
Part I

Preliminaries

1

Chapter 1

Introduction

1.1 Overview

This book describes the Direct3D graphics pipeline, from presentation of scene
data to pixels appearing on the screen. The book is organized sequentially
following the data flow through the pipeline from the application to the light
emitted from the CRT monitor. Each major section of the pipeline is treated by
a part of the book, with chapters and subsections detailing each discrete stage
of the pipeline. This section summarizes the contents of the book.

Part I begins with a review of basic concepts used in 3D computer graphics
and their representations in Direct3D. The IDirect3D8 interface is introduced
and device selection is described. The IDirect3DDevice8 interface is introduced
and an overview of device methods and internal state is given. Finally, a basic
framework is given for a 2D application.

Chapter 1 begins with an overview of the entire book. A review is given
of display technology and the important concept of gamma correction. The
representation of color in Direct3D and the macros for manipulating color values
are described. The relevant mathematics of vectors, geometry and matrices are
reviewed and summarized. A summary of COM and the IUnknown interface is
given. Finally, the coding style conventions followed in this book are presented
along with some useful C++ coding techniques.

Chapter 2 describes the Direct3D object. Every application instantiates this
object to select a device from those available. Available devices advertise their
location in the virtual desktop and their capabilities to applications through
the Direct3D object. Selecting a device from those available and examining
a device’s capabilities are described. Multiple monitor considerations are also
discussed.

Chapter 3 describes the Direct3D device object which provides access to
the rendering pipeline. The device is the interface an application will use most
often and it has a large amount of internal state that controls every stage of the
rendering pipeline. This chapter provides a high-level overview of the device

3

4 CHAPTER 1. INTRODUCTION

and its associated internal state. Detailed discussion of the device state appears
throughout the rest of the book.

Chapter 4 describes the basic architecture of a typical Direct3D application.
Every 3D application can use 2D operations for manipulating frame buffer con-
tents directly. An application can run in full-screen or windowed modes and the
differences are presented here. The handling of Windows messages and a ba-
sic display processing loop are presented. At times it may be convenient to use
GDI in a Direct3D application window and a method for mixing these two Win-
dows subsystems is presented. Almost every full-screen application will want to
use the cursor management provided by the device. Device color palettes and
methods for gamma correction are presented.

Part II describes the geomtry processing portion of the graphics pipeline.
The application delivers scene data to the pipeline in the form of geometric
primitives. The pipeline processes the geometric primitives through a series of
stages that results in pixels displayed on the monitor. This part describes the
start of the pipeline where the processing of geometry takes place.

Chapter 5 describes how to construct a scene representing the digital world
that is imaged by the imaginary camera of the device. A scene consists of a
collection of models drawn in sequence. Models are composed of a collection of
graphic primitives. Graphic primitives are composed from streams of vertex and
index data defining the shape and appearance of objects in the scene. Vertices
and indices are stored in resources created through the device.

Chapter 6 covers vertex transformations, vertex blending and user-defined
clipping planes. With transformations, primitives can be positioned relative to
each other in space. Vertex blending, also called “skinning”, allows for smooth
mesh interpolation. User-defined clipping planes can be used to provide cutaway
views of primitives.

Chapter 7 covers viewing with a virtual camera and projection onto the
viewing plane which is displayed as pixels on the monitor. After modeling,
objects are positioned relative to a camera. Objects are then projected from 3D
camera space into the viewing plane for conversion into 2D screen pixels.

Chapter 9 covers programmable vertex shading. Programmable vertex shaders
can process the vertex data streams with custom code, producing a single ver-
tex that is used for rasterization. The vertex shading machine architecture and
instruction set are presented.

Part III covers the rasterization portion of the pipeline where geometry is
converted to a series of pixels for display on the monitor. Geometric primitives
are lit based on the lighting of their environment and their material properties.
After light has been applied to a primitive, it is scan converted into pixels
for processing into the frame buffer. Textures can be used to provide detailed
surface appearance without extensive geometric modeling. Pixel shaders can
be used to provide custom per-pixel appearance processing instead of the fixed-
function pixel processing provided by the stock pipeline. Finally, the pixels
generated from the scan conversion process are incorporated into the render
target surface by the frame buffer.

Chapter 8 describes the lighting of geometric primitives. The lighting model

1.1. OVERVIEW 5

is introduced and the supported shading algorithms and light types are de-
scribed.

Chapter 10 describes the scanline conversion of primitives into pixel frag-
ments. Lighting and shading are used to process vertex positions and their
associated data into a series of pixel fragments to be processed by the frame
buffer.

Chapter 11 describes textures and volumes. Textures provide many efficient
per-pixel effects and can be used in a variety of manners. Volumes extend
texture images to three dimensions and can be used for a volumetric per-pixel
rendering effects.

Chapter 12 describes programmable pixel shaders. Programmable pixel
shaders combine texture map information and interpolated vertex information
to produce a source pixel fragment. The pixel shading machine architecture and
instruction set are presented.

Chapter 13 describes how fragments are processed into the frame buffer.
After pixel shading, fragments are processed by the fog, alpha test, depth test,
stencil test, alpha blending, dither, and color channel mask stages of the pipeline
before being incorporated into the render target. A render target is presented
for display on the monitor and video scanout.

Part IV covers the D3DX utility library. D3DX provides an implementation
of common operations used by Direct3D client programs. The code in D3DX
consists entirely of client code and no system components. An application is
free to reimplement the operations provided by D3DX, if necessary.

Chapter 14 introduces D3DX and summarizes features not described else-
where.

Chapter 15 describes the abstract data types provided by D3DX. D3DX
provides support for RGBA color, point, vector, plane, quaternion, and matrix
data types.

Chapter 16 describes the helper COM objects provided by D3DX. D3DX
provides a matrix stack object to assist in rendering frame hierarchies, a font
object to assist in the rendering of text, a sprite object to assist in the rendering
of 2D images, an object to assist in rendering to a surface or an environment
map and objects for the rendering of special effects.

Chapter 17 describes the mesh objects provided by D3DX. The mesh objects
provided by D3DX encompass rendering of indexed triangle lists as well as
progressive meshes, mesh simplification and skinned meshes.

Part V covers application level considerations. This part of the book de-
scribes issues that are important to applications but aren’t strictly part of the
graphics pipeline. Debugging strategies for applications are presented. Almost
all Direct3D applications will be concerned with performance; API related per-
formance issues are discussed here. Finally, installation and deployment issues
for Direct3D applications are discussed.

Chapter 19 describes debugging strategies for Direct3D applications. This
includes using the debug run-time for DirectX 8, techniques for debugging full-
screen applications and remote debugging.

6 CHAPTER 1. INTRODUCTION

Display Adapter

Host CPU

Color Lookup
Table

CRT
Monitor

D/A
Converter

Frame
Buffer

2D Pixel
Engine

Figure 1.1: Subsystems of a typical 2D graphics adapter.

Chapter 20 covers application performance considerations. All real devices
have limitations that affect performance. A general consideration of how the
pipeline state affects performance is given.

Chapter 21 covers application installation and setup.
Appendix A provides a guided tour of the DirectX SDK materials.

1.2 Display Technology

The typical Windows computer display system consists of a single graphics
adapter and a display monitor. The graphics adapter contains the hardware
needed store and display images on a CRT monitor or other display device. The
graphics adapter in PC compatibles has evolved from a monochrome character
display to a color character display, to simple memory-mapped frame buffers, to
devices with 2D accelerators to more recent devices capable of sophisticated 3D
realism. All of these adapters stored a representation of the displayed image in a
bank of dual-ported memory called a frame buffer. The system uses one of the
ports to read and write images into the frame buffer. The second port is used
by the video scanout circuitry of the adapter to create a signal for the monitor.
See figure 1.1 for a schematic representation. PC adapters can typically operate
in either character or graphics mode.

Monochrome monitors can only display white or black. Grayscale moni-
tors can display varying shades of gray from black to white. Color monitors
can display a variety of hues and shades. Synthetic imagery typically uses a
color monitor, but can also be used with a grayscale monitor. A monochrome

1.2. DISPLAY TECHNOLOGY 7

monitor usually requires a monochrome adapter. Direct3D does not support
monochrome or grayscale adapters, only color VGA compatible adapters.

When used in graphics mode, the adapter’s memory represents a 2D grid of
independently addressable pixels. The number of bits in the pattern used to
define each pixel is referred to as the screen depth. Three dimensional graphics
generally requires a pixel depth of 16 bits or more to achieve the desired color
fidelity. The bit pattern stored in memory can encode the pixel’s color informa-
tion directly, or it can encode an index into a CLUT. These are the so-called
direct and indexed color display modes. Direct3D8 supports direct color modes
whose bit depth is 16, 24, or 32 bits.

In direct color mode, the bit pattern is scanned out of memory and directly
used to supply inputs to a DAC to produce the analog video signal sent to the
monitor. The bit pattern may be passed through a gamma correction CLUT
before being sent to the DAC.

Most desktop monitors are CRT monitors. CRT monitors produce an image
with a modulated electron beam that scans across the screen to excite phosphor
dots on the interior surface of the picture tube. The electron beam is produced
by an an electron gun and scans the screen in a regular grid.

The phosphors on a CRT are grouped in clusters of three types: red, green
and blue phosphors. When the electron beam scans the phosphor dots, the
phosphor emits light. The chemical composition of the phosphor dots is chosen
to approximate the ideal red, green and blue color primaries that are added to
produce the desired color.

The electron beam can be scanned across the screen in either an interlaced
or non-interlaced fashion. Television monitors use an interlaced, or progres-
sive, scanning pattern. VGA monitors use a non-interlaced scanning pattern.
An interlaced scanning pattern consists of two fields, one field displaying the odd
numbered scanlines and the other field displaying the even numbered scanlines.

A non-interlaced pattern scans the screen starting at the top left of the
screen and scanning to the right, exciting phosphors one scanline at a time.
The phosphor triplets are excited with an electron beam whose intensity is
modulated by the voltage of the analog video signal driving the monitor.

When the right edge of the screen is reached, the electron beam is turned
off during horizontal retrace to start the next scanline at the left edge of the
screen. When the bottom of the screen is reached, the electron beam is turned
off during vertical retrace to reposition the beam at the top left corner of the
screen.

Rather than scan all three phosphor dots with a single electron gun, a CRT
will usually include three electron guns, one for each primary, scanning in paral-
lel. A shadow mask placed between the picture tube surface and the electron
guns blocks the electron beams from illuminating phosphors other than those
corresponding to the currently addressed pixel.

So far we have described an ideal CRT that is perfectly addressable. An
ideal CRT would illuminate a single phosphor triplet perfectly with no other
phosphors receiving excitation from the electron beam. A real-world monitor
does not address an individual phosphor triplet directly, but excites a shadow-

8 CHAPTER 1. INTRODUCTION

masked swath as it traverses the screen. The phosphors are not perfect primary
color sources. The glass of the tube itself can scatter a phosphor’s emitted light.
All of these factors and others combine to distort the desired image scanned out
from the frame buffer. The next section discusses a way to compensate for this
distortion.

1.3 Gamma Correction

The intensity of light resulting from the phosphors excited by an electron gun is
not linear with respect to the voltage applied to the electron gun. If two voltages
are applied with the second voltage being twice the first, the resulting second
intensity will not necessarily be twice the first intensity. Synthetic imagery
assumes that colors can be manipulated linearly as additive primaries, requiring
compensation for the non-linearity of the monitor.

The non-linearity of a display is caused by many factors, such as the point
spread function, the shadow mask, the phosphor’s composition and even the age
of the components in the monitor itself. The non-linearity can be approximated
by the equation I = kV γ relating the intensity I to the applied voltage V . The
term gamma correction derives from the use of the greek letter gamma in
this equation.

A display may be characterized by a single value for γ. A more accurate
characterization accounts for the differences in the emission properties of the
phosphors and treats each primary separately, modeling each primary’s response
with its own power law and γ value.

To ensure the best results from synthetic imagery, a monitor should be cali-
brated and its gamma measured by experiment. Poor compensation of gamma
can have a deleterious effect on antialiasing algorithms and cause imagery to
appear “too dark” or “too washed out”.

Gamma correction is most easily implemented as a color lookup table ap-
plied just before the data is presented to the DAC. Some display adapters do
not provide such a DAC and it must be incorporated into the application’s
processing, at the expense of some color accuracy.1

Gamma Correction with GDI

Windows GDI provides two functions for getting and setting the gamma ramp
on a GDI device. This can be used when a Direct3D application is running
in windowed mode, however this method is not well supported by GDI device
drivers. In Windows 2000, you can query a GDI device context for support of
these functions by examining the CM GAMMA RAMP bit of the COLORMGMTCAPS.

For more information see the Platform SDK help on the functions ::Get-
DeviceGammaRamp, ::SetDeviceGammaRamp and ::GetDeviceCaps.

1Lighting and shading all assume a linear colorspace, applying gamma correction at the
application layer presents non-linear color information to the pipeline, which it manipulates
as linearly related information.

1.4. COLOR 9

Measuring Gamma Interactively

You can interactively measure the gamma of your monitor. When viewed from a
distance, a rectangular region filled with alternating scanlines of black (minimum
intensity) and white (maximum intensity) will appear to be a uniform area at
50% intensity. The perceived intensity will appear equal to a properly gamma-
corrected solid rectangle drawn at 50% intensity.

To determine the gamma interactively, have the user adjust a slider control
adjusting the gamma until the two rectangle drawn with these techniques appear
of equal intensity when viewed at a distance. The gamma value of the display is
the gamma value corresponding to the slider’s position when a match is found.
To measure the gamma of the display primaries separately, perform a similar
task, but use alternating scanlines of black and full intensity of the primary.

The rt Gamma sample on the accompanying CD-ROM uses this algorithm to
measure a monitor’s gamma directly with Direct3D.

Gamma Correction with Direct3D

First, an application should decide how they want to deal with device nonlin-
earity. Monitor gammas vary enough that you will want to provide some sort
of compensation. The best way to deal with the problem is to correct for the
monitor’s gamma during video scanout with the device’s gamma ramp in exclu-
sive mode. All color inputs supplied to the Direct3D device, including texture
and volume inputs, are provided in a linear color space with a γ of 1.0.

In exclusive mode, the gamma ramp of the device can be used to correct for
the monitor’s nonlinearity. In windowed mode, an application can use the GDI
support. Because of the global affect of the GDI gamma ramp on all applications
on the same monitor, you may prefer to deal with gamma in a less intrusive
manner. Lack of hardware gamma ramps or driver support could also force you
to deal with gamma in another manner.

An application can take its linear color inputs and manually gamma correct
them, including textures and volumes, when they are loaded into the device.
This still leads to an inaccurate rendering since the deive is performing op-
erations on colors it assumes to be related linearly, but it is better than no
compensation for monitor gamma.

1.4 Color

We usually have an intuitive idea of what we mean by color. In computer graph-
ics we must be quantitative and precise when we describe color to the computer.
In addition, there are factors due to the human visual system that must be con-
sidered when choosing color, as artists have long well known. The human visual
system can be considered the very last stage of the graphics pipeline after the
monitor produces an image.

A color is described to the computer as an ordered tuple of values from a
color space. The values themselves are called components and are coordi-

10 CHAPTER 1. INTRODUCTION

nates in the color space. Windows GDI represents colors as an ordered tuple
of red, green and blue components with each component in the range [0.0, 1.0]
represented as an unsigned byte quantity in the range [0, 255].

By default Windows GDI uses the sRGB color space2. This is an adopted
international standard color space that was first proposed by Hewlett-Packard
and Microsoft. However, the sRGB space is device-dependent owing to the
non-linearities of display systems.

Other color spaces provide device-independent color specifications. In 1931,
the CIE created a device-independent standard color space CIEXYZ. There are
variations of the CIE color space such as CIELUV, CIELAB, and others. This
colorspace can be used to ensure accurate reproduction of colors across a variety
of output technologies, such as matching screen output to printed output.

In computer graphics, it is often convenient to use the HLS and HSV color
spaces for creating color ramps. If the intent of your application is to map data
to a range of perceptibly equal colors, you will want to use a color space other
than sRGB. Equal increments in the components of an sRGB color do not give
rise to equal increments in perceived color change on the monitor.

A full treatment of color and its perception is beyond the scope of this book.
The mechanics of color matching and color space manipulation on Windows can
be found in the Platform SDK Help on Image Color Management (ICM). The
perceptual and artistic aspects of color matching and color spaces can be found
in [Thorell] and [Hall].

Transparency With Alpha

Many times in computer graphics we wish to combine pixels as though they were
painted on layers of mylar and a light was shown through them as in traditional
cel animation. In Direct3D transparency is represented as an additional channel
of information representing the amount of transparency of the pixel.

When a pixel is fully opaque, its alpha value is 1.0 and this pixel completely
obscures anything behind it. When a pixel is fully transparent, its alpha value
is 0.0 and everything behind the pixel shows through. When the alpha value is
between 0 and 1, then the pixel is partially transparent. A pixel’s alpha value
can be used to combine the foreground of the pixel with some background based
on the following formula:

C ′ = αCf + (1− α)Cb

When α = 0, the resulting color C ′ contains no amount of the foreground
color Cf and all of the background color Cb. When α = 0.5, the resulting color
contains an equal mix of Cf and Cb. When α = 1.0, the resulting color contains
only the foreground color Cf and no amount of the background color Cb.

A pixel’s alpha channel can be also used for generalized masking and matte
effects in addition to simple transparency. In these cases a different formula

2http://www.color.org/sRGB.html

1.4. COLOR 11

is used to combine foreground and background pixels. The alpha of a pixel is
independent of the colorspace from which the pixel is drawn.

Color in Direct3D

Direct3D uses the sRGB color space in windowed mode when GDI owns the
screen. In full-screen mode, an application can use a linear RGB color space
if gamma correction is available, otherwise the application will have to provide
gamma corrected source colors to Direct3D to achieve linear color response. The
linear RGB color space comes at the expense of some dynamic range when color
channels are 8 bits wide, but provides for the most accurate rendition of the
desired colors on the display.

Direct3D uses a variety of representations for colors depending on the context
in which they are used. When Direct3D accepts a parameter to the rendering
pipeline, those parameters are specified either as a single DWORD, or as a struct
of 4 floats. When interacting with image surface memory on a device, the colors
will be in a device-specific representation.

A struct of floating-point values is used in lighting and shading calculations
where accuracy is important. DWORDs are generally used in pixel related opera-
tions. Floating-point component values typically fall into the range [0.0, 1.0].3

When working with GDI DIBs, 24-bit RGB colors packed in a DWORD sized
quantity are common. GDI provides COLORREF and PALETTEENTRY types for
representing colors. Direct3D also stores its colors in a DWORD sized quantity,
but whereas GDI uses 8 bits of the DWORD for flags in a PALETTEENTRY and is
ignored in an RGB COLORREF, Direct3D uses those 8 bits for an alpha channel.

The typedef D3DCOLOR introduces an alias for a DWORD and the macros4 in
table 1.1 are provided for manipulating color in this representation. The D3D-
COLOR XRGB macro provides an alpha value of 1.0.

The D3DCOLOR VALUE structure contains an RGBA color as four floating-
point values:

typedef struct _D3DCOLORVALUE
{

float r;
float g;
float b;
float a;

} D3DCOLORVALUE;

The D3DX utility library defines a D3DXCOLOR structure with member func-
tions and support functions for color manipulation. It is described in chapter
14.

3Certain special effects exploit the use of color in the pipeline with values outside this
range.

4The macros are presented as if they were inline functions with prototypes, but no type
checking is performed with macros.

12 CHAPTER 1. INTRODUCTION

Type Definition
typedef DWORD D3DCOLOR;

Macros
D3DCOLOR D3DCOLOR_ARGB(BYTE a, BYTE r, BYTE g, BYTE b)
D3DCOLOR D3DCOLOR_RGBA(BYTE r, BYTE g, BYTE b, BYTE a)
D3DCOLOR D3DCOLOR_XRGB(BYTE r, BYTE g, BYTE b)
D3DCOLOR D3DCOLOR_COLORVALUE(float r, float g, float b, float a)

Table 1.1: 32-bit RGBA D3DCOLOR macros.

1.5 Basic Geometry

Points

In geometry, a point is represented by its coordinate in space. Geometry usu-
ally uses a Cartesian coordinate system, where the coordinates of a point in
space are represented by the distance along each of the principal axes to the
point. While other coordinate systems are used in geometry (such as spheri-
cal or cylindrical coordinate systems), 3D graphics uses a Cartesian coordinate
system. The dimensionality of a point corresponds to the number of coordi-
nates needed to represent the point. Thus a two dimensional point requires two
Cartesian coordinates, and a three dimensional point requires three coordinates.

Lines, Rays and Segments

A line has direction and is infinite in length. The direction line be defined by
two points through which the line passes. Two or more points all on a line
are said to be colinear. Because a line is defined by two points, two points are
always colinear.

A ray begins at a point and extends infinitely in a direction away from the
point. A ray is defined by a point and a direction.

A line segment is a finite length line defined by its two endpoints.
In computers we must deal with finite quantities, so we can’t draw the full

extent of a line or ray according to its mathematical definition. In computer
graphics when referring to “lines” we most often mean line segments.

Planes and Triangles

A plane is an oriented sheet in 3-space with no thickness and an infinite extent.
A plane is defined by three non-colinear points that intersect the plane or by
a point on the plane and a direction perpendicular to the plane. The direction
perpendicular to a plane is called the normal to the plane.

A triangle is also defined by three points in 3-space called vertices (singular
vertex). The triangle is to the plane what the line segment is to the line. A

1.6. HOMOGENEOUS COORDINATES 13

triangle encloses a finite area defined by interior region bounded by the line
segments that join its vertices.

1.6 Homogeneous Coordinates

Homogeneous coordinates are often used in computer graphics. Homogeneous
coordinates can be thought of as extending Cartesian coordinates to include
the concept of infinity. The extension is performed by adding an additional
coordinate to the Cartesian coordinates. This additional coordinate is often
represented as w. To convert a point from its homogeneous representation to
its Cartesian representation, the coordinates are divided by w, thus (x, y, z, w)
becomes (x/w, y/w, z/w, 1). The final coordinate can be discarded to retrieve
the corresponding Cartesian coordinate. You can see that if w = 0, then the
division yields a Cartesian point with infinite coordinates.

In homogeneous coordinates, all points with w = 0 are at infinity. If we
imagine the 2D case of points on a plane we can see that “infinity” lies in many
different directions since a plane has infinite extent in all directions. Homoge-
neous coordinates allow us to differentiate between the different “directions of
infinity”. Thus the 2D homogeneous point (1, 0, 0) is infinity in the direction
of the positive x axis, while (0, 1, 0) represents infinity in the direction of the
positive y axis.

Homogeneous coordinates can also be used to define projective mappings.
The conversion of a homogeneous coordinate into its Cartesian equivalent is a
projective mapping from N + 1 dimensions to N dimensions for N dimensional
Cartesian space. Projective mappings occur in 3D computer graphics when we
project a volume of imaginary space onto the screen of the monitor. Projective
mappings also occur when using texture.

1.7 Vectors

A vector has length and an orientation in space. Unlike a line, a vector does
not have a position in space. Two vectors are equal if they have equal length and
the same orientation. Vectors of length 1.0 are called unit vectors. A normal
vector is a unit vector that is perpendicular to an object’s surface, pointing
towards the “outside” of the surface. Vectors will be written with a lower case
letter and an arrow accent: ~i, ~j, and ~k will denote unit vectors along the three
principal axes in a 3D coordinate system. A vector’s scalar components are
shown as 〈x, y, z〉 or 〈v0, v1, v2〉. Vector arithmetic is summarized in table 1.2.

Direct3D represents 3D vectors using the D3DVECTOR structure. The D3DX
utility library also includes the 2D, 3D and 4D vector classes D3DXVECTOR2,
D3DXVECTOR3 and D3DXVECTOR4, respectively. The 3D vector class inherits from
D3DVECTOR. The D3DX vector class provide member functions for vector con-
struction, element access, and arithmetic operators. They are described in chap-
ter 14.

14 CHAPTER 1. INTRODUCTION

Addition ~a +~b = 〈ax + bx, ay + by, az + bz〉
Scalar Multiplication s~a = 〈sax, say, saz〉
Length ‖~a‖ =

√
a2

x + a2
y + a2

z

Scalar Dot Product ~a ·~b = 〈axbx, ayby, azbz〉

Vector Cross Product ~a⊗~b =

∣∣∣∣∣∣

~i ~j ~k
ax ay az

bx by bz

∣∣∣∣∣∣
= 〈aybz − byaz, bxaz − axbz, axby − bxay〉

Table 1.2: Vector operations given ~a = 〈ax, ay, az〉 and ~b = 〈bx, by, bz〉.

1.8 Coordinate Systems

Scenes are described geometrically to Direct3D in a coordinate system. Here
we will summarize coordinate systems in an informal manner. For many 3D
graphics problems, it is helpful to have a working knowledge of 2D and 3D
geometry. The Graphics Gems series of books contain many useful geometric
and algorithm results for manipulating geometry. The book series has been
discontinued and replaced by the Journal of Graphics Tools, following the same
style used by the books.

Positions are defined by points drawn from a space. A point is always as-
sociated with a particular space, or coordinate frame. The scalar components
of a point are the values of the coordinate axes in the space from which it was
drawn. Points will be denoted P(x, y, z) with capital letters, optionally followed
by their coordinate values in parenthesis.

In computer graphics, two dimensional space usually refers to a screen co-
ordinate system. Screen coordinates place the origin in the upper left corner
of the screen, with increasing x to the right and increasing y to the bottom.
Screen coordinates are the default coordinate system in GDI and are also used
in some screen-oriented aspects of Direct3D.

Three dimensional space is defined by three mutually perpendicular axes.
Two common orientations of 3D axes are left-handed and right-handed co-
ordinate systems. The name stems from a simple process used to visualize the
coordinate systems. First, point the fingers of the right hand in the direction
of the positive x axis. Curl the fingers inward towards the palm by rotating
them towards the positive y axis. The thumb will then point in the positive
z direction in a right-handed coordinate system. For a left-handed coordinate
system the thumb will be pointing in the negative z direction. The results are
reversed if you use your left hand, see figure 1.2.

In computer graphics, a right-handed coordinate system with the origin in
the lower left corner of the screen and positive x increasing to the right and
positive y increasing to the top, the z axis points out of the screen towards the
viewer. In a left-handed coordinate system with a similar arrangement of the x
and y axes, the z axis points into the screen away from the viewer. Direct3D uses

1.9. MATRICES 15

Y

X

Z

Z

Y

X

Y

X

Left-Handed Right-Handed Screen

Figure 1.2: Left-handed, right-handed and screen coordinate systems. The xy
plane is in the plane of the page and the dashed portion of the z axis extends
behind the page, while the solid portion of the z extends in front of the page.

a left-handed coordinate system, while OpenGL uses a right-handed coordinate
system. When converting algorithms from other graphics APIs to Direct3D,
you must take the “handedness” of the API into consideration.

Three dimensional points in Direct3D are described with the D3DVECTOR
structure.5 Two dimensional points can be represented as 3D points with a
fixed value for the z component.

Geometric lines are infinite in length and have an orientation and a posi-
tion. Computer graphics generally deals with line segments which are of finite
length, but generally refers to them as “lines”. A ray has one finite end point
and extends infinitely in the direction of the ray. Direct3D provides no data
structure for storing a line, line segment, or ray, but these are easily created if
needed in your application.

When two lines intersect, they define a plane in space. The D3DX utility
library represents planes with the D3DXPLANE structure. A set of member func-
tions and global functions are provided for manipulating planes. It is described
in chapter 14.

1.9 Matrices

Matrices map one coordinate system to another coordinate system and are said
to transform coordinates from one coordinate system to another. Transforma-
tion matrices in computer graphics are typically small, rectangular arrays of
floating-point values, with 2x2, 3x3 and 4x4 being the most commonly used
sizes of matrices. Direct3D declares a matrix as a 4x4 array of floats. The
first subscript increases from top to bottom along the matrix elements and the
second subscript increases from left to right along the matrix elements:

5Points are not provided with a distinct type.

16 CHAPTER 1. INTRODUCTION

Identity I = M, where mij = 1 if i = j, else 0
Inverse AA−1 = I

A−1A = I
Transpose AT = M, where mij = aji

Addition A + B = M, where mij = aij + bij

Scalar Product sA = M, where mij = saij

Vector Product ~vA = 〈m0, m1, m2, m3〉, where mi = ~v ·Ai

Matrix Product AB = M, where mij =
n∑

k=1

aikbkj

Table 1.3: Matrix operations given two n by n matrices A and B.

M =

m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44

Matrix arithmetic operations are summarized in table 1.3. Note that matrix
multiplication is not commutative, so that AB 6= BA for arbitrary A and B.
The former is referred to as post-multiplying B onto A and the latter is
referred to as pre-multiplying B onto A.

Sometimes the inverse of a matrix is needed in computer graphics. While
the procedure for obtaining the inverse of an arbitrary matrix is complex, the
matrices used in computer graphics are often affine transformations. Affine
transformations have the property that their inverse is their transpose, which is
trivial to compute.

Direct3D provides the D3DMATRIX structure for storing transformation ma-
trices. D3DX provides a D3DXMATRIX class that inherits from D3DMATRIX pro-
viding basic mathematical operations as C++ operators and a set of functions
for operating on matrices. See chapter 14.

1.10 Aliasing

Aliasing arises as a consequence of the discrete sampling of continuous signals.
In computer graphics, discrete samples are everwhere – scenes are rendered by
taking discrete samples of geometric objects at each pixel on the screen, texture
images are 2D collections of discrete samples of an object’s surface appearance,
texture volumes are 3D collections of discrete samples distributed over space,
applying 2D and 3D textures during rendering samples the underlying texture,
colors are sampled into a color space, lighting is sampled at the vertices of a
polygon and so on.

Aliasing is most easily observed by most algorithms used to draw lines whose
slope is not a multiple of 45 degrees. The effect is most observable on a display
when the line is slightly misaligned with respect to the horizontal or vertical
axis of the pixel (sample) grid. The “stair-step” effect seen in the pixel pattern

1.11. STYLE CONVENTIONS 17

is the result of aliasing introduced by the discrete screen pixel locations. The
points on a geometric line have a continuously varying position along the line
and no thickness. The points on a rasterized line can only be located at the
pixel locations. Further, a pixel is not dimensionless like a geometric point; a
pixel has area. The restrictions of the pixel grid and rasterized lines and other
graphics primitives, when compared to their geometric counterparts, are what
give rise to aliasing. This is most prominent on object edges where the silhouette
of the object shows the staircase pattern and in scenes containing many finely
spaced line patterns which give rise to Moiré patterns.

As well as spatial aliasing, dynamic rendering of scenes can result in tempo-
ral aliasing. Motion pictures can exhibit temporal aliasing as an interaction
between fast-moving objects in the scene and the shutter (sampling) mecha-
nism of the camera. This is most commonly seen in the wagon wheel spokes
of westerns; the strobing action of the camera shutter can make the apparent
speed of the wheel slow down, stop, or even reverse. Similar effects occur when
animation is used.

Aliasing can appear in any value that is quantized to a fixed set of val-
ues rather than a continuous range of values. A continuous value is quantized
when it is approximated by a finite value, such as a bit pattern in a computer.
Floating-point number roundoff error can be thought of as a kind of aliasing
introduced by the quantization of real numbers to the floating-point represt-
nation; usually our calculations are such that the roundoff error intrinsic to a
floating-point representation doesn’t hamper the results of the calculation be-
cause it lies within acceptable error bounds. However, computer graphics often
deals with values that have been quantized to relatively few bits of fixed-point
precision – color channels can be quantized to anywhere from 1 to 8 bits of
precision on Windows. Screen coordinates are typically quantized to 12 bits or
less with 9 or 10 bits being the most common.

Antialiasing refers to the techniques used in computer graphics to minimize
or eliminate aliasing. The mathematics of aliasing and its properties are very
well understood, but are beyond the depth we will discuss it here. Anyone
can appreciate the difference in visual quality between an aliased image and a
properly antialiased image.

Direct3D provides a variety of antialiasing methods. Devices can provide
full-scene antialiasing with multisampling, per-primitive antialiasing capabili-
ties, texture antialiasing through mipmaps, 3D texture or volume antialiasing
through mipvolumes, lighting antialiasing through multitexturing and depth
antialiasing through w buffers.

1.11 Style Conventions

The following coding style conventions have been adopted throughout the ex-
ample code used in this book for example code, Direct3D interfaces, macros,
functions and types.

18 CHAPTER 1. INTRODUCTION

Macros

When describing C++ pre-processor macros, they will be listed as if they were
inline functions with datatypes for input arguments and a return type where
applicable. The macros themselves don’t enforce this usage so these datatypes
are given only as a guide to the reader as to the intended purpose of the macro.

Types

The Direct3D header files define an aliases for the Direct3D interface pointers.
For instance, a pointer to the interface IDirect3D8 has the typedef LPDIRECT3D8.
Rather than use the typedef, the interface name will be used in the text. Mixed
case names are easier to read and we wish to make it clear when a function takes
a pointer to a pointer by using the ** syntax. This book will also follow this
convention for any conventional Win32 structures or intrinsic C++ datatypes.

Properties and Methods

A common schema for describing an object is to group its behavior into three
categories: properties that represent the internal state of the object, methods
or actions that can be taken on the object, and events or signals broadcast by
the object to a group of subscribers. Direct3D objects expose no events, leaving
us with properties and methods.

Direct3D properties are read with a Get method and written with a Set
method on the interface. Properties may be read-only, write-only, or read-write
depending on the methods provided in the interface. Property methods will be
grouped by property name when an interface is summarized.

Methods are the interface methods that cause the object to do something
interesting, like render a scene, and typically have verbs or verb noun phrases as
their name. An application uses Direct3D objects by setting the appropriate ob-
ject state through the property methods and then causing something interesting
to happen through the action methods.

The members of an interface are listed in the sections of read-only properties,
write-only properties, read/write properties and methods. Within each section,
the relevant interface members are listed alphabetically, by property or method
name. The SDK header files list interface members in “vtable” order, which is
the required for proper operation, but makes for a poor reference.

Formal Argument Names

When formal argument names for API functions or COM object methods are
given, the following conventions will be followed. When a set or get method
is used to access a property, the argument corresponding to the property value
will be named value. Similarly, when a method returns an interface pointer,
the returned interface pointer argument will be named value. The remaining

1.12. COM OBJECTS 19

arguments will be named according to their semantic role for the function or
method.6

Structures and Unions

In C++, a structure is equivalent to a class with all members having public
visibility. D3DX extension classes exploit this by inheriting from the Direct3D
structures to extend them with member functions but no data. When the
context is clear, structure member names are used directly, otherwise they are
prefixed with a class scope prefix, such as D3DCAPS8::DevCaps.

Function and Class Names

When functions and classes are provided in example code they will be iden-
tified with lower-case names whose words are separated by underscores. This
differentiates the example code in the book from GDI or other Win32 function
calls at a glance. In addition, C++ standard library routines and classes will
be prefixed with std:: rather than importing the std namespace.

1.12 COM Objects

COM objects are binary components that are servers providing function-
ality to clients through interfaces. Direct3D is provided by Windows as a
collection of objects that act as servers for graphic operations requested by your
application as the client. Because COM provides a binary specification, the
components may be written in any language that supports the creation of COM
components. The COM runtime provides the infrastructure for locating specific
binary components on your machine and attaching them to your application
when you request their services. Binary components can be used from any pro-
gramming environment that understands COM services, such as Visual Basic,
Visual C++ or Delphi Object Pascal.

A way is needed to specify a particular component as well as the partic-
ular interface desired. COM uses GUIDs to identify both components and
interfaces. GUIDs are 128-bit numbers generated by the algorithm described
in the Distributed Computing Environment specification and are guaranteed to
be unique across time and space.7

Components present interfaces as an immutable contract between the server
and the client. Once an interface is published to clients, it cannot be changed. If
new functionality is needed or an interface needs to be changed, a new interface

6This differs from the SDK documentation. We prefer to give an independent naming over
duplication of the SDK.

7The DCE algorithm uses the physical network address of the machine’s netork adapter
for uniqueness in space. These identifiers are guaranteed to be unique. If no network adapter
is present when the GUID is generated, then the GUID is guaranteed only to be statistically
unique.

20 CHAPTER 1. INTRODUCTION

must be created. This ensures backward compatability at the interface level
with all existing clients of the component.

COM interfaces can be arranged in a hierarchy to extend existing interfaces,
but only single inheritence of interfaces is allowed. This does not turn out to be a
serious limitation because a COM object may provide any number of interfaces.
COM implements polymorphism in this manner.

COM objects are reference counted. Every time a client obtains an interface
on a COM object, the object’s reference count is increased. Note that objects are
reference counted and not interfaces; an object supporting multiple interfaces
will have its reference count increased by one for each interface pointer obtained
by a client. When the client is finished with the interface, it releases it and
the object’s reference count is decreased. When the object’s reference count
decreases to zero, the object may be safely destroyed. Just like memory allocated
on the heap, COM objects can be “leaked” if the interfaces are not released. A
leaked COM object should be treated like a memory leak and eliminated during
application development.

All COM interfaces inherit from IUnknown, a distinguished base interface
that manages the object’s reference count and provides a means of obtaining any
other interface supported by the object. The IUnknown interface is summarized
in interface 1.1.

IUnknown

Methods
AddRef Add a reference to an object.
QueryInterface Query an object for another interface pointer.
Release Release a reference to an object.

Interface 1.1: Summary of the IUnknown interface.

interface IUnknown
{
HRESULT QueryInterface(REFIID iid,

void **result);
UINT AddRef();
UINT Release();

};

In C++, a COM object interface is presented to the application as a pure
virtual base class with only public methods. It is impossible to instantiate a
pure virtual base class, ensuring that an application can only obtain an interface
pointer from the COM runtime or a COM object interface method such as
QueryInterface. To invoke a method on a COM object, you obtain a pointer
to an interface supported by the object and then invoke the method like you
would any other C++ class instance pointer.

1.12. COM OBJECTS 21

Predicates
bool SUCCEEDED(HRESULT hr) true when hr indicates success.
bool FAILED(HRESULT hr) true when hr indicates failure.

Accessors
DWORD HRESULT FACILITY(HRESULT hr) Extracts facility code.
DWORD HRESULT CODE(HRESULT hr) Extracts status code.

Table 1.5: Macros for HRESULT return values.

Many COM methods, such as QueryInterface return the type HRESULT.
This is a DWORD sized quantity interpreted as three fields: a sucess bit, a facility
code and a status code. The sucess bit indicates the failure or success of the
operation as a whole. The facility code indicates the facility of origin in the
system. The status code provides extended information besides that indicated
in the success bit. Methods may succeed or fail with multiple distinct return
codes. Use the macros in table 1.5 to examine HRESULT return values.

In Direct3D, when you pass an interface pointer to a COM object, it calls
AddRef on the interface pointer if it stores the pointer as part of the object’s
internal state. No AddRef call is made if the object uses the interface only for
the duration of its method. When a COM object replaces an existing interface
pointer stored in its internal state with a new pointer, it first calls Release on
the older interface pointer before overwriting it with the new interface pointer
on which it calls AddRef. When an application wishes to force the release of
an internally held interface, it instructs the COM object to store a null pointer
into its internal storage, forcing a release of any internally held interface.

Before the COM runtime can be used, it must be initialized via the routine
::CoInitialize. This is typically done at startup. Similarly, an application
calls ::CoUninitialize when finishing to free any resources allocated by the
runtime. If an application does not use the COM runtime, then it needn’t call
either of these routines.

COM provides a standard object factory routine for creating instances (::Co-
CreateInstance, ::CoCreateInstanceEx). An object can also provide its own
factory routine for use by an application. ::CoCreateInstance creates an in-
stance and obtains a pointer to one of its interfaces. Since every interface inher-
its from IUnknown, you can always obtain the IUnknown interface pointer from
any COM object instance. With IUnknown we can query for other interfaces
and obtain an interface pointer if that interface is implemented by the object.
::CoCreateInstanceEx allows us to obtain multiple interfaces from a single
object with one call. ::CoCreateInstanceEx is preferred for multithreaded
applications for more control over the threading model used by COM objects.

Except for the initial IDirect3D8 interface obtained through ::Direct3D-
Create88, all Direct3D COM objects are created by other Direct3D COM ob-
jects. A Direct3D application doesn’t call ::CoCreateInstance for Direct3D
COM objects and rarely calls QueryInterface because the Direct3D API is

8X file and D3DX objects also have factory functions.

22 CHAPTER 1. INTRODUCTION

streamlined for the operations typically needed by applications.
Because all Direct3D objects are obtained through factory functions and

methods, Direct3D doesn’t require the COM runtime to be initialized. If the
application uses other COM objects or functions from the COM runtime, it will
still need a call to ::CoInitialize or ::CoInitializeEx.

A simple COM application that plays CLOCKTXT.AVI from the SDK’s media
directory with DirectShow is given in listing 1.1. It performs error checking and
explicitly manages the lifetime of the COM objects it uses with the Release
method.

Listing 1.1: A simple AVI file player.

1 #define WIN32_LEAN_AND_MEAN
2 #define STRICT
3 #include <windows.h>
4 #include <dshow.h>
5

6 int APIENTRY
7 WinMain(HINSTANCE, HINSTANCE, LPSTR, int)
8 {
9 HRESULT hr = ::CoInitialize(NULL);

10 if (FAILED(hr))
11 {
12 return -1;
13 }
14

15 // create the filter graph manager
16 IGraphBuilder *graph = 0;
17 hr = ::CoCreateInstance(CLSID_FilterGraph, NULL,
18 CLSCTX_ALL, IID_IGraphBuilder,
19 reinterpret_cast<void **>(&graph));
20 if (FAILED(hr))
21 {
22 ::CoUninitialize();
23 return -1;
24 }
25

26 // build the graph
27 hr = graph->RenderFile(L"CLOCKTXT.AVI", NULL);
28 if (FAILED(hr))
29 {
30 graph->Release();
31 ::CoUninitialize();
32 return -1;
33 }
34

1.12. COM OBJECTS 23

35 // run the graph
36 {
37 IMediaControl *control = 0;
38 hr = graph->QueryInterface(IID_IMediaControl,
39 reinterpret_cast<void **>(&control));
40 if (FAILED(hr))
41 {
42 graph->Release();
43 ::CoUninitialize();
44 return -1;
45 }
46 hr = control->Run();
47 if (FAILED(hr))
48 {
49 control->Release();
50 graph->Release();
51 ::CoUninitialize();
52 return -1;
53 }
54 control->Release();
55 }
56

57 // wait for the AVI to complete
58 {
59 long event_code = 0;
60 IMediaEvent *event = 0;
61 hr = graph->QueryInterface(IID_IMediaEvent,
62 reinterpret_cast<void **>(&event));
63 if (FAILED(hr))
64 {
65 graph->Release();
66 ::CoUninitialize();
67 return -1;
68 }
69 hr = event->WaitForCompletion(INFINITE,
70 &event_code);
71 if (FAILED(hr))
72 {
73 event->Release();
74 graph->Release();
75 ::CoUninitialize();
76 return -1;
77 }
78 event->Release();
79 }
80

24 CHAPTER 1. INTRODUCTION

81 graph->Release();
82 ::CoUninitialize();
83

84 return 0;
85 }

1.13 Code Techniques

This section presents some code techniques you may find helpful during devel-
opment of your Direct3D C++ application.

C++ Exceptions and HRESULTs

Almost every Direct3D interface method return HRESULT status codes. A well
behaved program should check these values and act accordingly. Direct3D pro-
vides error checking on parameter values and additional error return codes when
the debug run-time is in use. See chapter 19.

A typical COM program, such as the simple AVI player in listing 1.1, has to
check many HRESULT return values. Every function is cluttered with the error
checking code and the main path of execution isn’t clear. Similarly, if we used
HRESULTs in application code to propagate failure codes back up the call chain,
all functions must deal with failure codes from called functions and propagate
them back up to their caller.

HRESULT
DoSomething(ISomeInterface *iface)
{

HRESULT hr = iface->Method1();
if (FAILED(hr))
{

return hr;
}
hr = iface->Method2();
if (FAILED(hr))
{

return hr;
}
hr = iface->Method3();
if (FAILED(hr))
{

return hr;
}
return S_OK;

}

1.13. CODE TECHNIQUES 25

HRESULT
DoThings()
{

ISomeInterface *iface = GetInterface();
HRESULT hr = DoSomething(iface);
if (FAILED(hr))
{

iface->Release();
return hr;

}
hr = DoSomethingElse(iface);
if (FAILED(hr))
{

iface->Release();
return hr;

}
iface->Release();

return S_OK;
}

Writing out if tests for every method can be tedious and error-prone. The
readability of the program suffers as every function is littered with uncommon
case error handling code and the commonly taken successful flow of control is
obscured. Additionally as we allocate temporary resources through the course
of the function, each must be released on an unexpected failure. Wether you
repeat the cleanup code, as in listing 1.1, or use a goto with multiple labels for
various amounts of cleanup at the end of the routine, the style is awkward and
error-prone.

C++ exceptions and resource acquisition classes provide a mechanism for
localizing the error handling code to one place and improving the readability of
the main code path without giving up error detection. A resource acquisition
class is a class that acquires some sort of resource in its constructor and re-
leases the resource in its destructor. The resource can be temporarily allocated
memory, COM interface pointers, mutual exclusion locks, open file handles, etc.
Acquiring such resources with helper classes allocated on the stack ensures that
the resources are properly released, even when an exception is thrown. When
an exception is thrown, the call stack is unwound and any destructors for ob-
jects allocated on the stack are executed. When the call occurs normally, no
exception is thrown and the helper object’s destructor is called when the object
goes out of scope. Either way, the resource is properly released when it is no
longer needed.

To map HRESULTs to C++ exceptions, we need an exception class, an inline
function and a preprocessor macro. First, a class hr message is provided that
encapsulates the error state of an HRESULT, a source code filename and a line
number. Next, an inline function is provided that examines an HRESULT and

26 CHAPTER 1. INTRODUCTION

throws an exception of type hr message if the HRESULT indicates failure. If the
HRESULT indicates success, the inline function returns its HRESULT argument.
Finally, a preprocessor macro is provided that automatically fills in the filename
and line arguments when invoked. The complete header file is given in listing
1.2.

Listing 1.2: <rt/hr.h> mapping HRESULTs to exceptions.

1 #if !defined(RT_HR_H)
2 #define RT_HR_H
3 // hr.h
4 //
5 // Description: Handling unexpected COM HRESULTs as C++
6 // exceptions.
7 //
8 // The utilities provided here aid in debugging (and
9 // logging after delivery) as they record the source

10 // file/line location where the error was encountered.
11 //
12 // Setting breakpoints on the throw statemens in this
13 // header file will stop execution for all errors
14 // encountered by the program through THR(), TWS(), etc.,
15 // before the exception is thrown, allowing you to check
16 // the call stack for the source of the error in the
17 // debugger.
18 //
19 // This file is meant to be used to trap unexepected
20 // errors. For expected error conditions (such as the
21 // HRESULTs returned by IDirect3D8::CheckDeviceType, or
22 // the D3DERR_DEVICELOST result returned by
23 // IDirect3DDevice8::Present), you should explicitly test
24 // against expected failure codes and only THR() on error
25 // code you do not expect.
26 //
27 // This will avoid the cost of exceptions for the normal
28 // flow of control, and the overhead of exceptions is
29 // perfectly reasonable when you expect the call to succeed
30 // but it fails anyway. These failures usually represent
31 // an invalid parameter passed to Direct3D and the returned
32 // HRESULT will be D3DERR_INVALIDCALL with coresponding
33 // additional information in the debug output.
34 //
35 // Provides:
36 // hr_message
37 // Exception class that records a failed HRESULT,
38 // file/line source file pair indicating where the

1.13. CODE TECHNIQUES 27

39 // failed HRESULT was generated, and possible context
40 // message. Its constructor (not inlined) looks up
41 // the HRESULT via FormatMessage() and a few other
42 // places specific to DirectX to generate the message
43 // text.
44 //
45 // display_error
46 // Displays a message box containing the error string
47 // inside an hr_message and returns the HRESULT.
48 //
49 // throw_hr, throw_win functions
50 // Inline function for checking a result and throwing
51 // an exception of type hr_message upon failure.
52 //
53 // THR(), TWS() and variants
54 // Macros to supply __FILE__ and __LINE__ at to
55 // throw_hr/throw_win so that the file/line is
56 // recorded from the source including this header and
57 // not this header itself.
58 //
59 // Example:
60 // try
61 // {
62 // THR(some_interface_ptr->SomeMethod());
63 // HFONT font = TWS(::CreateFontIndirect(&lf));
64 // // other stuff that may throw rt::hr_message
65 // }
66 // catch (const rt::hr_message &bang)
67 // {
68 // return rt::display_error(bang);
69 // }
70 //
71 // Copyright (C) 2000-2001, Rich Thomson, all rights reserved.
72 //
73

74 #include <windows.h>
75 #include <tchar.h>
76

77 namespace rt
78 {
79 ///
80 // hr_message
81 //
82 // Class for bundling up an HRESULT and a message and a
83 // source code file/line number.
84 //

28 CHAPTER 1. INTRODUCTION

85 class hr_message
86 {
87 public:
88 hr_message(const TCHAR *file, unsigned line,
89 HRESULT hr = E_FAIL,
90 const TCHAR *message = NULL);
91 ~hr_message() {}
92

93 const TCHAR *file() const { return m_file; }
94 unsigned line() const { return m_line; }
95 HRESULT result() const { return m_result; }
96 const TCHAR *message() const { return m_message; }
97

98 private:
99 enum

100 {
101 MESSAGE_LEN = 1024
102 };
103 const TCHAR *m_file;
104 unsigned m_line;
105 HRESULT m_result;
106 TCHAR m_message[MESSAGE_LEN];
107 };
108

109 ///
110 // throw_hr
111 //
112 // Function that throws an exception when the given
113 // HRESULT failed.
114 //
115 inline HRESULT
116 throw_hr(const TCHAR *file, unsigned line,
117 HRESULT hr, const TCHAR *message = NULL)
118 {
119 if (FAILED(hr))
120 {
121 throw hr_message(file, line, hr, message);
122 }
123 return hr;
124 }
125

126 ///
127 // throw_win
128 //
129 // Function that throws an exception when a Win32 return
130 // value indicates failure.

1.13. CODE TECHNIQUES 29

131 //
132 template<typename T>
133 inline T
134 throw_win(const TCHAR *file, unsigned line,
135 T status, const TCHAR *message = NULL,
136 int error = GetLastError())
137 {
138 if (!status)
139 {
140 throw_hr(file, line, HRESULT_FROM_WIN32(error),
141 message);
142 }
143 return status;
144 }
145

146 ///
147 // display_error
148 //
149 // Takes an hr_message and displays the message string in
150 // a message box and returns the HRESULT value.
151 //
152 inline HRESULT
153 display_error(const hr_message &bang,
154 const TCHAR *title = NULL)
155 {
156 ::MessageBox(0, bang.message(), title, 0);
157 return bang.result();
158 }
159 };
160

161 // macros to fill in __FILE__, __LINE__ and _T() automatically
162

163 // THR => throw HRESULT
164 #define THR(hr_) \
165 rt::throw_hr(_T(__FILE__), __LINE__, hr_, _T(#hr_))
166 #define THRM(hr_, msg_) \
167 rt::throw_hr(_T(__FILE__), __LINE__, hr_, msg_)
168 #define THRMT(hr_, msg_) \
169 rt::throw_hr(_T(__FILE__), __LINE__, hr_, _T(msg_))
170

171

172 // Win32 has lots of functions that return zero on failure:
173 // a NULL pointer or handle, a zero return count, etc.
174 // Most Win32 functions return the error code via
175 // GetLastError(). Some Win32 functions return the error
176 // code as a non-zero status. So throw_win takes both a

30 CHAPTER 1. INTRODUCTION

177 // status code and an error code.
178 //
179 // TWS => throw Win32 function status
180 // TWSM => Win32 status with message
181 // TWSMT => Win32 status with message constant needing _T()
182 #define TWS(status_) \
183 rt::throw_win(_T(__FILE__), __LINE__, status_)
184 #define TWSM(status_, msg_) \
185 rt::throw_win(_T(__FILE__), __LINE__, status_, msg_)
186 #define TWSMT(status_, msg_) \
187 rt::throw_win(_T(__FILE__), __LINE__, status_, _T(msg_))
188

189 // variations with error code supplied
190 #define TWSE(status_, error_) \
191 rt::throw_win(_T(__FILE__), __LINE__, status_, NULL, error_)
192 #define TWSME(status_, error_, msg_) \
193 rt::throw_win(_T(__FILE__), __LINE__, status_, msg_, error_)
194 #define TWSMTE(status_, err_, msg_) \
195 rt::throw_win(_T(__FILE__), __LINE__, status_, _T(msg_), err_)
196

197 #endif

Having localized the error handling with these tools, we can transform our
hypothetical sample into the following:

class some_ptr
{
public:

some_ptr(ISomeInterface *some) : m_some(some) {}
~some_ptr() { m_some->Release(); }
operator ISomeInterface *() const { return m_some; }

private:
ISomeInterface *m_some;

};

void
DoSomething(ISomeInterface *some)
{

THR(some->Method1());
THR(some->Method2());
THR(some->Method3());

}

bool

1.13. CODE TECHNIQUES 31

DoThings()
{

try
{

some_ptr some(GetInterface());
DoSomething(some);
DoSomethingElse(some);

}
catch (const rt::hr_message &bang)
{

// log unexpected error here
return false;

}

return true;
}

This is admittedly a contrived example, but the main flow of control is now
clearly visible, at the expense of wrapping each method in an invocation of
the THR macro and the entire function in a try/catch block. Note also we had
to wrap the ISomeInterface in a smart pointer so that it would be properly
released in case DoSomething or DoSomethingElse threw an exception.

A more realistic example would place the try/catch at an outer scope, where
error context information would be logged for debugging or displayed with a
dialog box. This is especially true if DoSomething is called from a tight inner
loop.

Another advantage of localizing the code for error handling is that a break-
point can be set on the throw statement in throw hr. When an error is en-
countered that would throw an exception, the breakpoint is activated and the
programmer can examine the call stack and program state at the exact location
of the error. The traditional if statement approach requires multiple breakpoints
be set, or code single-stepped if the location of the error isn’t known.

C++ exceptions are powerful and must be used with care. The main and
most common flow of control should never be through a throw/catch pair as
there is some overhead to exceptions. Like most programming features provided
at runtime, excpetions come with a cost. When used reasonably, this cost should
be insignificant compared to the time you save while debugging. Once your
program is debugged, you can even redefine the THR macros so that exceptions
cannot be thrown.

Whenever C++ exceptions are used, it is important to be aware of potential
resource leaks. Objects created on the stack that are active at the time of a C++
exception have their destructors invoked as the stack frame is unwound from
the stack frame of the throw statement to the stack frame of the enclosing catch
statement. Dynamically allocated resources are not automatically destroyed
when an exception is thrown, only objects allocated on the stack. An application
using C++ exceptions in its implementation should not let exceptions unwind

32 CHAPTER 1. INTRODUCTION

the stack into the operating system, such as the caller of your windows or
dialog procedure. If you implement COM objects with exception handling in
the implementation you must catch the C++ exceptions in the interface methods
to prevent C++ exceptions from unwinding the stack into the COM runtime.

The CD-ROM accompanying this book contains an implementation of THR
and associated infrastructure for mapping HRESULTs to C++ exceptions.

THR Without Exceptions

It is also possible to use all the same mechanisms described above without
using C++ exceptions. The DirectX SDK samples use a common application
framework that relies on HRESULTs and bool return values from methods instead
of exceptions for error handling.

The samples accompanying this book that are based on the SDK sample
framework check all their COM method calls with a variation of THR that asserts
false when a failed HRESULT is encountered. This is robust enough for a sample
application that demonstrates a feature in the API, but not sufficient for a robust
runtime error handling in a production application.

Smart Pointers

ATL 3.0 provides two helper template classes, CComPtr<> and CComQIPtr<> that
simplify the management of COM interface pointers. CComPtr<> is used when
you want to obtain an interface pointer via ::CoCreateInstance. CComQIPtr<>
is used when you want to obtain an interface pointer via QueryInterface. These
classes are located in the <atlbase.h> header file in the ATL includes directory.

The C++ standard library helper class std::auto ptr, declared in <memory>,
can be used to avoid leaks of dynamically allocated memory. You should read
and understand the implementation in <memory> for auto ptr, or <atlbase.h>
for CComPtr<> and CComQIPtr<>. Misunderstandings of the pointer ownership
policies for smart pointer classes can lead to bugs just as difficult to track down
as those that spurred the development of smart pointer classes in the first place.

The std::auto ptr class can only be used with a single object as it uses the
scalar memory allocator new instead of the array allocateor new[]. For a smart
array pointer, see <http://www.boost.org/>.

You can also write your own smart pointer classes. For instance, the C++
standard library doesn’t provide functions for reference-counted pointers to heap
memory the way COM objects are reference counted. You can also incremen-
tally extend existing smart pointer classes. The example code on the CD-ROM
extends the ATL smart pointers to make them easier to use with Direct3D COM
objects. You can also write your own smart resource helper classes for other
dynamic resources like open file handles, critical sections, mutexes, GDI objects,
etc.

1.13. CODE TECHNIQUES 33

Revised Simple AVI Player

We now return to our simple AVI player program and enhance it with full error
checking and smart pointers to manage the lifetimes of objects. This program
uses C++ exceptions and resource helper classes to initialize COM. The program
is now robust against unexpected failed HRESULTs that may occur.

Listing 1.3: An improved simple AVI player.

1 #define WIN32_LEAN_AND_MEAN
2 #define STRICT
3 #include <windows.h>
4 #include <atlbase.h>
5 #include <dshow.h>
6 #include <rt/hr.h>
7

8 // acquire COM runtime as a resource
9 class com_runtime

10 {
11 public:
12 com_runtime() { THR(::CoInitialize(NULL)); }
13 ~com_runtime() { ::CoUninitialize(); }
14 };
15

16 // extend CComQIPtr<T> to throw on no interface
17 template <typename T>
18 class com_qi_ptr : public CComQIPtr<T>
19 {
20 public:
21 com_qi_ptr(IUnknown *base) : CComQIPtr<T>(base)
22 {
23 if (!p) THR(E_NOINTERFACE);
24 }
25 ~com_qi_ptr() {}
26 };
27

28 int APIENTRY
29 WinMain(HINSTANCE, HINSTANCE, LPSTR, int)
30 {
31 try
32 {
33 com_runtime com;
34

35 // Create the filter graph manager
36 CComPtr<IGraphBuilder> graph;
37 THR(graph.CoCreateInstance(CLSID_FilterGraph));
38

34 CHAPTER 1. INTRODUCTION

39 // Build the graph.
40 THR(graph->RenderFile(L"CLOCKTXT.AVI", NULL));
41

42 // Run the graph.
43 THR(com_qi_ptr<IMediaControl>(graph)->Run());
44

45 // Wait for completion.
46 long evCode = 0;
47 THR(com_qi_ptr<IMediaEvent>(graph)->
48 WaitForCompletion(INFINITE, &evCode));
49 }
50 catch (const rt::hr_message &bang)
51 {
52 return rt::display_error(bang);
53 }
54

55 return 0;
56 }

1.14 Previous Versions of Direct3D

Direct3D 8.0 provides significant ease of use improvements as well as some
exciting new features compared to Direct3D 7. There are also some things
possible in version 7 that are not possible with version 8.

The most significant change from previous versions is that DirectDraw has
been eliminated as a separate interface and its features have been combined
into the Direct3DDevice interface. This provides advanced features like alpha
blending and arbitrary rotation to 2D applications.

At the API level, version 8 uses a different set of header files than version 7.
The core datatypes no longer include C++ class member functions with D3D -
OVERLOADS only the data members themselves. The member functions are now
part of the D3DX classes which inherit from the core structures. Structures
are no longer adorned with a dwSize member that must be properly initialized
before using the structure. Callback functions have been eliminated completely.

Device enumeration and selection has been significantly simplified and the
corresponding device enumeration features from D3DX eliminated. It is now
possible to examine the capabality structure for a device without creating an
instance of the device.

Presentation of rendered imagery for display has also been simplified. The
code paths for presentation in windowed mode and full-screen mode have been
made identical with slightly different arguments to the presentation methods.
The Blt API has been eliminated and replaced with a simplified CopyRects
method for a simple copying of pixels; the presentation uses of Blt have been
replaced by the presentation methods.

1.15. FURTHER READING 35

New geometric primitives and new pipeline features are provided. The new
primitives are provided as both core primitives and D3DX convenience “primi-
tives”. The core introduces expanded point and spline surface primitives. D3DX
introduces text, progressive mesh and subdivision surface primitives.

The pipeline now offers programmable vertex shaders encompassing the ver-
tex procesing stages of the fixed-function pipeline in version 7: vertex blending,
transformation, and lighting. Programmable pixel shaders encompass the multi-
texturing stage of the fixed-function pipeline in version 7. An application can
continue to use the fixed-function pipeline in version 8 if the flexibility of vertex
and pixel shaders is not required.

Devices now offer multisampling support for full-scene antialiasing, motion
blur and depth of field effects. Devices also offer cursor support. Volume and
mipmapped volume texture support has been added.

Direct access to the primary surface is prohibited in Direct3D 8, although
a rectangular copying proxy interface is provided. DirectShow cannot be used
directly with the interfaces exposed in DirectX 8 Graphics.9

1.15 Further Reading

Gems Graphics Gems, edited by Andrew S. Glassner.
Provides many useful and practical algorithms for solving small problems
in graphics. After five volumes, the book series has been replaced by the
Journal of Graphics Tools. The book’s source code is available at <ftp:/
/graphics.stanford.edu/pub/Graphics/GraphicsGems/>.

Blinn Jim Blinn’s Corner: Dirty Pixels, by Jim Blinn. This and another
companion volume reprint Blinn’s column from the journal IEEE Com-
puter Graphics & Applications. The July, 1989 issue contained the column
“Dirty Pixels” on gamma correction.

Box Essential COM, by Don Box.
Provides an excellent introduction to COM and an explanation of the
technology from both client and server points of view.

Brockschmidt Inside OLE, 2nd ed., by Kraig Brockschmidt.
One of the first books that explains all of COM (despite the title referring
to OLE) both from a client and a server’s point of view. The entire book
is included in the MSDN Library CD-ROM and on-line at <http://msdn.
microsoft.com/library/default.asp>.

ChandlerFötsch Windows 2000 Graphics API Black Book, Damon Chandler
and Michael Fötsch. Contains a chapter on Image Color Management and
device color profiles.

9You can always write your own DirectShow filter. The Texture3D DirectShow sample in
the SDK shows how to play video to a texture.

36 CHAPTER 1. INTRODUCTION

Glassner Principles of Digital Image Synthesis, Andrew Glassner.
Comprehensive coverage of digital image synthesis in two volumes. More
information about the human visual system, CRT display technology, and
color spaces. Errata are located on-line at <http://research.microsoft.
com/glassner/work/projects/pdis/pdis.htm>.

Hall Illumination and Color in Computer Generated Imagery, Roy Hall.
Extensive coverage of color and its use in computer synthetic imagery.

Stoustrup C++ Programming Language, 3rd edition, by Bjarne Stroustrup.
Explains C++ exceptions, the std::auto ptr<> template class and helper
classes for use with exceptions. Errata are located on-line at <http://
www.research.att.com/~bs/3rd.html>.

Thorell Using Computer Color Effectively, by L. G. Thorell and W. J. Smith.
Illustrative guide to selecting colors for visual presentation based on per-
ception in the human visual system as well as practical considerations.

JGT Journal of Graphics Tools, edited by Andrew S. Glassner.
See <http://www.acm.org/jgt/>.

