTransform(D3DTS_WORLD, &matWorld));

return S_O0K;

// Name: UpdateInput()
// Desc: Update the user input. Called once per frame

[/
void CMyD3DApplication::UpdateInput ()
{

m_input.m_up = (m_bActive && (GetAsyncKeyState(VK_UP) & 0x8000) == 0x8

(m_bActive && (GetAsyncKeyState(VK_DOWN) & 0x8000) == 0x8
(m_bActive && (GetAsyncKeyState(VK_LEFT) & 0x8000) == 0x8
(m_bActive && (GetAsyncKeyState(VK_RIGHT) & 0x8000) == 0x8

m_input.m_down
m_input.m_left
m_input.m_right

// Name: Render ()
// Desc: Called once per frame, the call is the entry point for 3d

// rendering. This function sets up render states, clears the
// viewport, and renders the scene.
e

HRESULT CMyD3DApplication::Render ()

389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434

10.6. RT_RASTERIZE SAMPLE APPLICATION

//

Clear the viewport: no Z buffer is used

THR (m_pd3dDevice->Clear (OL, NULL, D3DCLEAR_TARGET,

m_background, 1.0f, OL));

THR (m_pd3dDevice->BeginScene()) ;

//
//
//
//
//
//
rt
{

rt:

//
if

}

//
if
{

set rasterization state for lines:

RS Edge Antialias based on GUI state

RS Last Pixel based on GUI state

RS Line Pattern to default of O for grid
alpha blending,

no lighting or Z buffering

::s_rs states[] =

D3DRS_LASTPIXEL, m_last_pixel,
D3DRS_ANTIALTASEDLINEENABLE, m_antialias_lines,
D3DRS_ALPHABLENDENABLE, m_alpha_blending,
D3DRS_SRCBLEND, D3DBLEND_SRCALPHA,
D3DRS_DESTBLEND, D3DBLEND_INVSRCALPHA,
D3DRS_ZENABLE, D3DZB_FALSE,

D3DRS_LIGHTING, FALSE

:set_states(m_pd3dDevice, states, NUM_OF(states));

draw the screen space grid if requested
(m_show_grid)

THR (m_pd3dDevice->SetFVF (s_grid_vertex: :FVF));

THR (m_pd3dDevice->SetStreamSource (0, m_grid, O,
sizeof (s_grid_vertex)));

THR (m_pd3dDevice->DrawPrimitive (D3DPT_LINELIST, O,
m_num_grid_segments)) ;

draw world space circle if requested
(m_show_circle)

// set the line pattern for the circle

THR (m_pd3dDevice->SetFVF (s_circle_vertex: :FVF)) ;

THR (m_pd3dDevice->SetStreamSource (0, m_circle, O,
sizeof (s_circle_vertex)));

THR (m_pd3dDevice->DrawPrimitive (D3DPT_LINESTRIP, O,
NUM_CIRCLE_VERTICES-1));

395

396 CHAPTER 10. RASTERIZATION AND SHADING

435 // Render stats and help text

436 if (m_show_text)

437 {

438 RenderText () ;

439 }

440

441 THR (m_pd3dDevice->EndScene()) ;

442

443 return S_0OK;

444 '}

445

446

447

448

449)
450 // Name: RenderText ()

451 // Desc: Renders stats and help text to the scene.

E B
453 HRESULT CMyD3DApplication::RenderText()

454 A

455 D3DCOLOR fontColor = D3DCOLOR_ARGB(255,255,255,0) ;

456 TCHAR szMsg[MAX_PATH] = TEXT("");

457

458 // Output display stats

459 float fNextLine = 40.0f;

460

461 _tcscpy(szMsg, m_strDeviceStats);

462 fNextLine -= 20.0f;

463 m_font.DrawText (2, fNextLine, fontColor, szMsg);

464

465 _tcscpy(szMsg, m_strFrameStats);

466 fNextLine -= 20.0f;

467 m_font.DrawText (2, fNextLine, fontColor, szMsg);

468

469 // Output statistics & help

470 fNextLine = (float) m_d3dsdBackBuffer.Height;

471 _stprintf (szMsg, TEXT("Arrow keys: Up=Yd Down=Yd Left=Yd Right=%d"),
472 m_input.m_up, m_input.m_down, m_input.m_left, m_input.m_right);
473 fNextLine -= 20.0f; m_font.DrawText(2, fNextLine, fontColor, szMsg) ;
474 _stprintf (szMsg, TEXT("World State: %0.3f, %0.3f"),

475 m_rot_x, m_rot_y);

476 fNextLine -= 20.0f; m_font.DrawText(2, fNextLine, fontColor, szMsg);
477 _tcscpy(szMsg, TEXT("Use arrow keys to update input"));

478 fNextLine -= 20.0f; m_font.DrawText(2, fNextLine, fontColor, szMsg);
479 _tcscpy(szMsg, TEXT("Press ’F2’ to configure display"));

480 fNextLine -= 20.0f; m_font.DrawText (2, fNextLine, fontColor, szMsg);

481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526

10.6. RT_RASTERIZE SAMPLE APPLICATION 397

return S_0OK;

// Name: MsgProc()
// Desc: Overrrides the main WndProc, so the sample can do custom message
// handling (e.g. processing mouse, keyboard, or menu commands) .

LRESULT CMyD3DApplication::MsgProc(HWND hWnd, UINT msg, WPARAM wParam,

LPARAM 1Param)
{
LRESULT result = 0;
bool handled = false;
switch (msg)
{
case WM_PAINT:
if (m_bLoadingApp)
{
// Draw on the window tell the user that the app is loading
// TODO: change as needed
HDC hDC = TWS(::GetDC(hWnd));
RECT rct;
TWS(: :GetClientRect (hWnd, &rct));
::DrawText (hDC, TEXT("Loading... Please wait"), -1, &rct,
DT_CENTER |DT_VCENTER |DT_SINGLELINE) ;
TWS(: :ReleaseDC(hWnd, hDC));
}
break;
case WM_COMMAND:
result = on_command(hWnd, wParam, lParam, handled);
break;
}
return handled ? result : CD3DApp1ication::MsgProc(hWnd, msg, wParam, 1Param);
}
R R

// Name: InvalidateDeviceObjects()

398 CHAPTER 10. RASTERIZATION AND SHADING

527 // Desc: Invalidates device objects. Paired with RestoreDeviceObjects()

B28 [/ -
529 HRESULT CMyD3DApplication::InvalidateDeviceObjects()

530 {

531 m_grid = 0;
532 m_circle =
533

534 m_font.InvalidateDeviceObjects();

535

536 return S_O0OK;

537 }

538

539

540

541

B
543 // Name: DeleteDeviceObjects()

544 // Desc: Paired with InitDeviceObjects()

0;

545 // Called when the app is exiting, or the device is being changed,

546 // this function deletes any device dependent objects.

O R S
548 HRESULT CMyD3DApplication::DeleteDeviceObjects()

549 |

550 // TODO: Cleanup any objects created in InitDeviceObjects()

551 m_font.DeleteDeviceObjects();

552

553 return S_OK;

554}

555

556

557

558

559 [/

560 // Name: FinalCleanup()
561 // Desc: Paired with OneTimeSceneInit ()

562 // Called before the app exits, this function gives the app the chance
563 // to cleanup after itself.

564 [/
565 HRESULT CMyD3DApplication::FinalCleanup()

566 {

567 // TODO: Perform any final cleanup needed

568

569 // Write the settings to the registry

570 WriteSettings();

571

572 return S_O0K;

573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618

10.6. RT_RASTERIZE SAMPLE APPLICATION 399

LITI11T77777710777/777
// CMyD3DApplication::on_command
//
// WM_COMMAND handler -- update internal state based on GUI
// interaction.
//
LRESULT
CMyD3DApplication: :on_command (HWND window, WPARAM wp, LPARAM, bool &handled)
{
LRESULT result = 0;

handled = false;

const HMENU menu = ::GetMenu(window) ;

const UINT control = LOWORD(wp) ;

switch (control)

{

#define TOGGLE(id_, state_) \

case id_: \
rt::toggle_menu(menu, id_, state_); \
handled = true; \
break

TOGGLE (IDM_OPTION_SHOW_TEXT, m_show_text);

TOGGLE (IDM_OPTION_ANIMATE, m_animate);

TOGGLE (IDM_OPTION_LAST_PIXEL, m_last_pixel);

TOGGLE (IDM_SCENE_GRID, m_show_grid);

TOGGLE (IDM_SCENE_CIRCLE, m_show_circle);

TOGGLE (ID_OPTIONS_ANTIALIASLINES, m_antialias_lines);

TOGGLE (ID_OPTIONS_ALPHABLENDING, m_alpha_blending);
#undef TOGGLE

case IDM_OPTION_BACKGROUND:
{
rt::pauser block(*this);
m_background = rt::choose_color(window, m_background) ;
handled = true;
}

break;

case IDM_OPTION_GRID_COLOR:

{
rt::pauser block(*this);

619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664

400

CHAPTER 10. RASTERIZATION AND SHADING

m_grid_fg = rt::choose_color(window, m_grid_fg);
update_grid_color();
handled = true;

}

break;

case IDM_OPTION_CIRCLE_COLOR:
{
rt::pauser block(*this);
m_circle_fg = rt::choose_color(window, m_circle_£fg);
update_circle_color();
handled = true;
¥

break;

case IDM_OPTION_RESET_VIEW:
m_rot_x = 0;
m_rot_y = 0;
break;

default:
// all our control IDs are > 40006 and we should handle them all
ATLASSERT (control <= 40006) ;

}

return result;

}

II177
// update_grid_color
//
// Store the new grid color in the grid vertices.
//
void
CMyD3DApplication: :update_grid_color ()
{
rt::vertex_lock<s_grid_vertex> lock(m_grid);
s_grid_vertex *vtx = lock.data();
for (UINT i = 0; i < m_num_grid_segments*2; i++)
{
vtx[i] .m_fg = m_grid_£fg;
}
}

[I1117777777777777777777717777777777777717777777777777117777

// update_circle_color

10.6. RT_RASTERIZE SAMPLE APPLICATION 401

665 //

666 // Store the new circle color in the circle vertices.
667 //

668 void

669 CMyD3DApplication::update_circle_color()

670 {

671 rt::vertex_lock<s_circle_vertex> lock(m_circle);
672 s_circle_vertex *vtx = lock.data();

673 for (UINT i = 0; i < NUM_CIRCLE_VERTICES; i++)
674 {

675 vtx[i] .m_fg = m_circle_fg;

676 }

677 }

402 CHAPTER 10. RASTERIZATION AND SHADING

