
Chapter 16

D3DX Concrete Types

“The study of mathematics, like the Nile,
begins in minuteness, but

ends in magnificence.”
C. C. Colton: Lacon, 1820

16.1 Overview

D3DX provides some concrete C++ datatypes and routines for manipulating
them. D3DXCOLOR represents RGBA colors as 4 floats. D3DXVECTOR2, D3DX-
VECTOR3, and D3DXVECTOR4 provide two, three and four dimensional vectors of
floats. D3DXMATRIX provides a homogeneous 4x4 coordinate transformation
matrix as 16 floats. D3DXPLANE represents the equation of a plane in three
dimensions as 4 floats. D3DXQUATERNION provides orienting transformations
with a quaternion as 4 floats.

Each of these data types has constructors, conversion operators, arithmetic
operators and functions for the manipulation of the data type. Some of the
datatypes derive directly from Direct3D core data types, when appropriate.
This allows you to use the D3DX type directly in methods using the core data
types.

We will explore each type with a description of its function, a listing of its
C++ class definition and an examination of its class members. Following that,
any global functions for manipulating the type will be described.

16.2 Colors

D3DX represents an RGBA color as an instance of the D3DXCOLOR class. Its
concrete representation is four float values, one per color channel, in the public
data members r, g, b and a. Through type conversion operators, D3DXCOLOR

601

602 CHAPTER 16. D3DX CONCRETE TYPES

is interchangeable with the D3DCOLOR type alias for DWORD, the D3DCOLORVALUE
structure and an array of floats. D3DXCOLOR does not derive from D3DCOLOR-
VALUE, so be sure to use its conversion operators to obtain the correct type
depending on the context. The structure is listed below and the members are
summarized in table 16.1.

typedef struct D3DXCOLOR
{
public:

D3DXCOLOR() {}
D3DXCOLOR(DWORD argb);
D3DXCOLOR(const float *);
D3DXCOLOR(const D3DCOLORVALUE &);
D3DXCOLOR(float r, float g, float b, float a);

// casting
operator DWORD() const;
operator float *();
operator const float*() const;
operator D3DCOLORVALUE *();
operator const D3DCOLORVALUE *() const;
operator D3DCOLORVALUE &();
operator const D3DCOLORVALUE &() const;

// assignment operators
D3DXCOLOR &operator +=(const D3DXCOLOR &rhs);
D3DXCOLOR &operator -=(const D3DXCOLOR &rhs);
D3DXCOLOR &operator *=(float rhs);
D3DXCOLOR &operator /=(float rhs);

// unary operators
D3DXCOLOR operator +() const;
D3DXCOLOR operator -() const;

// binary operators
D3DXCOLOR operator +(const D3DXCOLOR &value) const;
D3DXCOLOR operator -(const D3DXCOLOR &value) const;
D3DXCOLOR operator *(float value) const;
D3DXCOLOR operator /(float value) const;

friend D3DXCOLOR operator *(float, const D3DXCOLOR &rhs);

BOOL operator ==(const D3DXCOLOR &) const;
BOOL operator !=(const D3DXCOLOR &) const;

float r, g, b, a;

16.2. COLORS 603

Assignment Operator Meaning
operator += T ← T + C
operator -= T ← T − C
operator *= T ← fT
operator /= T ← 1

f T

Unary Operator Meaning
operator + +T
operator - −T

Binary Operator Meaning
operator + T + C
operator - T − C
operator * fT
operator / 1

f T

Comparison Operator Meaning
operator == T = C
operator != T 6= C

Table 16.1: D3DXCOLOR class members. T represents the color value of *this,
C represents a color passed to a method, f represents a scalar value passed
to a method. Subscripts indicate individual color channels within the color
structure.

} D3DXCOLOR, *LPD3DXCOLOR;

D3DX provides several global functions for operating on D3DXCOLOR in-
stances. The functions are summarized in table 16.2. Most of the functions
correspond to arithmetic expressions that can be written directly. The func-
tions are provided so that C programs to manipulate D3DXCOLOR objects as
structures. When writing C++ programs, prefer the native expression over the
function call style of manipulating D3DXCOLORs.

D3DXCOLOR *D3DXColorAdd(D3DXCOLOR *result,
const D3DXCOLOR *c1,
const D3DXCOLOR *c2);

D3DXCOLOR *D3DXColorSubtract(D3DXCOLOR *result,
const D3DXCOLOR *c1,
const D3DXCOLOR *c2);

D3DXCOLOR *D3DXColorScale(D3DXCOLOR *result,
const D3DXCOLOR *c,
float s);

D3DXCOLOR *D3DXColorModulate(D3DXCOLOR *result,
const D3DXCOLOR *c1,
const D3DXCOLOR *c2);

604 CHAPTER 16. D3DX CONCRETE TYPES

Function Meaning
D3DXColorAdd C1 + C2

D3DXColorSubtract C1 − C2

D3DXColorScale sC
D3DXColorModulate 〈C1rC2r, C1gC2g, C1bC2b, C1aC2a〉
D3DXColorLerp sC1 + (1− s)C2

D3DXColorNegative 〈1, 1, 1, 1〉 − C
D3DXColorAdjustSaturation sC + (1− s)G, G = 〈f, f, f, f〉,

f = 0.2125Cr + 0.7154Cg + 0.0721Cb

D3DXColorAdjustContrast sC + (1− s)G, G = 〈 12 , 1
2 , 1

2 , 1
2 〉

Table 16.2: D3DXCOLOR global functions. C1 and C2 represent colors passed to
a function, s represents a scalar value passed to a function. The subscripts r,
g, b, and a indicate the red, green, blue and alpha color channels, respectively.

D3DXCOLOR *D3DXColorLerp(D3DXCOLOR *result,
const D3DXCOLOR *c1,
const D3DXCOLOR *c2,
float s);

The functions D3DXColorNegative, D3DXColorAdjustSaturation and D3DX-
ColorAdjustContrast operate only on the red, green, and blue channels of the
resulting color. The alpha channel is copied directly from the source color.

D3DXCOLOR *D3DXColorNegative(D3DXCOLOR *result,
const D3DXCOLOR *c);

D3DXCOLOR *D3DXColorAdjustSaturation(D3DXCOLOR *result,
const D3DXCOLOR *c,
float s);

D3DXCOLOR *D3DXColorAdjustContrast(D3DXCOLOR *result,
const D3DXCOLOR *c,
float c);

16.3 Vectors

D3DX provides a vector data type in the D3DXVECTOR2, D3DXVECTOR3 and D3DX-
VECTOR4 classes. The three-dimensional vector class derives directly from D3D-
VECTOR, providing automatic conversion to that type. Common vector arith-
metic operations are provided directly as class members and are summarized
in table 16.3. Some common operations must be performed using functions, as
not all vector operators are represented with C++ operator methods.

Each vector type has a constructor from an appropriately sized array of
floats, or an appropriate number of float arguments. Conversion operators
are provided to allow the vector to be used in place of an array of floats. Bounds
checking on these float array conversions are not provided, so use them with
caution.

16.3. VECTORS 605

Assignment Operator Meaning

operator +=
#»
t ← #»

t + #»v
operator -=

#»
t ← #»

t − #»v
operator *=

#»
t ← f

#»
t

operator /=
#»
t ← 1

f

#»
t

Unary Operator Meaning

operator + + #»
t

operator - − #»
t

Binary Operator Meaning

operator +
#»
t + #»v

operator -
#»
t − #»v

operator * f
#»
t

operator / 1
f

#»
t

Comparison Operator Meaning

operator ==
#»
t = #»v

operator !=
#»
t 6= #»v

Table 16.3: D3DX vector class members. #»
t represents the vector stored in

*this, #»v represents a vector passed into the method and f represents a scalar
value passed into the method.

606 CHAPTER 16. D3DX CONCRETE TYPES

typedef struct D3DXVECTOR2
{
public:

D3DXVECTOR2() {};
D3DXVECTOR2(const float *);
D3DXVECTOR2(float x, float y);

// casting
operator float *();
operator const float *() const;

// assignment operators
D3DXVECTOR2 &operator += (const D3DXVECTOR2 &);
D3DXVECTOR2 &operator -= (const D3DXVECTOR2 &);
D3DXVECTOR2 &operator *= (float);
D3DXVECTOR2 &operator /= (float);

// unary operators
D3DXVECTOR2 operator + () const;
D3DXVECTOR2 operator - () const;

// binary operators
D3DXVECTOR2 operator + (const D3DXVECTOR2 &) const;
D3DXVECTOR2 operator - (const D3DXVECTOR2 &) const;
D3DXVECTOR2 operator * (float) const;
D3DXVECTOR2 operator / (float) const;

friend D3DXVECTOR2 operator * (float, const D3DXVECTOR2 &);

BOOL operator == (const D3DXVECTOR2 &) const;
BOOL operator != (const D3DXVECTOR2 &) const;

public:
float x, y;

} D3DXVECTOR2, *LPD3DXVECTOR2;

typedef struct D3DXVECTOR3 : public D3DVECTOR
{
public:

D3DXVECTOR3() {};
D3DXVECTOR3(const float *);
D3DXVECTOR3(const D3DVECTOR &);
D3DXVECTOR3(float x, float y, float z);

// casting
operator float *();

16.3. VECTORS 607

operator const float *() const;

// assignment operators
D3DXVECTOR3 &operator += (const D3DXVECTOR3 &);
D3DXVECTOR3 &operator -= (const D3DXVECTOR3 &);
D3DXVECTOR3 &operator *= (float);
D3DXVECTOR3 &operator /= (float);

// unary operators
D3DXVECTOR3 operator + () const;
D3DXVECTOR3 operator - () const;

// binary operators
D3DXVECTOR3 operator + (const D3DXVECTOR3 &) const;
D3DXVECTOR3 operator - (const D3DXVECTOR3 &) const;
D3DXVECTOR3 operator * (float) const;
D3DXVECTOR3 operator / (float) const;

friend D3DXVECTOR3 operator * (float, const struct D3DXVECTOR3 &);

BOOL operator == (const D3DXVECTOR3 &) const;
BOOL operator != (const D3DXVECTOR3 &) const;

} D3DXVECTOR3, *LPD3DXVECTOR3;

typedef struct D3DXVECTOR4
{
public:

D3DXVECTOR4() {};
D3DXVECTOR4(const float*);
D3DXVECTOR4(float x, float y, float z, float w);

// casting
operator float *();
operator const float *() const;

// assignment operators
D3DXVECTOR4 &operator += (const D3DXVECTOR4 &);
D3DXVECTOR4 &operator -= (const D3DXVECTOR4 &);
D3DXVECTOR4 &operator *= (float);
D3DXVECTOR4 &operator /= (float);

// unary operators
D3DXVECTOR4 operator + () const;
D3DXVECTOR4 operator - () const;

608 CHAPTER 16. D3DX CONCRETE TYPES

Vector Type
Operation 2D 3D 4D
Addition Yes Yes Yes
Subtraction Yes Yes Yes
Scalar Product Yes Yes Yes
Dot Product Yes Yes Yes
Cross Product Yes Yes Yes
Normalize Yes Yes Yes
Length Yes Yes Yes
Length Squared Yes Yes Yes
Minimize Yes Yes Yes
Maximize Yes Yes Yes
Linear Interpolation Yes Yes Yes
Hermite Interpolation Yes Yes Yes
Catmull-Rom Interpolation Yes Yes Yes
Barycentric Interpolation Yes Yes Yes
Transform Yes Yes Yes
Transform Coordinate Yes Yes Yes
Transform Normal Yes Yes Yes
Project Yes
Unproject Yes

Table 16.4: D3DX vector class function summary.

// binary operators
D3DXVECTOR4 operator + (const D3DXVECTOR4 &) const;
D3DXVECTOR4 operator - (const D3DXVECTOR4 &) const;
D3DXVECTOR4 operator * (float) const;
D3DXVECTOR4 operator / (float) const;

friend D3DXVECTOR4 operator * (float, const D3DXVECTOR4 &);

BOOL operator == (const D3DXVECTOR4 &) const;
BOOL operator != (const D3DXVECTOR4 &) const;

public:
float x, y, z, w;

} D3DXVECTOR4, *LPD3DXVECTOR4;

Global functions provide additional operations on the vector type. The
operations available for each vector type are summarized in table 16.4. The
meaning of the operations is summarized in table 16.5. The basic operations
of addition, subtraction, scalar product, dot product, length, length squared,
minimize and maximize are straightforward.

The cross product operation is slightly different depending on the vector
class. For 2D vectors, the function D3DXVec2CCW returns the magnitude of the

16.3. VECTORS 609

Operation Meaning
Addition #»v1 + #»v2

Subtraction #»v1 − #»v2

Scalar Product f #»v
Dot Product #»v1 · #»v2

Cross Product #»v1 ⊗ #»v2

Normalize 1
‖ #»v ‖

#»v

Length ‖ #»v ‖
Length Squared ‖ #»v ‖2
Minimize 〈min(v1x, v2x), min(v1y, v2y), min(v1z, v2z)〉
Maximize 〈max(v1x, v2x), max(v1y, v2y), max(v1z, v2z)〉

Table 16.5: Summary of arithmetic operations on vectors provided by D3DX.
The semantics are shown for D3DXVECTOR3, and are similar for other vector
classes.

z component resulting from the cross product of two vectors in the xy plane.
For 3D vectors, the function D3DXVec3Cross returns the cross product of two
vectors. For 4D vectors, the function D3DXVec4Cross returns the cross produce
of three vectors.

D3DXVECTOR2 *D3DXVec2Add(D3DXVECTOR2 *result,
const D3DXVECTOR2 *v1,
const D3DXVECTOR2 *v2);

D3DXVECTOR2 *D3DXVec2Subtract(D3DXVECTOR2 *result,
const D3DXVECTOR2 *v1,
const D3DXVECTOR2 *v2);

D3DXVECTOR2 *D3DXVec2Scale(D3DXVECTOR2 *result,
const D3DXVECTOR2 *v,
float f);

float D3DXVec2Dot(const D3DXVECTOR2 *v1,
const D3DXVECTOR2 *v2);

float D3DXVec2CCW(const D3DXVECTOR2 *v1,
const D3DXVECTOR2 *v2);

D3DXVECTOR2 *D3DXVec2Normalize(D3DXVECTOR2 *result,
const D3DXVECTOR2 *v);

float D3DXVec2Length(const D3DXVECTOR2 *v);
float D3DXVec2LengthSq(const D3DXVECTOR2 *v);
D3DXVECTOR2 *D3DXVec2Minimize(D3DXVECTOR2 *result,

const D3DXVECTOR2 *v1,
const D3DXVECTOR2 *v2);

D3DXVECTOR2 *D3DXVec2Maximize(D3DXVECTOR2 *result,
const D3DXVECTOR2 *v1,
const D3DXVECTOR2 *v2);

D3DXVECTOR3 *D3DXVec3Add(D3DXVECTOR3 *result,

610 CHAPTER 16. D3DX CONCRETE TYPES

const D3DXVECTOR3 *v1,
const D3DXVECTOR3 *v2);

D3DXVECTOR3 *D3DXVec3Subtract(D3DXVECTOR3 *result,
const D3DXVECTOR3 *v1,
const D3DXVECTOR3 *v2);

D3DXVECTOR3 *D3DXVec3Scale(D3DXVECTOR3 *result,
const D3DXVECTOR3 *v,
float f);

float D3DXVec3Dot(const D3DXVECTOR3 *v1,
const D3DXVECTOR3 *v2);

D3DXVECTOR3 *D3DXVec3Cross(D3DXVECTOR3 *result,
const D3DXVECTOR3 *v1,
const D3DXVECTOR3 *v2);

D3DXVECTOR3 *D3DXVec3Normalize(D3DXVECTOR3 *result,
const D3DXVECTOR3 *v);

float D3DXVec3Length(const D3DXVECTOR3 *v);
float D3DXVec3LengthSq(const D3DXVECTOR3 *v);
D3DXVECTOR3 *D3DXVec3Minimize(D3DXVECTOR3 *result,

const D3DXVECTOR3 *v1,
const D3DXVECTOR3 *v2);

D3DXVECTOR3 *D3DXVec3Maximize(D3DXVECTOR3 *result,
const D3DXVECTOR3 *v1,
const D3DXVECTOR3 *v2);

D3DXVECTOR4 *D3DXVec4Add(D3DXVECTOR4 *result,
const D3DXVECTOR4 *v1,
const D3DXVECTOR4 *v2);

D3DXVECTOR4 *D3DXVec4Subtract(D3DXVECTOR4 *result,
const D3DXVECTOR4 *v1,
const D3DXVECTOR4 *v2);

D3DXVECTOR4 *D3DXVec4Normalize(D3DXVECTOR4 *result,
const D3DXVECTOR4 *v);

D3DXVECTOR4 *D3DXVec4Scale(D3DXVECTOR4 *result,
const D3DXVECTOR4 *v,
float f);

float D3DXVec4Dot(const D3DXVECTOR4 *v1,
const D3DXVECTOR4 *v2);

D3DXVECTOR4 *D3DXVec4Cross(D3DXVECTOR4 *result,
const D3DXVECTOR4 *v1,
const D3DXVECTOR4 *v2,
const D3DXVECTOR4 *v3);

float D3DXVec4Length(const D3DXVECTOR4 *v);
float D3DXVec4LengthSq(const D3DXVECTOR4 *v);
D3DXVECTOR4 *D3DXVec4Minimize(D3DXVECTOR4 *result,

const D3DXVECTOR4 *v1,
const D3DXVECTOR4 *v2);

16.3. VECTORS 611

D3DXVECTOR4 *D3DXVec4Maximize(D3DXVECTOR4 *result,
const D3DXVECTOR4 *v1,
const D3DXVECTOR4 *v2);

Four forms of interpolation are provided for the vector classes. Linear inter-
polation is provided by the Lerp functions. Linear interpolation between two
vectors computes the resulting vector #»v from the two input vectors #»v1, #»v2 and
an interpolating factor f . When the interpolating factor f is zero, the result is
#»v1 and when f is one, the result is #»v2. The result is given by the formula:

#»v = #»v1 + f(#»v2 − #»v1)

D3DXVECTOR2 *D3DXVec2Lerp(D3DXVECTOR2 *result,
const D3DXVECTOR2 *v1,
const D3DXVECTOR2 *v2,
float f);

D3DXVECTOR3 *D3DXVec3Lerp(D3DXVECTOR3 *result,
const D3DXVECTOR3 *v1,
const D3DXVECTOR3 *v2,
float f);

D3DXVECTOR4 *D3DXVec4Lerp(D3DXVECTOR4 *result,
const D3DXVECTOR4 *v1,
const D3DXVECTOR4 *v2,
float f);

The Hermite functions provide Hermite spline interpolation between two
vector, tangent pairs #»v1,

#»
t1 and #»v2,

#»
t2 and an interpolating factor f . When the

interpolating factor f is zero, the result is #»v1 and when f is one, the result is
#»v2. The result is given by the formula:

#»v = a0
#»v1 + a1

#»
t1 + a2

#»v2 + a3
#»
t2

where the coefficients a0, a1, a2, and a3 are given as:

a0 = 2f3 − 3f2 + 1
a1 = f3 − 2f2 + f

a2 = −2f3 + 3f2

a3 = f3 − f2

D3DXVECTOR2 *D3DXVec2Hermite(D3DXVECTOR2 *result,
const D3DXVECTOR2 *v1,
const D3DXVECTOR2 *t1,
const D3DXVECTOR2 *v2,
const D3DXVECTOR2 *t2,
float f);

D3DXVECTOR3 *D3DXVec3Hermite(D3DXVECTOR3 *result,

612 CHAPTER 16. D3DX CONCRETE TYPES

const D3DXVECTOR3 *v1,
const D3DXVECTOR3 *t1,
const D3DXVECTOR3 *v2,
const D3DXVECTOR3 *t2,
float f);

D3DXVECTOR4 *D3DXVec4Hermite(D3DXVECTOR4 *result,
const D3DXVECTOR4 *v1,
const D3DXVECTOR4 *t1,
const D3DXVECTOR4 *v2,
const D3DXVECTOR4 *t2,
float f);

The CatmullRom functions provide Catmull-Rom spline interpolation be-
tween the two vectors #»v1 and #»v2 by an interpolating factor f . The additional
vectors #»v0 and #»v3 are used as control points on either side of #»v1 and #»v2 to control
the shape of the interpolation between #»v1 and #»v2. When the interpolating factor
f is zero, the result is #»v1 and when the interpolating factor f is one, the result
is #»v2. The result is given by the formula:

#»v =
1
2

(a0
#»v0 + a1

#»v1 + a2
#»v2 + a3

#»v3)

where the coefficients a0, a1, a2 and a3 are given as:

a0 = −f3 + 2f2 − f

a1 = 3f3 − 5f2 + 2
a2 = −3f3 + 4f2 + f

a3 = f3 − f2

D3DXVECTOR2 *D3DXVec2CatmullRom(D3DXVECTOR2 *result,
const D3DXVECTOR2 *v0,
const D3DXVECTOR2 *v1,
const D3DXVECTOR2 *v2,
const D3DXVECTOR2 *v3,
float f);

D3DXVECTOR3 *D3DXVec3CatmullRom(D3DXVECTOR3 *result,
const D3DXVECTOR3 *v0,
const D3DXVECTOR3 *v1,
const D3DXVECTOR3 *v2,
const D3DXVECTOR3 *v3,
float f);

D3DXVECTOR4 *D3DXVec4CatmullRom(D3DXVECTOR4 *result,
const D3DXVECTOR4 *v0,
const D3DXVECTOR4 *v1,
const D3DXVECTOR4 *v2,

16.3. VECTORS 613

const D3DXVECTOR4 *v3,
float f);

The Barycentric functions provide interpolation between three vectors #»v1,
#»v2, and #»v3 using two barycentric coordinates f and g. When the barycentric
coordinates f, g are both zero, the result is #»v1. When the f coordinate is one
and g is zero, the result is #»v2. When the g coordinate is one and f is zero, the
result is #»v3. The result is given by the formula:

#»v = #»v1 + f(#»v2 − #»v1) + g(#»v3 − #»v1)

D3DXVECTOR2 *D3DXVec2BaryCentric(D3DXVECTOR2 *result,
const D3DXVECTOR2 *v1,
const D3DXVECTOR2 *v2,
const D3DXVECTOR2 *v3,
float f,
float g);

D3DXVECTOR3 *D3DXVec3BaryCentric(D3DXVECTOR3 *result,
const D3DXVECTOR3 *v1,
const D3DXVECTOR3 *v2,
const D3DXVECTOR3 *v3,
float f,
float g);

D3DXVECTOR4 *D3DXVec4BaryCentric(D3DXVECTOR4 *result,
const D3DXVECTOR4 *v1,
const D3DXVECTOR4 *v2,
const D3DXVECTOR4 *v3,
float f,
float g);

The transformation functions allow a vector to be treated as a position
and transformed by a matrix. The Transform functions perform a vector, ma-
trix product. Two-dimensional vectors are expanded to 〈x, y, 0, 1〉 and three-
dimensional vectors are expanded to 〈x, y, z, 1〉 before being multiplied by the
4 × 4 matrix. In all cases, the resulting vector is a four-dimensional homoge-
neous point. The TransformCoord functions perform the same vector, matrix
product for two- and three-dimensional vectors, but project the resulting ho-
mogeneous point back into cartesian space. The TransformNormal functions
operate similarly to the TransformCoord functions, but treat the incoming vec-
tor as a normal vector. The result is that scaling and rotation transformations
are applied, but not translations. If the matrix passed to the TransformNormal
functions represents a non-affine transformation, then the transpose of the in-
verse of the matrix should be passed to the function.

D3DXVECTOR4 *D3DXVec2Transform(D3DXVECTOR4 *result,
const D3DXVECTOR4 *v,
const D3DXMATRIX *m);

614 CHAPTER 16. D3DX CONCRETE TYPES

D3DXVECTOR2 *D3DXVec2TransformCoord(D3DXVECTOR2 *result,
const D3DXVECTOR2 *v,
const D3DXMATRIX *m);

D3DXVECTOR2 *D3DXVec2TransformNormal(D3DXVECTOR2 *result,
const D3DXVECTOR2 *v,
const D3DXMATRIX *m);

D3DXVECTOR4 *D3DXVec3Transform(D3DXVECTOR4 *result,
const D3DXVECTOR4 *v,
const D3DXMATRIX *m);

D3DXVECTOR3 *D3DXVec3TransformCoord(D3DXVECTOR3 *result,
const D3DXVECTOR3 *v,
const D3DXMATRIX *m);

D3DXVECTOR3 *D3DXVec3TransformNormal(D3DXVECTOR3 *result,
const D3DXVECTOR3 *v,
const D3DXMATRIX *m);

D3DXVECTOR4 *D3DXVec4Transform(D3DXVECTOR4 *result,
const D3DXVECTOR4 *v,
const D3DXMATRIX *m);

For three-dimensional vectors, D3DX provides functions to project them
through the transformation pipeline given the viewport and the world, view,
and projection matrices. The input vector is a position in model coordinates
and the output vector is a position in three-dimensional screen space. The
unproject function performs the reverse transformation.

D3DXVECTOR3 *D3DXVec3Project(D3DXVECTOR3 *result,
const D3DXVECTOR3 *v,
const D3DVIEWPORT9 *viewport,
const D3DXMATRIX *projection,
const D3DXMATRIX *view,
const D3DXMATRIX *world);

D3DXVECTOR3 *D3DXVec3Unproject(D3DXVECTOR3 *result,
const D3DXVECTOR3 *v,
const D3DVIEWPORT9 *viewport,
const D3DXMATRIX *projection,
const D3DXMATRIX *view,
const D3DXMATRIX *world);

16.4 Matrices

The D3DXMATRIX class provides a 4×4 homogeneous matrix that derives directly
from D3DMATRIX. The class provides constructors that can build a matrix from
an array of floats, a D3DMATRIX, or an explicit list of initializers. A function call
operator is provided that allows array elements to be accessed with subscripts.

16.4. MATRICES 615

Assignment Operator Meaning
operator += T ← T + M
operator -= T ← T−M
operator *= T ← fT
operator *= T ← TM
operator /= T ← 1

f T

Unary Operator Meaning
operator + +T
operator - −T

Binary Operator Meaning
operator + T + M
operator - T−M
operator * fT
operator * TM
operator / 1

f T

Comparison Operator Meaning
operator == T = M
operator != T 6= M

Table 16.6: D3DXMATRIX class members. T represents the matrix value of *this,
M represents a matrix passed to a method, f represents a scalar value passed
to a method.

For example, if m is declared as a D3DXMATRIX, then m(0,1) is identical to m. 12.
Casting operators are provided that expose the matrix as an array of floats.
As with vectors and colors, no bounds checking is performed on these arrays
of floats, so they should be used with care. The usual matrix arithmetic
operators are provided and their meaning is summarized in table 16.6. The
comparison operators provided perform a bitwise comparison. As mentioned in
chapter 1, exact comparisons of floating-point values can lead to problems and
it is better to compare floating-point values within an ε tolerance. Matrices
are often computed by composition and the resulting matrix multiplication will
introduce small floating-point errors, making bitwise comparison less than useful
most of the time.

typedef struct D3DXMATRIX : public D3DMATRIX
{
public:

D3DXMATRIX() {};
D3DXMATRIX(const float *);
D3DXMATRIX(const D3DMATRIX &);
D3DXMATRIX(float _11, float _12, float _13, float _14,

float _21, float _22, float _23, float _24,

616 CHAPTER 16. D3DX CONCRETE TYPES

float _31, float _32, float _33, float _34,
float _41, float _42, float _43, float _44);

// access grants
float &operator () (UINT Row, UINT Col);
float operator () (UINT Row, UINT Col) const;

// casting operators
operator float *();
operator const float *() const;

// assignment operators
D3DXMATRIX &operator *= (const D3DXMATRIX &);
D3DXMATRIX &operator += (const D3DXMATRIX &);
D3DXMATRIX &operator -= (const D3DXMATRIX &);
D3DXMATRIX &operator *= (float);
D3DXMATRIX &operator /= (float);

// unary operators
D3DXMATRIX operator + () const;
D3DXMATRIX operator - () const;

// binary operators
D3DXMATRIX operator * (const D3DXMATRIX &) const;
D3DXMATRIX operator + (const D3DXMATRIX &) const;
D3DXMATRIX operator - (const D3DXMATRIX &) const;
D3DXMATRIX operator * (float) const;
D3DXMATRIX operator / (float) const;

friend D3DXMATRIX operator * (float, const D3DXMATRIX &);

BOOL operator == (const D3DXMATRIX &) const;
BOOL operator != (const D3DXMATRIX &) const;

} D3DXMATRIX, *LPD3DXMATRIX;

Matrix operations can be accelerated with the Intel SSE or AMD 3DNow!
instruction set extensions, but only when the matrices are aligned on 16 byte
boundaries. D3DX provides a D3DXMATRIXA16 class that derives from D3DX-
MATRIX and forces alignment to a 16 byte boundary. This class works with
Visual C++ 7 and Visual C++ 6 with the processor pack installed. Unfortunately,
there is no way to detect the installation of the processor pack from inside an
include file, so D3DX enables the 16 byte alignment only in Visual C++ 7. For
other compilers, the D3DXMATRIXA16 class is identical to the D3DXMATRIX class.

16.4. MATRICES 617

16.4.1 Arithmetic Functions

Most of the global matrix functions construct particular types of matrices from
the supplied parameters. However, some functions perform mathematical oper-
ations on matrices that are not supported by the matrix member functions. The
D3DXMatrixIsIdentity function returns TRUE if a matrix is exactly equal to the
identity matrix. This function does not use ε comparisons, so care should be
taken to use it only on suitable matrices. The transpose of a matrix is computed
by D3DXMatrixTranspose.

BOOL D3DXMatrixIsIdentity(const D3DXMATRIX *m);
D3DXMATRIX *D3DXMatrixTranspose(D3DXMATRIX *result,

const D3DXMATRIX *m);

The determinant of a matrix M, given by the formula

|M| = (m11m22 −m12m21)(m33m44 −m34m43) +
(m13m21 −m11m23)(m32m44 −m34m42) +
(m11m24 −m14m21)(m32m43 −m33m42) +
(m12m23 −m13m22)(m31m44 −m34m41) +
(m14m22 −m12m24)(m31m43 −m33m41) +
(m13m24 −m14m23)(m31m42 −m32m41)

is computed by D3DXMatrixDeterminant. The determinant is also computed
while finding the inverse of a matrix and both are computed by the D3DXMatrix-
Inverse function. If the matrix is not invertible, the function returns NULL. If
the determinant of the matrix is not needed, the determinant parameter can
be NULL.

float D3DXMatrixfDeterminant(const D3DXMATRIX *m);
D3DXMATRIX *D3DXMatrixInverse(D3DXMATRIX *result,

float *determinant,
const D3DXMATRIX *m);

Matrix products are computed with the D3DXMatrixMultiply and D3DX-
MatrixMultiplyTranspose functions. The latter performs a transpose on the
matrix product before storing it in the result parameter. This is useful for
computing matrix products for use with shader constant registers.

D3DXMATRIX *D3DXMatrixMultiply(D3DXMATRIX *result,
const D3DXMATRIX *m1,
const D3DXMATRIX *m2);

D3DXMATRIX *D3DXMatrixMultiplyTranspose(D3DXMATRIX *result,
const D3DXMATRIX *m1,
const D3DXMATRIX *m2);

618 CHAPTER 16. D3DX CONCRETE TYPES

16.4.2 Identity, Translation, and Scaling Matrices

The remainder of the matrix functions construct matrices of various types. An
identity matrix is constructed with D3DXMatrixIdentity. A translation matrix
is constructed with D3DXMatrixTranslation and a scaling matrix is constructed
with D3DXMatrixScaling.

D3DXMATRIX *D3DXMatrixIdentity(D3DXMATRIX *result);
D3DXMATRIX *D3DXMatrixTranslation(D3DXMATRIX *result,

float x,
float y,
float z);

D3DXMATRIX *D3DXMatrixScaling(D3DXMATRIX *result,
float sx,
float sy,
float sz);

16.4.3 Rotation Matrices

There are several functions for computing rotation matrices. Rotations about
one of the principal axes can be computed with the functions D3DXMatrix-
RotationX, D3DXMatrixRotationY, and D3DXMatrixRotationZ. A rotation about
an arbitrary axis is computed with D3DXMatrixRotationAxis. A combined
rotation about all three principal axes is computed with the D3DXMatrix-
RotationYawPitchRoll function. The resulting matrix is equivalent to the com-
posite transformation Rx(yaw)Ry(pitch)Rz(roll). An orientation represented by
a quaternion can be used to build a rotation matrix with D3DXMatrixRotation-
Quaternion. The resulting matrix is equivalent to a matrix transforming the x
axis into the orientation specified by the quaternion.

D3DXMATRIX *D3DXMatrixRotationX(D3DXMATRIX *result,
float angle);

D3DXMATRIX *D3DXMatrixRotationY(D3DXMATRIX *result,
float angle);

D3DXMATRIX *D3DXMatrixRotationZ(D3DXMATRIX *result,
float angle);

D3DXMATRIX *D3DXMatrixRotationAxis(D3DXMATRIX *result,
const D3DXVECTOR3 *axis,
float angle);

D3DXMATRIX *D3DXMatrixRotationYawPitchRoll(D3DXMATRIX *result,
float yaw,
float pitch,
float roll);

D3DXMATRIX *D3DXMatrixRotationQuaternion(D3DXMATRIX *result,
const D3DXQUATERNION *q);

16.4. MATRICES 619

16.4.4 Composite Transformation Matrices

Complex composite transformations involving translation, rotation and scaling
can be built from the D3DXMatrixAffineTransformation and D3DXMatrix-
Transformation functions. The former computes the composite matrix

T (−C)R(#»q)S(s)T (C)T (O)

where C is the center of rotation, #»q is the quaternion specifying the new orien-
tation, s is the scale factor, and O is the translation offset. The latter computes
the composite matrix

T (−Cs)R(#»qs)S(sx, sy, sz)T (Cs)T (−Cr)R(#»qr)T (Cr)T (O)

where Cs is the center of scaling, #»qs is the scaling orientation quaternion, sx,
sy, and sz are the scaling factors, Cr is the center of rotation, #»qr is the rotation
orientation quaternion, and O is the translation offset.

D3DXMATRIX *D3DXMatrixAffineTransformation(D3DXMATRIX *result,
float scale,
const D3DXVECTOR3 *center_of_rotation,
const D3DXQUATERNION *rotation,
const D3DXVECTOR3 *translation);

D3DXMATRIX *D3DXMatrixTransformation(D3DXMATRIX *result,
const D3DXVECTOR3 *center_of_scaling,
const D3DXQUATERNION *scaling_rotation,
const D3DXVECTOR3 *scaling,
const D3DXVECTOR3 *center_of_rotation,
const D3DXQUATERNION *rotation,
const D3DXVECTOR3 *translation);

16.4.5 Viewing Matrices

The functions D3DXMatrixLookAtLH and D3DXMatrixLookAtRH compute suit-
able view transformation matrices. The eye parameter gives the position of
the camera in world space which becomes the origin of camera space. The at
parameter gives the world space point where the camera is looking to define the
gaze direction which will become the +z axis in camera space. The up parame-
ter gives the orientation of the camera around the gaze direction and will define
the +y axis in camera space. The LH version computes a proper view matrix
for a left-handed coordinate system and the RH version computes a proper view
matrix for a right-handed coordinate system.

D3DXMATRIX *D3DXMatrixLookAtLH(D3DXMATRIX *result,
const D3DXVECTOR3 *eye,
const D3DXVECTOR3 *at,
const D3DXVECTOR3 *up);

D3DXMATRIX *D3DXMatrixLookAtRH(D3DXMATRIX *result,

620 CHAPTER 16. D3DX CONCRETE TYPES

const D3DXVECTOR3 *eye,
const D3DXVECTOR3 *at,
const D3DXVECTOR3 *up);

16.4.6 Orthographic Projection Matrices

An orthographic projection matrix with a view frustum centered on the origin is
computed by the D3DXMatrixOrthoLH and D3DXMatrixOrthoRH functions. The
width and height parameters give the proportions of the view volume on the x
and y axes, respectively. The z near and z far parameters give the location of
the near and far planes of the view frustum. The OffCenter variations compute
an orthographic projection matrix with a view frustum whose x, y bounds are
given by the left, right, bottom and top parameters. The off center functions
are often used to create tiled renderings of a scene. The LH versions compute
proper orthographic projection matrices for a left-handed coordinate system and
the RH versions compute proper orthographic projection matrices for a right-
handed coordinate system.

D3DXMATRIX *D3DXMatrixOrthoLH(D3DXMATRIX *result,
float width,
float height,
float z_near,
float z_far);

D3DXMATRIX *D3DXMatrixOrthoRH(D3DXMATRIX *result,
float width,
float height,
float z_near,
float z_far);

D3DXMATRIX *D3DXMatrixOrthoOffCenterLH(D3DXMATRIX *result,
float left,
float right,
float bottom,
float top,
float z_near,
float z_far);

D3DXMATRIX *D3DXMatrixOrthoOffCenterRH(D3DXMATRIX *result,
float left,
float right,
float bottom,
float top,
float z_near,
float z_far);

16.4. MATRICES 621

16.4.7 Perspective Projection Matrices

A perspective projection matrix with a view frustum centered on the origin is
computed by either the D3DXMatrixPerspectiveLH or D3DXMatrixPerspective-
RH functions. The extent of the view volume in the near plane is specified by the
width and height parameters. An alternative method of specifying the extent
of the view volume in the near plane is to specify a field of view angle in the
y direction and an aspect ratio. The functions D3DXMatrixPerspectiveFov-
LH and D3DXMatrixPerspectiveFovRH compute perspective projection matrices
centered on the origin using the field of view and aspect ratio of the view volume
extent on the near plane. The off center versions compute a perspective pro-
jection matrix whose view frustum x, y extents in the near plane are given by
the left, right, bottom and top parameters. The LH versions compute proper
perspective projection matrices for a left-handed coordinate system and the
RH versions compute proper perspective projection matrices for a right-handed
coordinate system.

D3DXMATRIX *D3DXMatrixPerspectiveLH(D3DXMATRIX *result,
float width,
float height,
float z_near,
float z_far);

D3DXMATRIX *D3DXMatrixPerspectiveRH(D3DXMATRIX *result,
float width,
float height,
float z_near,
float z_far);

D3DXMATRIX *D3DXMatrixPerspectiveFovLH(D3DXMATRIX *result,
float fov,
float aspect_ratio,
float z_near,
float z_far);

D3DXMATRIX *D3DXMatrixPerspectiveFovRH(D3DXMATRIX *result,
float fov,
float aspect_ratio,
float z_near,
float z_far);

D3DXMATRIX *D3DXMatrixPerspectiveOffCenterLH(D3DXMATRIX *result,
float left,
float right,
float bottom,
float top,
float z_near,
float z_far);

D3DXMATRIX *D3DXMatrixPerspectiveOffCenterRH(D3DXMATRIX *result,
float left,
float right,

622 CHAPTER 16. D3DX CONCRETE TYPES

float bottom,
float top,
float z_near,
float z_far);

16.4.8 Shadow and Reflection Matrices

A matrix that projects geometry along the direction of a light and into a plane
is computed by D3DXMatrixShadow. The light direction is given by the light
parameter and the equation of the plane is given by the plane parameter. The
D3DXMatrixReflect function constructs a matrix which reflects geometry about
a plane.

D3DXMATRIX *D3DXMatrixShadow(D3DXMATRIX *result,
const D3DXVECTOR4 *light,
const D3DXPLANE *plane);

D3DXMATRIX *D3DXMatrixReflect(D3DXMATRIX *result,
const D3DXPLANE *plane);

16.4.9 Matrix Helper Classes

While the matrix construction functions are convenient, they complicate the
business of building composite transformation matrices because they require
that the matrices be constructed by calling functions. It would be more con-
venient from C++ to be able to construct particular matrices by invoking a
constructor so that the resulting matrix object is ready to use in an expression.
We can provide matrix helper classes that derive from D3DXMATRIX and call the
appropriate function in their constructor to build the kind of matrix we need.
For example, using only the D3DX functions, our code might look like this:

D3DXMATRIX rot_x;
::D3DXMatrixRotationX(&rot_x, m_fWorldRotX);
D3DXMATRIX rot_y;
::D3DXMatrixRotationY(&rot_y, m_fWorldRotY);
D3DXMATRIX world;
::D3DXMatrixMultiply(&world, &rot_x, &rot_y);
THR(device->SetTransform(D3DTS_WORLD, &world));

Here we had to create three temporary matrix variables whose purpose was
only to live long enough to be passed as an argument to a D3DX function that
computed a matrix. If we had matrix construction helper classes for rotations
about the x and y axes, we could write this code in a more natural way as
follows:

THR(device->SetTransform(D3DTS_WORLD,
&(rt::mat_rot_x(m_fWorldRotX)*rt::mat_rot_y(m_fWorldRotY))));

16.5. PLANES 623

Here we avoided calling D3DXMatrixMultiply in favor of the much more
natural operator* method on D3DXMATRIX. The parenthesis around the matrix
product are necessary so that we can take the address of the resulting temporary
matrix constructed by the compiler. We have the same number of temporary
matrices as the function call style code, but the result is more concise and treats
matrix objects just like other numeric quantities.

A collection of such matrix construction helper classes is found in the include
file <rt/mat.h> in the sample code.

16.5 Planes

D3DX provides the D3DXPLANE structure to represent three-dimensional planes.
A plane can be represented by the equation

ax + by + cz + d = 0

called the general form of the plane equation. A plane defined by a point on the
plane, P = (x0, y0, z0), and a normal to the plane, #»n = 〈a, b, c〉, is represented
by the equation

a(x− x0) + b(y − y0) + c(z − z0) = 0

called the point-normal form of the plane equation. The two can be related to
one another with d = −(ax0 + by0 + cz0).

The D3DXPLANE structure stores the coefficients a, b, c, and d in publicly
accessible data members of the same name. Constructors are provided for cre-
ating planes from an array of floats containing the plane coefficients in the
order a, b, c, and d, or from an explicit initializer list giving the coefficients
directly. Casting operators are provided that allow a D3DXPLANE class to be
treated as an array of floats. No bounds checking is provided with the casting
operators, so care must be taken not to overflow the extent of the array’s 4
elements. The unary negation operator returns a plane with the sign of all the
coefficients changed. The equality operators compare planes for bitwise equality
and do not account for floating-point errors. As discussed in chapter 1, an ε
based comparison function should be used when comparing structures composed
of floating-point values.

typedef struct D3DXPLANE
{
public:

D3DXPLANE() {}
D3DXPLANE(const float*);
D3DXPLANE(float a, float b, float c, float d);

// casting
operator float *();
operator const float *() const;

624 CHAPTER 16. D3DX CONCRETE TYPES

// unary operators
D3DXPLANE operator + () const;
D3DXPLANE operator - () const;

// binary operators
BOOL operator == (const D3DXPLANE &) const;
BOOL operator != (const D3DXPLANE &) const;

float a, b, c, d;
} D3DXPLANE, *LPD3DXPLANE;

The function D3DXPlaneFromPointNormal constructs a D3DXPLANE from a
point on the plane and a normal to the plane. Similarly, the function D3DX-
PlaneFromPoints constructs a D3DXPLANE from three non-colinear points. D3DX-
PlaneNormalize normalizes the plane coefficients so that the vector 〈a, b, c〉 has
unit magnitude.

D3DXPLANE *D3DXPlaneFromPointNormal(D3DXPLANE *result,
const D3DXVECTOR3 *point,
const D3DXVECTOR3 *normal);

D3DXPLANE *D3DXPlaneFromPoints(D3DXPLANE *result,
const D3DXVECTOR3 *v1,
const D3DXVECTOR3 *v2,
const D3DXVECTOR3 *v3);

D3DXPLANE *D3DXPlaneNormalize(D3DXPLANE *result,
const D3DXPLANE *p);

The function D3DXPlaneDot computes the dot product between the plane
and the vector 〈x, y, z, w〉 as the value ax+ by + cz + dw. D3DXPlaneDotCoord
computes the dot product between the plane and the coordinate (x, y, z) as the
value ax+by+cz+w. D3DXPlaneDotNormal computes the dot product between
the plane and the normal 〈x, y, z〉 as the value ax + by + cz.

float D3DXPlaneDot(const D3DXPLANE *p,
const D3DXVECTOR4 *v);

float D3DXPlaneDotCoord(const D3DXPLANE *p,
const D3DXVECTOR3 *v);

float D3DXPlaneDotNormal(const D3DXPLANE *p,
const D3DXVECTOR3 *v);

The intersection between a line and a plane is computed by the D3DXPlane-
IntersectLine function. The line is defined by two points on the line given as
the v1 and v2 arguments. The result parameter will contain the point on the
plane that intersects the line. When the line is parallel to the plane, the result
parameter is unchanged and the function returns NULL.

16.6. QUATERNIONS 625

D3DXVECTOR3 *D3DXPlaneIntersectLine(D3DXVECTOR3 *result,
const D3DXPLANE *p,
const D3DXVECTOR3 *v1,
const D3DXVECTOR3 *v2);

A plane can be transformed by a transformation matrix with the D3DX-
PlaneTransform function. The matrix passed to the function should be the
inverse of the transpose of the desired transformation matrix so that the plane
normal can be properly transformed.

D3DXPLANE *D3DXPlaneTransform(D3DXPLANE *result,
const D3DXPLANE *p,
const D3DXMATRIX *m);

16.6 Quaternions

Quaternions are an extension of complex numbers that are useful in computer
graphics for representing orienting transformations (i.e. rotations). Quaternions
have the nice property that the product of two quaternions produces a rotation
transformation that is the composite of the rotation transformations associ-
ated with the individual quaternions. Another nice property of quaternions is
that interpolating quaternions provides a much better interpolating orientation
transformation than interpolating axis rotation angles or the matrices them-
selves. This makes quaternions well suited for keyframe animation of orienting
transforms.

D3DX provides the D3DXQUATERNION class to represent a quaternion as four
floating-point values stored in the x, y, z, and w public data members. Construc-
tors are provided to create quaternions from an array of floating-point values
or from an explicit initializer list. Casting operators are provided to expose a
quaternion as an array of 4 floats. No range checking is performed on these ar-
rays, so care should be taken not to read or write past the end of the array. The
arithmetic operators for D3DXQUATERNION are summarized in table 16.7. The
comparison operators perform bitwise comparison between the two quaternions.
As described in chapter 1, an ε based floating-point comparison is preferable in
most circumstances.

typedef struct D3DXQUATERNION
{
public:

D3DXQUATERNION() {}
D3DXQUATERNION(const float *);
D3DXQUATERNION(float x, float y, float z, float w);

// casting
operator float *();
operator const float *() const;

626 CHAPTER 16. D3DX CONCRETE TYPES

// assignment operators
D3DXQUATERNION &operator += (const D3DXQUATERNION &);
D3DXQUATERNION &operator -= (const D3DXQUATERNION &);
D3DXQUATERNION &operator *= (const D3DXQUATERNION &);
D3DXQUATERNION &operator *= (float);
D3DXQUATERNION &operator /= (float);

// unary operators
D3DXQUATERNION operator + () const;
D3DXQUATERNION operator - () const;

// binary operators
D3DXQUATERNION operator + (const D3DXQUATERNION &) const;
D3DXQUATERNION operator - (const D3DXQUATERNION &) const;
D3DXQUATERNION operator * (const D3DXQUATERNION &) const;
D3DXQUATERNION operator * (float) const;
D3DXQUATERNION operator / (float) const;

friend D3DXQUATERNION operator * (float, const D3DXQUATERNION &);

BOOL operator == (const D3DXQUATERNION &) const;
BOOL operator != (const D3DXQUATERNION &) const;

float x, y, z, w;
} D3DXQUATERNION, *LPD3DXQUATERNION;

D3DX provides several functions for constructing and converting quater-
nions. The D3DXQuaternionIdentity function creates an identity quaternion.
An identity quaternion results in an identity matrix when converted to a rotation
matrix. D3DXQuaternionRotationMatrix constructs a quaternion from a ro-
tation transformation matrix. D3DXQuaternionRotationYawPitchRoll builds
a quaternion from the angles of rotation about the three principal coordinate
axes. D3DXQuaternionRotationAxis builds a quaternion from an axis and an
angle of rotation around that axis. The D3DXQuaternionToAxisAngle converts
a quaternion into an axis and a corresponding angle of rotation around that
axis.

D3DXQUATERNION *D3DXQuaternionIdentity(D3DXQUATERNION *result);
D3DXQUATERNION *D3DXQuaternionRotationMatrix(

D3DXQUATERNION *result,
const D3DXMATRIX *m);

D3DXQUATERNION *D3DXQuaternionRotationYawPitchRoll(
D3DXQUATERNION *result,
float yaw,
float pitch,

16.6. QUATERNIONS 627

Assignment Operator Meaning
operator += T ← T + Q
operator -= T ← T −Q
operator *= T ← TQ
operator *= T ← fT
operator /= T ← 1

f T

Unary Operator Meaning
operator + +T
operator - −T

Binary Operator Meaning
operator + T + Q
operator - T −Q
operator * TQ
operator * fT
operator / 1

f T

Comparison Operator Meaning
operator == T = Q
operator != T 6= Q

Table 16.7: D3DXQUATERNION class members. T represents the quaternion value
of *this, Q represents a quaternion passed to a method, f represents a scalar
value passed to a method.

628 CHAPTER 16. D3DX CONCRETE TYPES

float roll);
D3DXQUATERNION *D3DXQuaternionRotationAxis(

D3DXQUATERNION *result,
const D3DXVECTOR3 *v,
float angle);

void D3DXQuaternionToAxisAngle(const D3DXQUATERNION *q,
D3DXVECTOR3 *axis,
float *angle);

D3DXQuaternionIsIdentity returns TRUE when the given quaternion is an
identity quaternion. The functions D3DXQuaternionLength and D3DXQuaternion-
LengthSq return the length and square of the length of a quaternion, respec-
tively. The length of a quaternion Q = 〈x, y, z, w〉 is defined by the following
formula.

|Q| =
√

x2 + y2 + z2 + w2

D3DXQuaternionNormalize normalizes a quaternion so that |Q| = 1.

BOOL D3DXQuaternionIsIdentity(const D3DXQUATERNION *q);
float D3DXQuaternionLength(const D3DXQUATERNION *q);
float D3DXQuaternionLengthSq(const D3DXQUATERNION *q);
D3DXQUATERNION *D3DXQuaternionNormalize(D3DXQUATERNION *result,

const D3DXQUATERNION *q);

A dot product between two quaternions Q1 = 〈x1, y1, z1, w1〉 and Q2 =
〈x2, y2, z2, w2〉 results in the scalar value

Q1 ·Q2 = x1x2 + y1y2 + z1z2 + w1w2

and is computed by D3DXQuaternionDot. The conjugate of a quaternion Q =
〈x, y, z, w〉 is given by

Q = 〈 − x, −y, −z, w〉
and is computed by D3DXQuaternionConjugate. The product of two quater-
nions is computed by D3DXQuaternionMultiply. The inverse of a quaternion
Q1 is the quaternion Q2 such that Q1Q2 = I, where I is the identity quater-
nion. The inverse quaternion is computed by D3DXQuaternionInverse. The
natural logarithm of a quaternion is computed by D3DXQuaternionLn and its
exponential is computed by D3DXQuaternionExp.

float D3DXQuaternionDot(const D3DXQUATERNION *q1,
const D3DXQUATERNION *q2);

D3DXQUATERNION *D3DXQuaternionConjugate(D3DXQUATERNION *result,
const D3DXQUATERNION *q);

D3DXQUATERNION *D3DXQuaternionMultiply(D3DXQUATERNION *result,
const D3DXQUATERNION *q1,
const D3DXQUATERNION *q2);

D3DXQUATERNION *D3DXQuaternionInverse(D3DXQUATERNION *result,

16.6. QUATERNIONS 629

const D3DXQUATERNION *q);
D3DXQUATERNION *D3DXQuaternionLn(D3DXQUATERNION *result,

const D3DXQUATERNION *q);
D3DXQUATERNION *D3DXQuaternionExp(D3DXQUATERNION *result,

const D3DXQUATERNION *q);

Since quaternions can be thought of as representing an orientation, its often
useful to define two quaternions as interpolate between them, generating the
sequence of orientations between the two quaternions. This interpolation is
best visualized as interpolating a path on the surface of a sphere. The basic
operation is spherical linear interpolation, provided by the D3DXQuaternion-
Slerp function. The starting orientation is given by the q1 parameter, the
ending orientation is given by the q2 parameter and the interpolating parameter
is t. When t is zero, the result is q1 and when t is one, the result is q2.

D3DXQUATERNION *D3DXQuaternionSlerp(D3DXQUATERNION *result,
const D3DXQUATERNION *q1,
const D3DXQUATERNION *q2,
float t);

Spherical cubic interpolation provides smoother interpolation between two
quaternions. The technique is similar to Hermite interpolation in that four con-
trol points are supplied to smoothly interpolate between the inner two control
points. D3DXQuaternionSquadSetup takes the four control points as the pa-
rameters q0, q1, q2 and q3 and computes the quaternions a, b and c used in the
cubic interpolation. D3DXQuaternionSquad takes the quaternions computed by
the setup function and an interpolation factor t to compute the interpolated re-
sult. When t is zero, the quaternion q1 passed to the setup function is returned.
When t is one, the quaternion q2 passed to the setup function is returned.

void D3DXQuaternionSquadSetup(D3DXQUATERNION *a,
D3DXQUATERNION *b,
D3DXQUATERNION *c,
const D3DXQUATERNION *q0,
const D3DXQUATERNION *q1,
const D3DXQUATERNION *q2,
const D3DXQUATERNION *q3);

D3DXQUATERNION *D3DXQuaternionSquad(D3DXQUATERNION *result,
const D3DXQUATERNION *q1,
const D3DXQUATERNION *a,
const D3DXQUATERNION *b,
const D3DXQUATERNION *c,
float t);

For example, the following code from the SkinnedMesh sample uses the
spherical cubic interpolation functions to smoothly interpolate through an array
of rotation keys. The keys at indices i1 and i2 define the current segment that

630 CHAPTER 16. D3DX CONCRETE TYPES

is used, while the key at index i0 refers to the end of the previous segment and
the key at index i3 refers to the start of the next segment in the animation.

int i0 = i1 - 1;
int i3 = i2 + 1;

if(i0 < 0)
i0 += m_cRotateKeys;

if(i3 >= (INT) m_cRotateKeys)
i3 -= m_cRotateKeys;

D3DXQUATERNION qA, qB, qC;
D3DXQuaternionSquadSetup(&qA, &qB, &qC,

&m_pRotateKeys[i0].quatRotate, &m_pRotateKeys[i1].quatRotate,
&m_pRotateKeys[i2].quatRotate, &m_pRotateKeys[i3].quatRotate);

D3DXQuaternionSquad(&quat, &m_pRotateKeys[i1].quatRotate,
&qA, &qB, &qC, fLerpValue);

Interpolation between three quaternions can be performed by treating the
quaternions as the vertices of a triangle and using barycentric coordinates to
compute the interpolated quaternion by the following formula.

Q = Q1 + f(Q2 −Q1) + g(Q3 −Q1)

D3DXQuaternionBaryCentric computes the resulting quaternion Q from the
three input quaternions and the barycentric coordinates.

D3DXQUATERNION *D3DXQuaternionBaryCentric(D3DXQUATERNION *result,
const D3DXQUATERNION *q1,
const D3DXQUATERNION *q2,
const D3DXQUATERNION *q3,
float f,
float g);

