
Chapter 24

Installation and Setup

“If a builder erect a house for a man and do not make its
construction firm, and the house which he built collapse

and cause the death of the owner of the house, that builder
shall be put to death.”

Code of Hammurabi, c. 2250 B.C.

24.1 Overview

Installing the DirectX runtime components required for an application is a non-
trivial task. Further, installation of new runtime components may require a
driver update for best functionality and performance. Beyond the requirements
of the DirectX runtime, an application will also have its own executable and data
files for installation to the user’s machine. Beyond the simple act of copying
files, the application may require the registration of COM objects, installation
of fonts, installation of system services, and so-on.

An setup application must first determine the version of the currently in-
stalled DirectX runtime in order to decide if an upgrade should be suggested.
The SDK provides a sample that determines the version of the DirectX runtime.
Properly checking the installed version can eliminate potential installation prob-
lems for your users.

If you want to install the runtime with your setup program, you can use the
DirectSetup API to perform the installation safely. Your setup program can
then proceeed to install your application. A callback procedure can be used
with DirectSetup to customize the installation of the runtime.

Windows Installer is a system component that can aid in the creation of
robust application installation software. An overview of Windows Installer is
presented. An example is given that shows how Windows Installer can be inte-
grated with DirectSetup for DirectX applications.

825



826 CHAPTER 24. INSTALLATION AND SETUP

Result Meaning
0x0000 No DirectX installed
0x0100 DirectX version 1 installed
0x0200 DirectX 2 installed
0x0300 DirectX 3 installed
0x0500 At least DirectX 5 installed.
0x0600 At least DirectX 6 installed.
0x0601 At least DirectX 6.1 installed.
0x0700 At least DirectX 7 installed.
0x0800 At least DirectX 8 installed.
0x0801 At least DirectX 8.1 installed.
0x08021 At least DirectX 8.1b installed.

Table 24.1: GetDXVersion return values. 1This return value is only available
with the implementation of GetDXVersion provided with this book.

24.2 Determining the DirectX Version

The SDK includes a sample called GetDXVer that obtains the version of Direct-
X currently installed on the machine. It operates by looking for DLL files that
are part of DirectX and examining them to determine the level of API support.
You can use this in your setup program to determine if the appropriate DirectX
version support is available for your application.

In the GetDXVer sample, the file getdxver.cpp contains the function Get-
DXVersion that returns a DWORD containing the version of the installed DirectX
runtime components. Unfortunately, the version of this code in the 9.0c SDK
leaks a DLL handle in the check for version 9.0c. A corrected version of this
code can be found in the launcher sample. The return values for GetDXVersion
are summarized in table 24.1.

DWORD GetDXVersion();

It is important that applications allow for the possibility that a newer version
of DirectX than that required is installed. This means that the result of Get-
DXVersion should always be tested with an inequality rather than an equality.
The following example checks to see if at least DirectX 8.1 is installed before
continuing and displays a message box if the required version is not present.

if (::GetDXVersion() < 0x801)
{

::MessageBox(NULL, _T("DirectX 8.1 is required."),
_T("Fatal Error:"), MB_ICONEXCLAMATION | MB_OK);

return;
}

Many applications have incorrectly tested against the version number with
an equality during their installation, only to fail when the user has a newer



24.3. DIRECTSETUP 827

version of DirectX than that required for the application. This results in a
frustrating user installation experience and makes a bad first impression on the
user before they’ve even had a chance to run the application.

24.3 DirectSetup

The DirectX SDK provides a way for applications to install the DirectX runtime
components through DirectSetup. DirectSetup consists of an API and a set of
redistributable files that are used to install the appropriate DirectX components
on a user’s sytem. The header file <dsetup.h> defines the API for using Direct-
Setup.

24.3.1 Determining the DirectX Version

When using DirectSetup, an application can call DirectXSetupGetVersion be-
fore installation to get the version of DirectX currently installed. If this function
is called after DirectSetup completes, then the version number returned will be
the version of DirectX installed by DirectSetup if DirectSetup updated the sys-
tem.

int ::DirectXSetupGetVersion(DWORD *version, DWORD *revision)

The version parameter returns the major and minor version of DirectX
in the HIWORD and LOWORD, respectively. The revision parameter returns the
release number and the build number in the HIWORD and LOWORD, respectively.
The version numbers for different DirectX releases are summarized in table 24.2.
If either of these values is not required by the application, NULL can be passed
to the function.

24.3.2 Installing the DirectX Runtime

If your install program needs to install the DirectX runtime components to the
user’s machine, you can do this easily with DirectSetup. Attempting to install
the runtime components yourself can corrupt the configuration of the user’s
machine. DirectSetup provides a single function, DirectXSetup, that installs
the necessary runtime components to the user’s machine.

int ::DirectXSetup(HWND window, LPSTR path, DWORD flags)

The window argument is used as the parent window for any setup dialog
boxes required by DirectSetup. The path argument is the location of the Direct-
X 9.0c redistributable files, or NULL if the redistributable files are in the same
directory as the application calling DirectXSetup. The flags argument is a
combination of one or more of the following flags.



828 CHAPTER 24. INSTALLATION AND SETUP

Operating
Major Minor Version Build DirectX System

4 5 0 155 5.0 Windows 98
4 5 1 1600 5.2
4 6 0 318 6.0
4 6 2 407 6.1
4 6 2 436 6.1
4 7 0 700 7.0 Windows 2000
4 8 0 400 8.0
4 8 1 810 8.1 Windows XP
4 8 1 881 8.1a
4 8 1 901 8.1b
4 9 0 900 9.0
4 9 0 904 9.0c

Table 24.2: DirectXSetupGetVersion return values. Build numbers are
changed every time DirectX is compiled at Microsoft, so you may encounter
other values for the build number. For DirectX 9.0c, the build number will be
at least the value shown.

#define DSETUP_DXCORE 0x00010000
#define DSETUP_DIRECTX 0x00010018
#define DSETUP_TESTINSTALL 0x00020000
#define DSETUP_USEROLDERFLAG 0x02000000

At a minimum you should use DSETUP DXCORE, which installs the core run-
time components, but does not attempt to update the user’s drivers. The value
DSETUP DIRECTX installs the core runtime components and may install display
and audio driver updates as well. The value DSETUP TESTINSTALL allows you
to test your installation program by going through all the motions of an instal-
lation without making any modifications to the system. You should use this
flag when you are testing your install program’s ability to update the runtime
components on a target machine. The DSETUP USEROLDERFLAG value allows the
caller to detect when the user has a version of DirectX that is newer than the
version in the redistributable files used by DirectSetup.

The return value can be one of the following values. Note that these return
values are not HRESULTs, they are simple integer error codes.

#define DSETUPERR_SUCCESS_RESTART 1
#define DSETUPERR_SUCCESS 0
#define DSETUPERR_BADWINDOWSVERSION -1
#define DSETUPERR_SOURCEFILENOTFOUND -2
#define DSETUPERR_BADSOURCESIZE -3
#define DSETUPERR_BADSOURCETIME -4
#define DSETUPERR_NOCOPY -5
#define DSETUPERR_OUTOFDISKSPACE -6



24.3. DIRECTSETUP 829

#define DSETUPERR_CANTFINDINF -7
#define DSETUPERR_CANTFINDDIR -8
#define DSETUPERR_INTERNAL -9
#define DSETUPERR_UNKNOWNOS -11
#define DSETUPERR_USERHITCANCEL -12
#define DSETUPERR_NOTPREINSTALLEDONNT -13
#define DSETUPERR_NEWERVERSION -14
#define DSETUPERR_NOTADMIN -15
#define DSETUPERR_UNSUPPORTEDPROCESSOR -16

A succesful install will return DSETUPERR SUCCESS, while DSETUPERR SUCCESS -
RESTART indicates a successful install that will take effect once the machine has
been restarted.

Before attempting to install DirectX, the setup program should check that
approximately 20 MB of free space are available on the system drive for Windows
95, 98 and Windows Millenium Edition (ME). Windows 2000 and Windows XP
will require approximately 25 MB of free space on the sytem drive. Installing
DirectX is a system update and requires administrator privileges on operating
systems with security, such as Windows 2000 and Windows XP.

24.3.3 Using a Callback Procedure

An installation program can fine tune the behavior of DirectSetup through the
use of a callback procedure. To use a callback procedure, call DirectXSetup-
SetCallback with a pointer to your callback procedure before calling Direct-
XSetup.

int ::DirectXSetupSetCallback(DSETUP_CALLBACK Callback)

typedef
DWORD (PASCAL *DSETUP_CALLBACK)(DWORD reason,

DWORD type,
LPSTR message,
LPSTR name,
void *info);

The callback procedure will be invoked by DirectSetup during the process
of the installation of the DirectX runtime components and device drivers. The
reason for the call is given in the reason parameter and will be one of the
following values.

#define DSETUP_CB_MSG_NOMESSAGE 0
#define DSETUP_CB_MSG_CANTINSTALL_UNKNOWNOS 1
#define DSETUP_CB_MSG_CANTINSTALL_NT 2
#define DSETUP_CB_MSG_CANTINSTALL_BETA 3
#define DSETUP_CB_MSG_CANTINSTALL_NOTWIN32 4
#define DSETUP_CB_MSG_CANTINSTALL_WRONGLANGUAGE 5



830 CHAPTER 24. INSTALLATION AND SETUP

#define DSETUP_CB_MSG_CANTINSTALL_WRONGPLATFORM 6
#define DSETUP_CB_MSG_PREINSTALL_NT 7
#define DSETUP_CB_MSG_NOTPREINSTALLEDONNT 8
#define DSETUP_CB_MSG_SETUP_INIT_FAILED 9
#define DSETUP_CB_MSG_INTERNAL_ERROR 10
#define DSETUP_CB_MSG_CHECK_DRIVER_UPGRADE 11
#define DSETUP_CB_MSG_OUTOFDISKSPACE 12
#define DSETUP_CB_MSG_BEGIN_INSTALL 13
#define DSETUP_CB_MSG_BEGIN_INSTALL_RUNTIME 14
#define DSETUP_CB_MSG_BEGIN_INSTALL_DRIVERS 15
#define DSETUP_CB_MSG_BEGIN_RESTORE_DRIVERS 16
#define DSETUP_CB_MSG_FILECOPYERROR 17

The type parameter is zero to display status messages given in the message
parameter, or a combination of flags as would be passed for the uType pa-
rameter to the ::MessageBox function. The message parameter will contain a
localized string containing error or status messages that can be displayed with
::MessageBox. The name parameter will be NULL unless the callback reason is
DSETUP CB MSG CHECK DRIVER UPGRADE.

The callback procedure indicates the action to be taken by the return the
value zero or the same values that would be returned by the ::MessageBox func-
tion. If the value zero is returned, then DirectSetup takes the default action
for upgrading the component or device driver. Otherwise, DirectSetup acts as
if a message box had been displayed and the user had clicked the button corre-
sponding to the return value. If your setup application wishes to automatically
proceed or cancel a particular action, you can do this by controlling the return
value from the callback function without displaying a message box. When the
type parameter is zero, the callback procedure should return IDOK and no user
input should be requested.

When the callback reason is DSETUP CB MSG CHECK DRIVER UPGRADE, the info
parameter points to a DSETUP CB UPGRADEINFO structure and the name param-
eter gives the name of the driver being upgraded.

typedef struct _DSETUP_CB_UPGRADEINFO
{

DWORD UpgradeFlags;
} DSETUP_CB_UPGRADEINFO;

The UpgradeFlags member contains a flag describing the upgrade type. The
upgrade type indicates how Windows will perform the upgrade to the system.
The keep flag indicates that Windows may fail if the device driver is updated,
therefore DirectSetup will keep the existing driver. The safe flag indicates that
the device driver may be safely upgraded and the upgrade is recommended.
A “safe” upgrade is only safe with respect to Windows itself, other application
programs may be adversely affected by a driver upgrade. The force flag indicates
Windows may not function properly if the upgrade is not performed, therefore



24.3. DIRECTSETUP 831

DirectSetup will force the upgrade. The unknown flag indicates that Direct-
Setup does not recognize the existing driver for the device, which may happen
quite often. Upgrading the driver in this situation may cause the device to stop
functioning properly and an upgrade is not recommended.

#define DSETUP_CB_UPGRADE_TYPE_MASK 0x000F
#define DSETUP_CB_UPGRADE_KEEP 0x0001
#define DSETUP_CB_UPGRADE_SAFE 0x0002
#define DSETUP_CB_UPGRADE_FORCE 0x0004
#define DSETUP_CB_UPGRADE_UNKNOWN 0x0008

The UpgradeFlags will also contain one or more of the following flags. The
can’t back up flag indicates that old system components cannot be backed up.
If the upgrade is performed, then the components and drivers upgraded cannot
be restored after the upgrade. The device active flag indicates that the device
to be updated is currently in use. The display and media flags indicate that the
device being updated is a display device or a media device, respectively. The
has warnings flags indicates that DirectSetup can upgrade the driver for the
device, but doing so may impact one or more installed applications, therefore
the upgrade is not recommended. The names of the affected applications are
given in the message parameter.

#define DSETUP_CB_UPGRADE_CANTBACKUP 0x0200
#define DSETUP_CB_UPGRADE_DEVICE_ACTIVE 0x0800
#define DSETUP_CB_UPGRADE_DEVICE_DISPLAY 0x1000
#define DSETUP_CB_UPGRADE_DEVICE_MEDIA 0x2000
#define DSETUP_CB_UPGRADE_HASWARNINGS 0x0100

The following code snippet shows how a callback procedure might respond
to a safe upgrade of a device driver by automatically selecting the driver to be
upgraded.

const DSETUP_CB_UPGRADEINFO *upgrade =
static_cast<DSETUP_CB_UPGRADEINFO *>(info);

if (DSETUP_CB_UPGRADE_SAFE ==
(upgrade->UpgradeFlags & DSETUP_CB_UPGRADE_TYPE_MASK))

{
switch (type & 0xF)
{
case MB_YESNO:
case MB_YESNOCANCEL:

return IDYES;
default:

return IDOK;
}

}



832 CHAPTER 24. INSTALLATION AND SETUP

When the callback reason is DSETUP CB MSG FILECOPYERROR, the info pa-
rameter points to a DSETUP CB FILECOPYERROR structure. The structure con-
tains the error code encountered during the file copy operation.

typedef struct _DSETUP_CB_FILECOPYERROR
{

DWORD dwError;
} DSETUP_CB_FILECOPYERROR;

24.3.4 Registering With DirectPlay Lobby

If your application uses DirectPlay, you can register your application with the
DirectPlay Lobby with DirectSetup. Your setup program can call DirectX-
RegisterApplication to register your application with the DirectPlay Lobby.

int ::DirectXRegisterApplication(HWND window, void *info);

The info argument is a pointer to a DIRECTXREGISTERAPP structure con-
taining information that describes how to launch the application.

typedef struct _DIRECTXREGISTERAPP
{

DWORD dwSize;
DWORD dwFlags;
LPTSTR lpszApplicationName;
LPGUID lpGUID;
LPTSTR lpszFilename;
LPTSTR lpszCommandLine;
LPTSTR lpszPath;
LPTSTR lpszCurrentDirectory;

} DIRECTXREGISTERAPP;

The size member must be set to the size of the structure. The flags member is
reserved and should be zero. The rest of the structure describes the application
and the method of invoking the application.

To unregister your application with the DirectPlay Lobby, call DirectXUn-
RegisterApplication with the same GUID used to register the application. If
your application is registered with DirectPlay during installation you will need
to unregister it before it is uninstalled to ensure proper functioning of the target
system.

int ::DirectXUnRegisterApplication(HWND window,
GUID *application);

For more information about DirectPlay, see the DirectPlay documentation
in the SDK.



24.4. WINDOWS INSTALLER 833

24.3.5 Preparing the Redistributables

The DirectX SDK comes with a complete set of files that allow you to install
DirectX with DirectSetup. The set of files that you can provide with your appli-
cation’s setup program are called the redistributable files for dx. The DirectX81
subdirectory of the Redist directory in the SDK contains the redistributable
files for DirectX 9.0c. These files must be copied in their entirety to your source
media in order to install the runtime as part of your setup application.

Thelocation of these file can be passe directly as the path argument to
DirectXSetup. If NULL is passed as the path, these files reside in the same
directory as your setup program. For example, the following initiates a test
installation of the DirectX runtime with the redistributable files located in the
Redist
DirectX81 directory relative to the setup program.

const int result = ::DirectXSetup(window, "Redist\\DirectX81",
DSETUP_DXCORE | DSETUP_TESTINSTALL);

if ((DSETUPERR_SUCCESSRESTART != result) &&
(D3DSETUPERR_SUCCESS != result)

{
return;

}

24.4 Windows Installer

While DirectSetup ensures that the correct version of the runtime is present
for your application, you will still need to copy program and data files from the
source distribution onto the target machine. For a sophisticated application you
may need additional setup tasks such as manipulating the system Registry, pro-
viding COM objects, .Net assemblies, and system services. With a traditional
setup program this may require extensive coding, testing and debugging of cus-
tom setup program code or installation scripts for traditional setup authoring
tools.

Windows Installer provides a base facility that reduces most installation
authoring to specifying information about the installation tasks into a database.
The database is stored in an MSI file and consists of tables containing rows. Each
row supplies values to the columns of the table. The actions necessary to install
the application – such as copying files, writing registry entries, and so-on – are
stored in a ordered sequence in the database. Most actions are standard actions
and result in typical installation program operations, such as copying files. A
setup database can contain custom installation actions supplied as either a DLL
shared library file or an executable file.

Windows Installer does not provide a standard action for ensuring a par-
ticular version of the runtime, so we must provide a way to ensure the proper
runtime. One approach would be to ensure that the installation of the appli-
cation cannot proceed if the proper runtime is not present. The user would be



834 CHAPTER 24. INSTALLATION AND SETUP

required to install the proper runtime before the application can be installed.
Because the installation of the DirectX runtime is an irreversible process and
often results in a required restart of the system, it may be preferred to require
the user to undertake this update before installing the application. The display
driver is a critical part of the system and some administrators may prefer that
any changes to the display subsystem be tightly controlled.

The remainder of this section assumes some familiarity with Windows In-
staller and its corresponding database tables. For more information about Win-
dows Installer, see the Platform SDK documentation.

24.4.1 Using a Launch Sequencer

You can use a program to ensure that appropriate system updates are applied
to the system before your application installation is performed. Some systems
may not have Windows Installer, or may require a newer version of Windows
Installer for your application. Your program may require other system updates,
such as the DirectX runtime, DCOM or other system components. These system
updates are usually available for redistribution as self-contained setup programs
that must be launched directly and cannot be incorporated as merge modules
in a Windows Installer based installation. System updated, such as the DirectX
runtime, also often require that the target system be rebooted at the end of
the installation for the update to take effect. Rebooting in the middle of your
application’s installation is not recommended and your application may require
the reboot to have occurred before your installation is run.

Using a launch sequencing program simplifies the needs of your Windows
Installer database and performs such system component updates in a robust
manner. A launch sequencer is a simple program that probes the target system
for the necessary system components and launches your application’s installa-
tion if the necessary items are present. When the system components must
be updated to provide the minimum supported level for your application, the
launch sequencer can invoke the redistributable setup programs for the system
components. It is recommended that the launch sequencer provide some sort
of simple user interface before invoking the setup programs so that the user is
aware of the updates and has a chance to cancel them. Some system updates,
such as the DirectX runtime, are irreversible once installed and users do not ap-
preciate having irreversible updates performed on their computer without their
consent.

24.4.2 Requiring the Proper Runtime Version

The LaunchCondition table contains rows specifying conditions that must be
true before the installation can proceed. The installation for a DirectX appli-
cation can use a custom action to set a property to indicate if the required
version of the DirectX runtime is installed. This property can then be used in
the LaunchCondition table to allow the installation to proceed only when the
proper version of the runtime is present.



24.5. LOGO REQUIREMENTS 835

An example of this approach can be found in the MSI file for this book.
Requiring the proper runtime to be installed before running your application’s
install allows your application to be launched to perform any necessary perfor-
mance tests and one-time configuration.

24.4.3 Using a Custom Action to Invoke DirectSetup

Another approach to ensuring the correct runtime version is to invoke Direct-
Setup from within your MSI file with a custom action. The disadvantage here is
that your application cannot perform any necessary performance or configura-
tion operations until the runtime is completely installed. To completely install
the runtime will require a restart of the system. Restarting the system in the
middle of your Windows Installer based installation can be difficult to get work-
ing properly and is not recommended. However, if your application does not
require the use of the runtime until after the system has been restarted, this
approach is fine.

You still need a rudimentary launch sequencing program, however, as one
of the system updates that the launch sequencer checks for is the presence of
Windows Installer itself. Windows Installer is not guaranteed to be present
on Windows 95, Windows 98 or Windows NT4. It is shipped as part of the
operating system with Windows 2000 and Windows XP. Even in those cases
where it is guaranteed to be present, it may need to be upgraded to a newer
version used by your installation. Since the launch sequencer program is required
in all cases anyway, the preferred method to installing the runtime is to add those
checks to the launch sequencer and invoke the DirectX installation program
directly.

An example of a custom action invoking DirectSetup directly is given in the
sample code accompanying this book.

24.5 Logo Requirements

Microsoft runs a program that allows your application to display the “Built
for Microsoft Windows” logo on the materials associated with your product.
Microsoft requires that applications adhere to a set of standards before the logo
can be displayed in conjunction with your program. One of the requirements
for the logo program is that applications use Windows Installer for installation
to ensure proper, robust and resilient installation of applications. There are
additional requirements beyond the use of Windows Installer and these are
detailed on the Microsoft web site. Adhering to the requirements of the logo
program and displaying the logo on your software allows consumers to know that
your program adheres to the requirements published by Microsoft, establishing
an easily visible confidence in the quality of your product.



836 CHAPTER 24. INSTALLATION AND SETUP

24.6 AutoRun Enabled Installations

If your application is distributed on removable media, you can include files
to enable the automatic launching of your setup application as soon as the
media is recognized. This scenario is called AutoRun in the Platform SDK
documentation. AutoRun is enabled when the root directory of the distribution
media contains a file called autorun.inf which specifies the program to launch.

For more information about AutoRun enabled applications, see the docu-
mentation in the Platform SDK.

24.7 Testing Installation Programs

Testing installation programs can be a difficult process, since the installation
can perform an irreversible update to the system under test. Further, bugs in
the installation process may have left the target system in an unknown state
with only a portion of the application installed properly. Using the system to
remove these partial installations may prove difficult if their presence was due
to a faulty setup application, even one using Windows Installer.

The easiest way to always ensure that systems are in a consistent state before
testing an installation program is to prepare a “virgin” system without any of
the system updates necessary for your application. Then perform a complete
backup of this “virgin” system. A very easy way to accomplish this is to use
a tool that makes a snapshot of a hard-drive onto a CD-R, such as the Norton
Ghost utility. Then the installation program can be tested on the virgin system
and the hard drive image used to effect a complete restoration of the original
system before invoking the test again.

24.8 Sample Program

The DXInstall miscellaneous sample in the SDK gives a complete example of
calling DirectSetup with a callback procedure and a custom user interface.TODO: revise CD-

ROM discussion The entire installation for this book is in the samples. The CD-ROM is Auto-
Run enabled and the autorun.inf file invokes launcher.exe. The launcher
program is a simple C++ program that determines the version of Windows In-
staller and DirectX currently installed and passes them to setup.hta, which
acts as the GUI front end for the installation. It allows the user to launch the
installation of any necessary system updates, including the installation of the
DirectX SDK, before installing the software samples and extras that come with
the book. The file setup.hta is a simple HTML Application that functions as
the launch sequencing application. An HTML application was chosen simply
because it allows such a GUI front end to be easily constructed. It does re-
quire that the user have Internet Explorer 5 or later installed, however. When
launching setup.hta is not successful, launcher.exe displays a ReadMe.txt
file giving manual installation instructions to the user.TODO: revise CD-

ROM



24.8. SAMPLE PROGRAM 837

The book samples and extras themselves are installed with a Windows In-
staller MSI database. This database is present on the CD-ROM in the form of
an XML file, created with the open source utility msi2xml. The XML file is
located in the MSI directory on the CD-ROM.



838 CHAPTER 24. INSTALLATION AND SETUP




